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Abstract

Accurate estimation of optical flow is a challenging task,
which often requires addressing difficult energy optimiza-
tion problems. To solve them, most top-performing methods
rely on continuous optimization algorithms. The modeling
accuracy of the energy in this case is often traded for its
tractability. This is in contrast to the related problem of
narrow-baseline stereo matching, where the top-performing
methods employ powerful discrete optimization algorithms
such as graph cuts and message-passing to optimize highly
non-convex energies.

In this paper, we demonstrate how similar non-convex
energies can be formulated and optimized discretely in the
context of optical flow estimation. Starting with a set of
candidate solutions that are produced by fast continuous
flow estimation algorithms, the proposed method iteratively
fuses these candidate solutions by the computation of min-
imum cuts on graphs. The obtained continuous-valued fu-
sion result is then further improved using local gradient de-
scent. Experimentally, we demonstrate that the proposed
energy is an accurate model and that the proposed discrete-
continuous optimization scheme not only finds lower energy
solutions than traditional discrete or continuous optimiza-
tion techniques, but also leads to flow estimates that outper-
form the current state-of-the-art.

1. Introduction

Optical flow has been an important area of computer
vision research, and despite the significant progress made
since the early works [14, 20], flow estimation has remained
challenging to this date. Two challenges dominate recent
research: firstly, the issue of choosing an appropriate com-
putational model, and secondly, computing a good solution
given a particular model. Papenberg et al. [23], for example,
suggested a complex continuous optimization scheme for
flow estimation. Despite its success, this approach is limited
by the fact that the spatial regularity of flow is modeled as
a convex function. Consequently, the estimated flow fields
are somewhat smooth and lack very sharp discontinuities
that exist in the true flow field, especially at motion bound-
aries. Black and Anandan [3] addressed this problem by

(a) Ground truth (b) Estimated flow

Figure 1. With a new, more accurate MRF energy and a powerful
discrete-continuous optimization approach, the proposed method
is capable of accurate flow recovery from challenging image se-
quences such as “Mequon” from [1] (hue = direction, saturation
= magnitude, black in GT = “unknown”).

introducing non-convex penalty functions based on robust
statistics that are tolerant towards such outliers. While this
formulation allowed for realistic discontinuities, the corre-
sponding non-convex energy was hard to minimize. Despite
using annealing, the optimization could often get trapped in
poor local optima. Roth and Black [25] studied the spatial
statistics of optical flow and found the derivative statistics to
be very heavy-tailed. This validated the assumptions made
by [3] and implied that the convex energies used by the ma-
jority of today’s flow approaches only provide a relatively
crude approximation to the statistics of the flow. They also
suggested a Markov random field (MRF) model motivated
by these statistics, but due to the corresponding non-convex
energies, inference has remained very challenging, and the
flow fields estimated using a continuous optimization ap-
proach still suffer from smoothed discontinuities.

Surprisingly, for narrow-baseline stereo matching these
difficulties have been addressed quite a while ago, and the
need for non-convex energy functions has not only been rec-
ognized but, in contrast to optical flow, also been widely
addressed. Their use has been facilitated by modern dis-
crete optimization algorithms, such as graph cuts [7] or
message passing [28], which are often able to obtain nearly-
global optima of such energies [21]. Most top-performing
stereo techniques rely on discrete optimization for minimiz-
ing non-convex energies. Even though disparity estimation
has a lot in common with optical flow estimation and can, in
fact, be regarded as a particular constrained case of it, sur-
prisingly little knowledge has been transferred to the optical
flow problem. Only a few authors have attempted to use dis-
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Figure 2. (Left) Negative log-density of the x-derivative of the hor-
izontal flow (from [25]). (Right) Charbonnier potentials (red, c.f .
[9]) are not a good fit of these statistics, but better than quadrat-
ics (black). Here, we instead use the negative-log of a Student-t
distribution (Lorentzian) (blue, c.f . [3]).

crete optimization for optical flow [7, 10, 11, 19, 27], how-
ever, none of them reported state-of-the-art performance.

This work presents a new approach to the estimation of
optical flow called FusionFlow. Similar to [3] and mo-
tivated by the statistics of optical flow [25], we employ
a heavy-tailed spatial term as well as a robust data term,
which permit modeling sharp discontinuities and occlusions
in the flow. Similar to stereo methods, we rely on discrete
optimization to minimize the resulting highly non-convex
energy, but our optimization is not purely discrete. Instead,
it relies on a set of continuous-valued candidate flow fields,
which are obtained via fast and simple flow algorithms such
as the original Lucas-Kanade [20] and Horn-Schunck [14]
methods. These proposal solutions are subsequently com-
bined together using discrete optimization. Following [19],
the optimal combination (fusion) of each pair of solutions
with respect to the considered energy is computed from the
minimum cut on a special graph [4, 5, 16]. Afterwards, the
fused solution is locally improved using gradient descent.
The suggested optimization scheme relies on discrete algo-
rithms in order to avoid poor local minima of the energy, but
operates with continuously-valued proposal solutions. This
avoids the pitfalls of purely discrete approaches, namely the
huge number of labels as well as discretization artifacts.

We first motivate our new non-convex energy in Sec. 2,
and then introduce the proposed discrete-continuous opti-
mization approach in Sec. 3. It allows for more efficient
and robust optimization compared to hierarchical coarse-
to-fine continuous frameworks, which are very often used
for flow estimation. In Sec. 4 we show that our non-convex
energy combined with our optimization procedure leads to
high-quality flow results, superior to typical convex formu-
lations. At the time of publication, the proposed algorithm
is the top-ranking approach across the majority of evalua-
tion metrics of the Middlebury optical flow benchmark [1].

1.1. Background and Related Work

In many cases, optical flow estimation has been posed
as a problem of energy minimization. The use of energy
minimization dates back to the work of Horn and Schunck
[14], where given a pair of images I(x, y, t) and I(x, y, t+

1) the optical flow field (u, v) is computed by minimizing
an energy of the form

E(u, v) =
∫

Ω

D (I(x+ u(x, y), y + v(x, y))− I(x, y)) +

S
(
||∇u(x, y)||2 + ||∇v(x, y)||2

)
dx dy . (1)

Here Ω denotes the image region, and (x, y) denotes the im-
age coordinate. The first term, the so-called data term, em-
bodies the brightness constancy assumption, which states
that corresponding pixels in the two frames should have
similar brightness. The second term, also called spatial
term, imposes spatial regularity on the resulting optical flow
field by penalizing spatially varying flow. This is necessary,
because flow estimation is severely underconstrained and
suffers, for example, from the aperture problem. Histori-
cally, [14] proposed using quadratic penalties for both data
and spatial terms, and further linearized the brightness con-
stancy assumption. This makes the energy convex, and after
spatial discretization quite easy to optimize.

Nevertheless, this simple formulation has a variety of
problems. The linearized brightness constancy assump-
tion allows estimating only very small motions, which has
prompted the use of hierarchical coarse-to-fine estimation
schemes, in which the solution from a coarser level is
used to warp the frames toward each other. Interestingly,
these can be interpreted as numerical schemes for approxi-
mately minimizing energies with non-linearized, thus non-
convex, brightness constancy terms [23]. Another prob-
lem relates to the fact that a quadratic spatial term leads to
overly smooth flow estimates without any discontinuities,
as they naturally occur at motion boundaries. Even though
robust non-convex penalty functions have been proposed
[3] and are motivated by the flow statistics (see Fig. 2),
they were hard to optimize with traditional continuous opti-
mization approaches. Many subsequent methods thus often
used slightly robust, but still convex penalty functions (e.g.
[9, 23]), which still lead to smoothed discontinuities.

Some approaches recover more accurate motion discon-
tinuities using explicit discontinuity modeling either using
line processes [3] or explicit segmentation of the flow fields
[8, 22]. In both cases, the estimation of discontinuities is
alternated with flow estimation, which also makes these ap-
proaches vulnerable to getting trapped in local minima.

A number of authors have formulated the problem of
flow estimation using a Markov random field, in which
case flow is usually computed using maximum a-posteriori
(MAP) estimation [3, 13, 18]. Inference was performed us-
ing a number of approximative techniques, such as stochas-
tic or deterministic relaxation, all of which are vulnerable
to getting trapped in relatively poor local optima.

A number of attempts have been made to adapt dis-
crete optimization methods for optical flow computation
[7, 10, 11, 19, 27]. All of them, however, suffered from



the problem of label discretization. While in stereo it is rel-
atively easy to discretize the disparities, this is not the case
for optical flow, where at each pixel a two-dimensional flow
vector has to be described using discrete labels.

Our approach may also be related to layered-based cor-
respondence methods such as [2]. These methods assume
that the scene decomposes into a small set of layers with
few parameters (such assumption, however, rarely holds for
real scenes). The energy, which is dependent both on the
non-local layer parameters as well as on the pixel assign-
ments to layers, is minimized by alternating discrete opti-
mization updating pixel assignments and continuous opti-
mization updating layer parameters. Despite the use of dis-
crete algorithms, such optimization still often gets stuck in
poor local minima.

2. Energy Formulation

Following a number of optical flow approaches (e.g.
[3, 13, 18]) as well as a large body of work in stereo, we
model the problem of optical flow estimation using pairwise
Markov Random Fields. Flow estimation is performed by
doing maximum a-posteriori (MAP) inference. As we will
see, this provides a good trade-off between the accuracy of
the model as well as inference, i.e. optimization, tractabil-
ity. The posterior probability of the flow field f given two
images, I0 and I1, from a sequence is written as

p(f |I0, I1) =
1
Z

∏
p∈Ω

exp(−Dp(fp; I0, I1))·

∏
(p,q)∈N

exp(−Sp,q(fp, fq)) ,
(2)

where fp = (up, vp) denotes the flow vector at pixel p, the
set N contains all pairs of adjacent pixels, and Z is a nor-
malization constant. Before specifying the model in more
detail, we obtain an equivalent energy function by taking the
negative logarithm of the posterior and omitting constants:

E(f) =
∑
p∈Ω

Dp(fp; I0, I1) +
∑

(p,q)∈N

Sp,q(fp, fq) . (3)

This can be viewed as a spatially discrete variant of Eq. (1).
Data term. The first term of the energy, the so-called

data term, measures how well the flow field f describes
the image observations. In particular, it models how well
the corresponding pixels of I0 and I1 match. Traditionally,
it is modeled based on the brightness (or color) constancy
assumption, e.g., Dp(fp; I0, I1) = ρd(||I1(p + fp) −
I0(p)||). Note that we do not employ a linearized con-
straint as our optimization method does not require this. We
found, however, that such simple color matching is heavily
affected by illumination and exposure changes, in particular

by shadows. To make the data term robust to these effects,
we remove lower spatial frequencies from consideration:

Hi = Ii −Gσ ∗ Ii, i ∈ 0, 1 , (4)

where Gσ is a Gaussian kernel with standard deviation σ.
Based on these filtered images we define

Dp(fp; I0, I1) = ρd(||H1(p + fp)−H0(p)||) . (5)

Here || · || denotes the Euclidean distance of the RGB color
values. H1(p+fp) is computed using bicubic interpolation.

As suggested by the probabilistic interpretation from
Eq. (2), the penalty function ρ(·) should model the nega-
tive log-probability of the color distance for natural flow
fields. Although the statistics of color constancy for opti-
cal flow have not been studied rigorously so far, the pres-
ence of effects such as occlusions and specular reflections
suggests that a robust treatment using heavy-tailed distribu-
tions is necessary to avoid penalizing large color changes
unduly (cf. [3]). Therefore, we use the Geman-McClure ro-
bust penalty function:

ρd(x) = x2

x2+µ2 , (6)

which has a similar shape as a truncated-quadratic penalty
f(x) = min(ax2, 1) that has been very successfully used
in the stereo literature, but is differentiable everywhere.

Spatial term. As is usual in a pairwise MRF formulation
of flow, the spatial term penalizes changes in horizontal and
vertical flow between adjacent pixels:

Sp,q = ρp,q

(
up − uq

||p− q||

)
+ ρp,q

(
vp − vq
||p− q||

)
,

where ||p− q|| is the Euclidean distance between the pixel
centers of p and q. As the flow differences between ad-
jacent pixels closely approximate the spatial derivatives of
the flow, we use the spatial statistics of optical flow [25]
to motivate suitable penalty functions. Roth and Black [25]
showed that the statistics of flow derivatives are very heavy-
tailed and strongly resemble Student t-distributions. We
therefore choose the penalty to be the (scaled) negative log
of a Student-t distribution (see also Fig. 2):

ρp,q(x) = λp,q log
(
1 + 1

2ν2x
2
)
. (7)

Motivated by the success of stereo approaches, we assume
that the flow field discontinuities tend to coincide with im-
age color discontinuities. Hence we make the smoothness
weight λp,q spatially-dependent and set it to a lower value
if the pixel values I0(p) and I0(q) are similar.

While being of high fidelity, as we will see shortly, the
proposed MRF energy is more difficult to optimize than the
energies used in recent popular optical flow methods such



as [9, 23]. While the non-linearized color constancy as-
sumption already makes the objective non-convex [23], the
penalty functions of data and spatial term in our formulation
are robust, thus non-convex as well. Finally, the data term
works with the high frequency content of images, which
only adds to its non-linearity. Therefore, as we demon-
strate in the experimental section, traditional continuous op-
timization schemes based on coarse-to-fine estimation and
gradient descent often end up in poor local minima. Also,
the proposed energy is harder to optimize than many ener-
gies used in stereo matching, since the value at each pixel
spans a potentially unbounded 2D rather than a bounded 1D
domain, making it infeasible for purely discrete techniques
to sample it densely enough. This suggests the use of a new,
more powerful optimization scheme that combines the mer-
its of discrete and continuous-valued approaches.

3. Energy Minimization
3.1. Graph cut methods for energy minimization

Over the last years, graph cut based methods have proven
to be invaluable for the minimization of pairwise MRF ener-
gies in the case of discrete labels (e.g., xp ∈ {0, 1, . . . N −
1}), which take the form:

E(x) =
∑
p∈Ω

Dp(xp) +
∑

p,q∈N
Sp,q(xp, xq) . (8)

These methods rely on the fact that in the case of MRFs
with binary labels (N=2) finding the global minimum can
be reduced to computing the minimal cut on a certain net-
work graph [5, 12]. The existing algorithms based on the
maxflow/mincut duality find the minimal cut (and hence
the global minimum of the MRF energy) very efficiently
[6]. The graph construction proposed in [12, 17], however,
worked only for MRFs with a certain submodularity con-
dition imposed on the pairwise terms. In the cases when
these submodularity conditions are not met, a partial global
optimum may still be computed via minimum cut on an ex-
tended graph [4, 5, 16]. Here, partiality implies that the
label cannot be determined from the minimal cut for some
of the nodes. However, the remaining (labeled) nodes are
assigned the same label as they have in the global optimum.
The number of nodes with unknown labels depends on the
structure of the problem: connectivity, number of submod-
ularity constraints violated, etc. [26].

Various ways have been suggested to extend graph cut
based methods to MRFs with multiple labels (N>2) [7, 15,
19]. In particular, recently [19] suggested the fusion move
approach to be used in this context. The fusion move con-
siders two given N -valued labelings x0, x1 and introduces
an auxiliary binary-valued labeling y. The set of all pos-
sible auxiliary labelings naturally corresponds to the set of
fusions of x0 and x1 (i.e., labelings of the original MRF,

where each node p receives either label x0
p or label x1

p):

xf (y) = (1− y) · x0 + y · x1 , (9)

where the product is taken element-wise. This induces a
binary-labeled MRF over the auxiliary variables with the
energy defined as:

Ef (y) = E(xf (y)) =
∑
p∈Ω

dp(yp) +
∑

p,q∈N
sp,q(yp, yq),

where dp(i) = Dp(xip), sp,q(i, j) = Sp,q(xip, x
j
q).

The minimum of this binary-valued MRF can be computed
via minimum cut on the extended graph. It corresponds to
the fusion of x0 and x1 that is optimal with respect to the
original energy from Eq. (8). Consequently, the energy of
this optimal fusion will not be higher (and in most cases
lower) than the energy of both x0 and x1. This crucial
property of the fusion move algorithm can be enforced even
when the obtained optimal auxiliary labeling is not com-
plete (in this case all the unknown labels are taken from the
original solution with lower energy).

The fusion move generalizes the α-expansion move and
the αβ-swap move proposed in [7]. Thus, the popular α-
expansion algorithm may be regarded as subsequent fusions
of the current labeling with different constant labelings. Our
FusionFlow framework relies on discrete-continuous opti-
mization that also uses fusion moves, here to combine pro-
posal solutions. In particular, it relies on the fact that fu-
sion moves can be applied even in the case of MRFs with
continuous-valued labels such as in Eq. (3), which avoids
discretization artifacts.

3.2. Discrete-continuous energy minimization

Proposal solutions. The discrete part of our algorithm
proceeds by first computing many different continuous-
valued flow fields that serve as proposal solutions, and then
iteratively fusing them with the current solution using graph
cuts. After each fusion different parts of the proposal solu-
tion are copied to the current solution so that the energy
goes down (or stays equal). The success of the method thus
depends on the availability of good proposal solutions.

It is important to note that the proposal solutions need
not to be good in the whole image in order to be “useful”.
Instead, each solution may contribute to a particular region
in the final solution, if it contains a reasonable flow estimate
for that region, no matter how poor it is in other regions.
This suggests the use of different flow computation methods
with different strengths and weaknesses for computing the
proposals. In our experiments, we used three kinds of the
proposal solutions. Firstly, we used solutions obtained us-
ing the Lucas-Kanade (LK) method [20]. Due to the prop-
erties of the method, such solutions often contain good re-
sults for textured regions but are virtually useless in texture-
less regions. Secondly, we used solutions obtained using



(a) First Frame (b) Ground truth (c) Final Solution, Energy=2041

(d) Solution 1, Energy=7264 (e) Solution 2, Energy=44859 (f) Auxiliary variables (g) Fused solution, Energy=6022

Figure 3. Results for the Army sequence from [1]. The bottom row shows the first step of our discrete optimization (where ”Lucas-
Kanade meets Horn-Schunck”). Here, a randomly chosen initial solution (d) (computed with Horn-Schunck) is fused with another ran-
domly chosen proposal solution (e) (computed with Lucas-Kanade). The graph cut allows to compute the optimal fused solution (g) with
much lower energy, which is passed on to the next iteration. The optimal auxiliary variables (f) show which regions are taken from Solution
1 (black) and from Solution 2 (white). In this example 99.998% of the nodes were labeled by the minimum cut on the extended graph.

the Horn-Schunck (HS) method [14]. Such solutions often
contain good results for regions with smooth motion, but
motion discontinuities are always severely oversmoothed.
Finally, we also used constant flow fields as proposals.

To obtain a rich set of proposal solutions, we use the LK
and HS methods with various parameter settings. For HS
we vary the strength of the regularization (λ ∈ {1, 3, 100}).
Since both methods should be applied within a coarse-to-
fine warping framework to overcome the limitations of the
linearized data term (of the proposals, not of our energy),
we also vary the number of levels in the coarse-to-fine hier-
archy (l ∈ {1, . . . , 5}). Finally, for all LK solutions and
a few HS solutions we produce shifted copies (by shift-
ing ±2l−1 and ±2l pixels in each direction). For the LK
method, this corresponds to the use of a family of non-
centralized windows and, hence, gives better chances of
providing correct flow values near flow discontinuities, and
as we found reduces the energy of the solution. These varia-
tions result in about 200 proposals (most of them, however,
are shifted copies and do not take much time to compute).
64 constant flow fields are also added to the set of proposals.
The choice of the constants is discussed below.

It is important to note that other (potentially more effi-
cient) approaches for obtaining proposal solutions may also
be considered. We also experimented with proposal solu-
tions by performing gradient descent from different starting
points. We found this to lead to good results (given a suffi-
cient number of minima), but did not pursue it in our final
experiments due to its computational inefficiency.

Discrete optimization. As described above, the pro-
posal solutions are fused by computing the minimal cut on
the extended graph. The process starts with the LK and HS

proposal fields only. One of these proposal fields is ran-
domly chosen as an initial solution. After that, the remain-
ing LK and HS proposals are visited in random order, and
each of them is fused with the current solution (as described
in Sec. 3.1). An example of such a fusion (during the first
iteration of the process) is shown in Fig. 3.

After all LK and HS solutions are visited, the motion
vectors of the obtained fused solution are clustered into 64
clusters using the k-means algorithm. The centers of the
clusters ci ∈ R2 are used to produce constant proposal flow
fields fi(p) ≡ ci. Note that more sophisticated proposals
dependent on the current solution may be suggested and our
constant solutions are just one step in this direction.

The created constant proposals are added to the LK and
HS proposals and the fusion process continues until each
proposal is visited twice more. At this point the procedure
typically converges, i.e., the obtained fused solution can no
longer be changed by fusion with any of the proposals.

We should note that the number of unlabeled nodes dur-
ing each fusion was always negligible (we never observed
it exceeding 0.1% of the nodes). Each fusion is guaranteed
not to increase the energy, and in practice the resulting so-
lution always has an energy that is much smaller than the
energy of the best proposal.

Continuous optimization. After fusing flow fields us-
ing discrete optimization, we perform a continuous opti-
mization step that helps “cleaning up” areas where the pro-
posal solutions were not diverse enough, which for exam-
ple may happen in relatively smooth areas. In order to per-
form continuous optimization, we analytically compute the
gradient of the same energy we use in the discrete step,
∇fE(f), and use a standard conjugate gradient method [24]



to perform local optimization. The gradient of the spa-
tial term is quite easily derived; computing the gradient of
the data term relies on the fact that H1(p + fp) is com-
puted using bicubic interpolation, which allows computing
the partial derivatives w.r.t. up and vp. We should note that
the gradient bears resemblance to the discretization of the
Euler-Lagrange equations for the objective used in [23].

Since the discrete optimization step avoids many of the
poor local optima that are problematic for purely continu-
ous optimization methods, the combination of discrete and
continuous optimization leads to local minima with a sub-
stantially lower energy in most of our experiments.

4. Evaluation
To evaluate the proposed approach and in particular the

efficiency of the proposed energy minimization scheme in
obtaining low-energy states of Eq. (3), we performed a
number of experiments using the recent Middlebury optical
flow benchmark dataset [1]. Since our method is applica-
ble to color images and based on 2 frames, we used the 2-
frame color versions of the datasets, and left the extension to
multi-frame sequences for future work. In all experiments,
we used an 8-neighborhood system for the spatial term and
the following parameters, which were chosen to give good
performance on challenging real-world scenes: σ = 1.5 for
the high-pass filter, µ = 16 and ν = 0.2 for the MRF po-
tentials; λp,q = 0.024, if the sum of absolute differences
between I(p, t) and I(q, t) was less than or equal to 30,
and λp,q = 0.008 otherwise.

We evaluated the proposed method on 8 benchmarking
sequences and found that it outperforms other methods in
the benchmark, particularly on the challenging real world
scenes as they are shown in Fig. 1, Fig. 3 and Fig. 4. At
the moment of publication, the proposed method was top-
ranked on 10 out of 16 available performance measures in-
cluding the average angular error (AAE) and the average
end-point error. The only sequence, where our method
does not perform well is the Yosemite sequence. This is
mainly due to the fact that our parameters were chosen to
give good performance on real-world sequences (increas-
ing the smoothness weight by 16x without changing other
parameters lowers the AAE on Yosemite from 4.55 to 2.33
degrees).

Proposed energy vs. baseline energy. To evaluate the
advantage of the proposed energy, we also considered a
simple “baseline” energy that is quite similar to the ob-
jectives in popular continuous methods [9, 23]. In partic-
ular, we again use an 8-neighborhood for the spatial term,
but here with convex Charbonnier potentials (Ch(x, φ) =
φ2
√

1 + x2/φ2), which are similar to the absolute differ-
ence measure (see also Fig. 2). The trade-off weight λ was
not adapted spatially. For the data term, we used gray-
scale images as input from which we did not remove the

low frequencies, and also relied on Charbonnier potentials.
We optimized the energy using the approach proposed here,
and tuned the parameters of the baseline model using grid
search on “RubberWhale” (see Fig. 5). As can be seen
in Fig. 5a and c, the proposed energy clearly outperforms
the baseline model visually and quantitatively, even on the
sequence used to tune the baseline energy parameters. In
particular, the robust spatial potentials employed here allow
to recover sharp discontinuities, while at the same time re-
covering smooth flow fields in continuous areas (Fig. 5c).
Also, the robust data potentials allowed to attain better per-
formance in occlusion areas. Finally, ignoring low fre-
quency image content substantially improved the results in
areas with shadows, such as on “Schefflera”, from which
the baseline model suffers.

Our optimization vs. other schemes. For our energy,
we also compared the proposed discrete-continuous opti-
mization method with a baseline continuous and a baseline
discrete optimization scheme. For baseline continuous op-
timization, we employed a hierarchical coarse-to-fine esti-
mation framework with 5 levels (c.f . [3]), where at each
pyramid level we used the gradient descent scheme de-
scribed in Sec. 3.2. As a baseline discrete algorithm, we
ran α-expansion (i.e. “conventional” graph cuts) [7]. To
make the comparison more favorable for this baseline algo-
rithm, we estimated the minimum and maximum horizontal
and vertical flow from our high-quality solution (note that
such an accurate estimate cannot be obtained directly from
proposal solutions), and discretized this range uniformly to
give about 1000 labels (i.e., 4 times larger than the number
of proposals that the fusion approach uses).

We found that neither of the two baseline energy mini-
mization schemes gave good results for our energy consis-
tently across the benchmark datasets, neither in terms of the
energy, nor in terms of flow accuracy (see Tab. 1). In par-
ticular, the continuous baseline algorithm failed on most of
the datasets (see, e.g., Fig. 5b). This suggests that the pro-
posed energy is simply too difficult for standard continuous
optimization approaches, for example because of the non-
convex potentials and the removal of low frequencies in the
data term. While the behavior of the continuous optimiza-
tion could be improved, for example using deterministic an-
nealing (c.f . [3]), such heuristics rarely work well across a
wide-range of datasets. The baseline discrete algorithm ob-
viously suffered from the uniformity of discretization, espe-
cially for the datasets with large motion (e.g., “Urban”).

How many proposals? In our experiments we focused
on the accuracy of optical flow estimation, thus using ex-
tensive numbers of proposals and an exhaustive number of
iterations within continuous optimization. As a result, our
unoptimized MATLAB implementation takes more than an
hour for processing a single frame pair.

It is important, nevertheless, to emphasize that flow fu-



Figure 4. Example results on the benchmark datasets (right) along with ground truths (left).

Optimiz.
Army

AAE E(f)
Mequon

AAE E(f)
Schefflera

AAE E(f)
Wooden

AAE E(f)
Grove

AAE E(f)
Urban

AAE E(f)
Yosemite

AAE E(f)
Teddy

AAE E(f)
Our (full) 4.43 2041 2.47 3330 3.70 5778 3.68 1632 4.06 17580 6.30 5514 4.55 1266 7.12 9315

Our (discrete) 4.97 2435 4.83 4375 5.14 7483 5.24 2180 4.00 21289 6.27 6568 4.03 1423 6.68 10450
Baseline cont. 7.97 4125 52.3 21417 36.1 24853 16.8 7172 64.0 78122 46.1 26517 23.2 4470 63.9 31289
Baseline disc. 5.61 3038 5.19 6209 5.36 8894 4.94 2782 9.03 44450 18.7 17770 5.67 1995 9.13 15283

Table 1. Comparison of different optimization techniques: our full discrete-continuous, our discrete (i.e., fusion of proposals without
continuous improvement), baseline continuous, baseline discrete. Shown are the flow accuracy (average angular error) and the energy
achieved. On the 8 test datasets [1], our optimization scheme consistently outperforms the two baseline algorithms.

Energy vs. # of proposals Error vs. # of proposals

Figure 6. The energy and the average angular error (AAE) after
the discrete optimization step for different subsets of proposals for
“Rubber Whale” [1]. The x-coordinate of each dot corresponds to
the number of proposals in the subset. The rightmost point on each
plot corresponds to the full set of proposals. The plots suggest that
sets of proposals that are 5 time smaller would do almost as well
in our experiments.

sion idea is useful in scenarios where speed matters. Fig. 3
shows one such example, where fusion of just two motion
fields (each computed with real-time methods) improves the
result over both of them. Note that one fusion takes frac-
tions of a second. Fig. 6 further explores the trade-off be-
tween the number of proposals and the quality of the solu-
tion for one of the sequences from [1]. It demonstrates that
a five-fold reduction in the number of proposals leads to
solutions that are only slightly worse than those computed
with the full set of proposals.

We also tried to fuse both the discrete and the discrete-
continuous results with the known ground truth on “Rub-

ber Whale” to determine the quality of our proposals. We
found a mild energy reduction in the discrete case (from
E = 1821 to 1756), but hardly any reduction in the discrete-
continuous case (from E = 1613 to 1610). This shows
that our proposals appear to be very appropriate, as even
knowing the ground truth will not lower the energy much,
and that the continuous improvement step substantially im-
proves the results toward the ground truth (especially in
smoothly varying areas). Furthermore, this also suggests
that the proposed optimization gets very close to the ground
truth (as much as is permitted by the model) and that further
accuracy gains will require more involved models.

5. Conclusions

In this paper we proposed a new energy minimization
approach for optical flow estimation called FusionFlow that
combines the advantages of discrete and continuous opti-
mization. The power of the optimization method allowed
us to leverage a complex, highly non-convex energy for-
mulation, which is very challenging for traditional contin-
uous optimization methods. The proposed energy formu-
lation was motivated by the statistics of optical flow, bor-
rows from the stereo literature, and is robust to brightness
changes, such as in shadow regions. Experimentally, at the
moment of publication our approach is the top-performing
method on the Middlebury optical flow benchmark across a
variety of complex real-world scenes.



(a) Baseline energy, discrete-continuous optimization. (Left) RubberWhale: AAE=5.169. (Right) Schefflera

(b) Our energy, baseline continuous optimization. (Left) RubberWhale: E=4149, AAE=6.72. (Right) Schefflera: E=24853

(c) Our energy, discrete-continuous optimization. (Left) RubberWhale: E=1861, AAE=3.68. (Right) Schefflera: E=5778

Figure 5. Results for different energies and optimization methods. Each part shows the estimated flow field as well as a detail of the result.

Future work should consider whether more efficient pro-
posal solutions can be developed that offer a similar diver-
sity, but using many fewer proposals to reduce run-time.
With very few proposals, very fast flow estimation might
even be possible, at least without continuous refinement.
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