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Abstract

Face alignment seeks to deform a face model to match it
with the features of the image of a face by optimizing an ap-
propriate cost function. We propose a new face model that
is aligned by maximizing a score function, which we learn
from training data, and that we impose to be concave. We
show that this problem can be reduced to learning a clas-
sifier that is able to say whether or not by switching from
one alignment to a new one, the model is approaching the
correct fitting. This relates to the ranking problem where
a number of instances need to be ordered. For training
the model, we propose to extend GentleBoost [23] to rank-
learning. Extensive experimentation shows the superiority
of this approach to other learning paradigms, and demon-
strates that this model exceeds the alignment performance
of the state-of-the-art.

1. Introduction
Face alignment/fitting is essentially an image registration
problem, where a face model needs to be deformed to match
the image of a face, so that the natural facial features are
aligned with the model. The dramatic variations of facial
appearance due to shape, pose, illumination, expression,
occlusions, and image resolution make this a challenging
problem. Due to its importance in a wide range of applica-
tions, there is a sizable literature on face alignment. The Ac-
tive Shape Model (ASM) [6] is one of the early approaches
that attempts to fit the data with a model that can deform in
ways consistent with a training set. The Active Appearance
Model (AAM) [2, 5] is a popular extension of the ASM.
During a training phase, the AAM learns from labeled data
the statistical generative models for the shape of a face (rep-
resented by landmark positions, see Figure 1(a)), and for
the appearance of a face (represented by pixel intensities
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Figure 1. Image Alignment via Ranking Function Learning.
(a) Images of a face with superimposed shape (landmarks) of a
face model as it deforms away from the correct alignment (from
red to green). (b) We propose to learn an alignment score func-
tion with concave properties while the shape undergoes the above
deformation.

in the shape-normalized domain). During the fitting phase,
the AAM is aligned in such a way that the data can be best
explained (or reproduced) by the model in the least mean
square error sense. It is known that these models perform
well if trained to work with a limited number of known
subjects. On the other hand, the alignment performance
degrades quickly if either the AAM is trained on a large
dataset [21], or it is fitted to unseen subjects, or both [15].

In order to tackle this generalization problem, the re-
cently proposed Boosted Appearance Model (BAM) [20]
uses a shape representation similar to the AAM, whereas
the appearance is given by a set of discriminative features,
trained to form a boosted classifier, able to distinguish be-
tween correct and incorrect alignment. Fitting the BAM
amounts to updating the landmark positions according to
gradient ascent on the corresponding classifier score func-
tion. Although it has been shown that the BAM improves
the generalization capabilities of the AAM, we point out
that since the score function has been learned to distinguish
between correct and incorrect alignment, there is no guaran-
tee that moving along its gradient will always improve the
alignment, to a great detriment of the generalization capa-
bilities.

In order to address this limitation we propose the
Boosted Ranking Model (BRM), which has similar repre-
sentations for shape and appearance, but arises from a very
different formulation of the alignment problem. In particu-
lar, we propose to learn from data an alignment score func-
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tion that is concave within the neighborhood of the correct
alignment. In this way we assure that by updating the align-
ment of the BRM via gradient ascent, we will always de-
form the model towards the correct fitting (see Figure 1(b)).

First, we will show that the original problem can be ap-
proximated by the problem of learning a classifier that is
able to say whether or not by switching from one alignment
to another one, the BRM moves closer to the correct solu-
tion. Then, we train a boosted classifier, which when given
a pair of images warped from different landmarks, informs
which of the two corresponds to a better alignment. This
naturally leads to the creation of a positive training set and
a negative training set with the same cardinality, making
the learning problem balanced. The particular structure of
the resulting classifier allows to map the original problem
to a ranking problem [12], because it implies the learning
of a function, i.e. the alignment score function, which can
be interpreted as a ranking function [12] (able to order in-
stances corresponding to different degrees of alignment of
the BRM), and which is meant to be concave. We propose
to learn the alignment score function by extending the use of
GentleBoost [23] for ranking, and show experimentally that
it converges faster, and performs better alignment ranking
than other approaches, such as RankBoost [12]. Finally, we
show that the BRM learns an alignment function that is con-
cave, and that has better generalization capabilities than the
BAM, especially in terms of robustness in achieving con-
vergence, but also in terms of accuracy, and computational
speed.

2. Prior Art
The majority of the prior work in face alignment is based
on ASM, AAM or their variations [7–10,17,26,30]. In par-
ticular, in [7] the ASM incorporates a generative template
model for each landmark, whereas in [8] the same model
is discriminative. Most of the AAM body of work is based
on the generative model of [2], which greatly improves the
efficiency of the AAM-based face alignment. Some AAM
variations include discriminative fitting methods [10, 26].
Other representative works include [18, 34].

In the problem of ranking, the goal is to learn an ordering
or ranking over objects. The wide variety of applications in
which ranking is required includes, information retrieval,
collaborative filtering, computational biology, economet-
rics, and social sciences. As relevant references, we men-
tion [16] that proposes an SVM-based ranking method to
improve search engines, and [12] that proposes RankBoost
for collaborative filtering.

In the Computer Vision community, [1,14] have utilized
ranking algorithms for shape and image retrieval. In [32]
Constrained RankBoost is proposed to model the likeli-
hood of local features associated to the landmarks of a face
model. On the other hand, our approach allows boosting to
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Figure 2. Shape Model and Warping Function. (a) Representa-
tion of the mean shape. (b) The face image with a superimposed
shape. (c) The face image warped to the mean shape domain.

optimally chose the position of the local features. In [33]
RankBoost learning is used to provide a relative similarity
measure between a given shape and a reference shape. This
is used to rank a fixed number of predefined warpings of an
image, and then combine the first few top ranked to perform
shape detection. In contrast, we define and train a model for
the shape variability, which we use to optimize the learned
alignment score function.

3. Face Model
Unlike AAM’s, where a face model is represented by the
combination of two generative models, one for the shape
and one for the appearance of a face, we use a generative
model for the shape, whereas we represent the appearance
with a set of discriminative features, which will be automat-
ically selected for the purpose of solving the face alignment
problem (described in Section 4). In this section we will in-
troduce the representation of these two model components.

3.1. Shape Model
The shape of a face is represented by a set of l 2D-
landmarks, defined by their image coordinates {xi =
(xi, yi)}i=1,··· ,l, which we stack with a predefined order to
form the shape vector s .= [x1, y1, x2, y2, ..., xl, yl]T . We
represent the statistical variability of s with an affine variety,
which means that

s = s0 +
n∑

i=1

pisi , (1)

where s0 is the mean shape, si is the i-th shape basis, and
p = [p1, p2, ..., pn]T is the shape parameter. The mean
shape and the shape basis can be learned from a labeled
training set of face images via Principal Component Analy-
sis (PCA). Analogous models for shape representation have
been used before [5, 11, 20, 22].

The mean shape s0 (Figure 2(a)), and the shape s (Fig-
ure 2(b)), define 2-dimensional domains which can be re-
lated by a piecewise affine warping function W(x; p) that
maps points from the mean shape domain into the face im-
age domain1. With this warping function, a face image
I(x) can be warped to the mean shape domain, obtaining
I(W(x; p)) (Figure 2(c)), where a shape-normalized face
appearance model can be computed .

1See [22] for a description on how to design and parameterize W.



Figure 3. Appearance Features. (a) Warped face image with fea-
ture parametrization. (b) Representation of the five feature types
used by the appearance model. (c) Notional template A.

3.2. Appearance Model
The appearance model is simply a collection of m fea-
tures {ϕi}i=1,··· ,m, computed over the shape-normalized
face image I(W(x; p)). As features we choose the pop-
ular rectangular Haar-like features [24, 29], mainly because
of their computational efficiency, which exploits the inte-
gral image representation [29], and because of their success
in face-related applications [20, 29].

A rectangular feature can be parameterized as follows

ϕ
.= AT I(W(x; p)) , (2)

which is intended as the inner product between the vector-
ized version of an image template A (Figure 3(c)), and the
vectorized version of the warped face image (Figure 3(a)).
The inner product between the template and the warped im-
age is equivalent to computing the rectangular feature using
the integral image. The image template A can in turn be
parameterized by (α, β, γ, δ, τ), as shown in Figure 3(a),
where (α, β) is the top-left corner, γ and δ are the width
and height, and τ is the feature type. Figure 3(b) shows the
feature types used in our model.

4. Alignment Learning Problem
In this section we formulate the problem of learning an
alignment score function that will then be used in Section 7
to perform the fitting of the face model. More precisely, for
a given image, let us suppose that p is the shape parameter
that represents the current alignment of the shape model (1),
with the face in the image: We are interested in learning
from data a score function F , such that, when maximized
with respect to p, it will return the shape parameter corre-
sponding to the correct alignment. Mathematically, if p0 is
the shape parameter representing the correct alignment, F
has to be such that

p0 = arg max
p

F (p) . (3)

Our program is to optimize F via gradient ascent. There-
fore, to avoid local maxima, we would like F to be concave
on B(p0), a convex neighborhood around p0. This means
that for all p1,p2 ∈ B(p0), assuming that F is differen-
tiable, the following should hold [3]:

F (p2) > F (p1) =⇒ ∇F (p1)T (p2 − p1) > 0 . (4)
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Figure 4. Convex Neighborhood. Representation of the convex
neighborhood B(p0), around the maximum p0 of the alignment
score function F . If ‖p2 − p1‖ � ‖p0 − p1‖ then ∇F (p1) is
almost proportional to p0 − p1, as well as to p0 − p2.

4.1. Alignment as a Classification Problem
In this section we propose to reduce the problem of learning
the function F to the problem of learning a strong classi-
fier. We start by performing an approximation of the con-
dition (4) that is valid when p2 corresponds to a small per-
turbation of p1, which means2 that ρ .= ‖p2−p1‖

‖p0−p1‖ � 1. We
do so because by solving (3) via gradient ascent, we com-
pute small updates of the shape parameter p. Under this
assumption it is reasonable to assume that ∇F (p1) is al-
most proportional to p0 − p1, as well as to p0 − p2 (see
Figure 4). Therefore, condition (4) can be approximated as

F (p2) > F (p1) =⇒ ‖p2 − p0‖ < ‖p1 − p0‖ . (5)

It is obvious that (5) states that if F (p2) > F (p1), then
by moving from p1 to p2 the alignment improves in the
Euclidean sense.

Equation (5) suggests that the function F could be used
to solve a classification problem. More precisely, if we de-
fine a classifier H(p1,p2) .= sign[F (p2)− F (p1)], then

H(p1,p2) =
{

+1 =⇒ ‖p2 − p0‖ < ‖p1 − p0‖ ,
−1 =⇒ ‖p2 − p0‖ ≥ ‖p1 − p0‖ ,

(6)
and H informs whether or not (i.e. ±1) switching from p1

to p2 constitutes an alignment improvement.
It becomes natural at this stage to view the problem

of learning F as the problem of learning the classifier H ,
which can be seen as the strong classifier output by a boost-
ing procedure. More precisely, we can assume H to be the
sign of the additive model

m∑
i=1

hi(p1,p2) , (7)

where each hi is a week classifier. Note that the structure of
H suggests a structure for the {hi}, and the generic weak
classifier will be given by

hi(p1,p2) = fi(p2)− fi(p1) , (8)

where the {fi} are such that F , in the neighborhoodB(pc),
will be given by the following additive model

F (p) .=
m∑

i=1

fi(p) . (9)

2The symbol ‖ · ‖ denotes the Euclidean norm.



Figure 5. Training Samples. Top two rows and bottom two rows
are training samples generated from the same face image (Ii and
Ij respectively). Samples from each row have been generated
from the original shape-normalized face image on the left, and
with shape-perturbation parameters u1, u2, u3, u4. From left to
right the parameter v increases, and the shape parameter is varying
according to Equation (10).

4.2. Positive and Negative Training Sets
In this section we will describe how to build the class of
positive and negative samples used to train the classifier H .
We start by considering a face dataset made of N face im-
ages. Each image Ii has been manually labeled with land-
marks si, and the corresponding ground truth shape param-
eter pi can be computed according to Equation (1). From
this dataset we produce a number of shape-normalized im-
ages. More precisely, we uniformly draw a set of U shape-
perturbation parameters {∆pu | ‖∆pu‖ = ρ}, with which
we compute a set of shape parameters

{pi + v∆pu}i=1,··· ,N ; u=1,··· ,U ; v=0,··· ,V (10)

that we use to generate the training samples {I(u,v)
i }, such

that I(u,v)
i

.= Ii(W(x; pi + v∆pu)) (see Figure 5). Then,
a positive sample is defined as the ordered pair x+iuv =
(I(u,v+1)

i , I(u,v)
i ), and will be labeled with y+iuv = +1.

Similarly, a negative sample is defined as the ordered
pair x−iuv = (I(u,v)

i , I(u,v+1)
i ), and will be labeled with

y−iuv = −1. Therefore, the training sets of positive and
negative samples, P and N respectively, are given by

P
.= {x+iuv}i=1,··· ,N ; u=1,··· ,U ; v=0,··· ,V−1 ,

N
.= {x−iuv}i=1,··· ,N ; u=1,··· ,U ; v=0,··· ,V−1 .

(11)

The reader may notice that the sets P and N have the same
cardinality, which means that, in this approach, achieving
the right balance between the representations of the null and
the alternate hypothesis is not an issue!

4.3. Training the Weak Classifiers
In this section we define the weak classifiers that we in-
tend to use, and describe how to learn them. In order to de-
fine hi, Equation (8) shows that we only need to define fi,
where fi(p1) operates on a pool of features computed on
I(W(x; p1)), and fi(p2) operates on the same pool of fea-
tures, but computed on I(W(x; p2)). In particular, we as-
sume that the pool is made only by one feature, ϕi. Since we

Algorithm 1: Alignment Score Function Learning

Data: Positive and negative samples P, and N from Equation (11),
with labels {ysiuv}s=±,i=1,··· ,N ; u=1,··· ,U ; v=0,··· ,V−1

Result: The alignment score function F
Initialize the weights wsiuv = 1

2NUV1
Initialize the score function F = 02
foreach j = 1, · · · , m do3

Fit fj in the weighted least squares sense, such that4

fj = argmin
f

∑
siuv

wsiuv (ysiuv − h(xsiuv))2 (12)

where h(xsiuv) = f(I
(u,v+ 1−s

2 )

i )− f(I
(u,v+ 1+s

2 )

i )
F ←− F + fj5

wsiuv ←− wsiuve−ysiuvhj(xsiuv)6
Normalize the weights such that

∑
siuv wsiuv = 17

return F =
∑m

j=1 fj8

require F to be a differentiable function, it follows from (9)
that fi has to be differentiable. Finally, we assume that fi

is going to perform a comparison of the feature ϕi against
a threshold ti. By taking into account all of the above, we
define fi as

fi(p) .=
1
π

arctan(giϕi(p)− ti) , (13)

where gi = ±1, and the normalizing constant ensures that
hi stays within the range of [−1, 1].

In order to learn the weak classifiers we use a boost-
ing procedure called GentleBoost [23]. Compared to Ad-
aBoost [13], it is numerically more robust, has been shown
experimentally that has better convergence properties, and
performs well on several face-related applications [19, 20,
28,31]. In this specific case, it allows for sequentially fitting
additive models of the form of (7), where the week classi-
fiers are smooth sigmoid functions ranging from −1 to +1.

Algorithm 1, given above, describes the GentleBoost
procedure for learning the alignment score function (9).
Note that step 4 is computationally the most intensive,
as the entire feature hypothesis space is exhaustively
searched. Also note that, since h(x+iuv) = −h(x−iuv),
the score function in Equation (12) could be simplified to∑

iuv w+iuv (1− h(x+iuv))2.
Ultimately, learning the score function F amounts to

learning the set of features {ϕi}, the thresholds {ti}, and
the feature signs {gi}. Suppose that the mean of the fea-
ture ϕi computed over the positive samples is greater than
the mean computed over the negative samples, then we set
gi = +1, otherwise we set gi = −1. The final set of
triples {(ϕi, gi, ti)}i=1,··· ,m, together with the shape model
{si}i=0,··· ,n is called a Boosted Ranking Model (BRM).
Figure 6 shows the top 15 features selected by the learning
algorithm, as well as the spatial density map of the top 50
features. The reader may notice that most of the features are
aligned with the boundaries of the natural facial features.
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Figure 6. Selected Appearance Features. (a) Representation of
the top 5 Haar features selected by Algorithm 1. (b) Represen-
tation of the top 6-15 Haar features. (c) Spatial density map of
the top 50 Haar features. Most features are well aligned with the
boundaries of the natural facial features.

5. Comparison with Other Models
The BRM belongs to the same class of models as the BAM
model [20]. Therefore, compared to AAM [5, 22], it en-
joys the same benefits, such as robustness to partial occlu-
sions, improved alignment speed, and ability to incorporate
knowledge about both good and bad alignment, while being
substantially more parsimonious.

In comparison with BAM, our model is the outcome of
a very different problem formulation. More precisely, the
BAM is produced by learning a strong classifier that is able
to distinguish between correct and incorrect alignment, and
the results in [20] empirically show that face alignment can
be achieved via gradient ascent on the corresponding classi-
fier score function. However, there is no guarantee that the
gradient will be aimed at improving the alignment (because
the strong classifier can distinguish only between right or
wrong fittings). On the other hand, we consider this funda-
mental issue at the outset, and propose to solve the align-
ment problem by looking for a score function that is con-
cave, hence optimizable via gradient ascent. This leads to
learning a strong classifier that is able to say whether by
switching from one alignment to another one we are actu-
ally making an improvement, as opposed to saying whether
or not the alignment is correct. Another advantage (as op-
posed to the BAM), is also the fact that positive and nega-
tive training sets naturally have the same cardinality, which
makes the training problem balanced. These advantages
lead to a superior alignment performance of the BRM over
the BAM, as we will show in Section 8.

6. Relation with Ranking
Given a set of instances that we call instance space, the
ranking problem is to design a ranking function that is able
to tell whether one instance should be ranked higher than
another one, and therefore it can produce a linear ordering
of the instances. RankBoost [12] is an algorithm that, from
information about the relative ranking of individual pair of
instances, learns a ranking function by combining a num-
ber of weak ranking functions selected in a greedy fashion.
Roughly speaking, the algorithm is a direct extension of Ad-
aBoost [13] in that the ranking function is the byproduct of
learning a classifier (the so called feedback function), which
says whether a pair of instances appear to be ranked in as-

cending or descending order. Therefore, this process min-
imizes the weighted number of incorrectly ranked pairs, as
opposed to AdaBoost that minimizes the weighted number
of misclassifications.

In Section 4 we have shown that starting from concave
optimization arguments, we can reduce the initial learning
problem to learning a classifier that says whether moving
from a shape parameter to another one corresponds to an
alignment improvement. This is analogous to the ranking
problem. In fact, H and {hi} are essentially strong and
weak feedback functions, whereas {fi} and {ϕi} are the so-
called weak rankings and ranking features. F instead is the
ranking function. For the reasons highlighted in Section 4,
we learn the weak feedback functions using GentleBoost,
and this has naturally lead to an extension of this algorithm
to solving the ranking problem, in the same way as Rank-
Boost is an extension of AdaBoost.

The proposed learning algorithm has two other distinc-
tive aspects. The traditional ranking problem labels ev-
ery possible ordered pair of training samples. On the
other hand, we label only pairs differing by one shape-
perturbation parameter step. We do so because the align-
ment will be computed via gradient ascent by making
small shape parameter updates, hopefully in the direction
of p0 − p1. Therefore, there is no need to learn the feed-
back function when p1 and p2 are very far apart. If we were
doing so, the BRM learning would become more difficult,
because it would need a much larger training set, and be-
cause the BRM would be forced to learn something unnec-
essary. Finally, we highlight the fact that we want to learn a
smooth score function, inherently defined on a continuous
domain, which we discretize to make the problem tractable.
This is in contrast with traditional ranking problems, which
are defined on a discrete instance space.

We have experimented with RankBoost while keeping
the same ranking features and weak rankings, and found
out that our proposed extension of GentleBoost shows bet-
ter convergence properties, and performs better in the clas-
sification test of the synthesized pairs (see Section 8).

7. Face Alignment
In order to align a BRM with the face in a given image I,
we assume that the model is currently aligned with a shape
parameter p(i) (at the i-th iteration). As explained in Sec-
tion 4, in order to achieve the optimal alignment one may
perform a simple gradient ascent on the score function F ,
and therefore update the shape parameter as follows

p(i+1) = p(i) + ν
∂F

∂p
, (14)

where ν is a suitable constant. Figure 7 shows a few face
images with the face model corresponding to the initial
shape parameter and the shape parameter at convergence.



Figure 7. Alignment Examples. Face images with superimposed
initial face model (green), and aligned face model (red).

From (2), (9), and (13) one can see that the derivative of F
with respect to p is

∂F

∂p
=

1
π

m∑
i=1

gi

(
∇I∂W

∂p

)T

Ai

1 +
(
giAT

i I(W(x; p))− ti
)2 , (15)

where∇I is the gradient of the image evaluated at W(x; p),
and ∂W

∂p is the Jacobian of the warp evaluated at p. The in-
terested reader is referred to [20] for a deeper discussion on
the alignment procedure, and the computational complexity,
and efficient implementation of ∂F/∂p.

8. Experiments
Face dataset. We start by describing the dataset used for
training and testing our proposed approach. It is composed
of a total of 964 images coming from the aggregation of
three publicly available datasets: ND1 [4] (534 images of
200 subjects appearing in frontal view), FERET [25] (200
images of 200 subjects appearing in different pose), and
BioID [27] (230 images of 23 subjects appearing under dif-
ferent background and lighting conditions). Figure 8 shows
some typical face images from the datasets. Each image
has 33 manually labeled landmarks. To speed up the train-
ing process, we down-sample each image so that the face
width is roughly 40 pixels. We divide the 964 images in
three parts, namely Set 1, Set 2, and Set 3. Set 1 contains
the 200 images from FERET, and 200 images from ND1
(one image per subject). Set 2 contains the remaining 334
images from ND1. Set 3 is the BioID dataset. Set 1 is used
as training dataset. All the three sets are used in the align-
ment tests. In particular, Set 2 allows for testing the perfor-
mance over unseen data of seen subjects (because different
images of them have been used for training), whereas Set 3
allows for testing the performance over unseen data of un-
seen subjects (never used for training). Note that Set 3 is
particularly challenging because the subjects are captured
under different cluttered background, and illumination.
Training. Throughout the section we compare three mod-
els: the proposed BRM, BAM, and an adaptation of Rank-
Boost [12] that uses the same weak rankings, and training
pairs of the BRM. We do not compare our model against
AAM-based methods [5, 22], as it has been shown in [20]
that the BAM outperforms them. We train the three models
with Set 1, which originates the training samples {I(u,v)

i },
where i = 1, · · · , 400, u = 1, · · · , 10 and v = 0, · · · , 6,
corresponding to 24000 positive (and also negative) train-
ing pairs. In contrast, the BAM uses 400 positive and 4000

Figure 8. Face Dataset Samples. ND1 database [4] (left), FERET
database [25] (center), and BioID database [27] (right).
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Figure 9. Feedback Function Performance. False alarm rate of
the strong feedback function when the miss-detection rate on the
training set is set to 0%.

negative samples, since each image generates 10 negative
samples. The resulting appearance models are such that
the BRM and RankBoost have 50 weak rankings, whereas
the BAM has 50 weak classifiers. The shape model has 33
shape bases and it is the same for all the models.
Convergence properties. Figure 9 plots the false alarm
rate (FAR) of the strong feedback functions of both BRM
and RankBoost, as function of the number of weak rank-
ings, when the miss-detection rate on the training set is set
to 0%. This shows that the BRM converges faster than
RankBoost. In particular, for 50 weak rankings the FAR’s of
BRM and RankBoost are 1.44%, and 6.58%, respectively.
Score function concavity. Figure 10(a) plots the learned
score (ranking) function F for 3 images, perturbed along
10 different shape-perturbation parameters {∆pu}. Fig-
ure 10(b) plots the score function for 100 images of Set 1,
each of which is perturbed along one shape-perturbation pa-
rameter. Both cases highlight the concavity properties of F .

Another way to show the score function is by using
grayscale values, as in Figure 11, where each column repre-
sents F computed for one image, and each image has been
produced by varying the intensity of only two shape bases.
The range of perturbation is ±1.6 times the eigenvalue of
the corresponding bases. For both seen data in Figure 11(a),
and unseen data in Figure 11(b), F shows concave proper-
ties, as required by construction, with the brightest pixel in
the center, and intensity fading towards the borders.
Ranking performance. Using the same methodology for
building the training sets of pairs, we build two testing sets
of pairs, one from Set 1, and one from Set 3, and test the
ranking performance of the BRM, BAM, and RankBoost.
The correct ranking rates are reported in Figure 12(a),
which shows the superiority of the BRM versus the BAM,
especially for Set 3, highlighting the stronger generaliza-
tion capabilities of the BRM to unseen data. Also, BRM
performs slightly better than RankBoost on both sets, and
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Figure 10. Alignment Score Function Profile. (a) Score func-
tions of 3 images, corresponding to 10 shape-perturbation param-
eters. (b) Score functions of 100 training images, each of which
corresponding to one shape-perturbation parameter.
(a) (b)

Figure 11. Alignment Score Function Surface. Score function F
of 5 images randomly selected from Set 1 (a), and 5 images from
Set 2 (b), one per column. Each image is produced by varying the
shape parameter corresponding to two shape bases at a time. From
the top to the bottom rows we vary: (p1, p2), (p3, p4), (p5, p6),
and (p7, p8). F is concave in both seen and unseen data, and this
ensures high frequency of convergence of the alignment.

therefore it is expected to achieve better alignment perfor-
mance as well. Figure 12(b) shows that BRM outperforms
the BAM also in a much harder scenario, where testing pairs
are built from Set 3, but with half, and one quarter of the
perturbation used to produce Figure 12(a). The reader may
notice the slight ranking performance drop of both methods
as the perturbation becomes smaller, because it makes the
ranking task more difficult.
Alignment performance. In order to evaluate the align-
ment quality of a modeling framework, we randomly per-
turb the ground truth landmarks of a face image, and use
them as initial condition to align the model. The proce-
dure is repeated multiple times on each image of the test-
ing set in order to perform a statistical evaluation of the
result. The initial position of the landmarks is generated
by perturbing the components {pi} of the shape parame-
ter with independent Gaussian noise with variances mul-
tiple of the eigenvalues of the corresponding shape bases.
An alignment is claimed as converged if the Root Mean
Square Error (RMSE) between the aligned landmarks and
the ground truth is less than one pixel. Finally, we assess
the alignment robustness and accuracy by computing: (a)
the Average Frequency of Convergence (AFC), given by
the number of trials where the alignment converges divided
by the total number of trials; and (b) the histogram of the
RMSE (HRMSE) of the converged trials, which measures
how close the aligned landmarks are to the ground truth.

We test BRM and BAM under the same conditions. For
example, both algorithms are initialized with the same set
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Figure 12. Ranking Performance. (a) Correct ranking rates of
the BRM, BAM, and RankBoost on test pairs from Set 1 and Set
3. (b) Correct ranking rates of the BRM and BAM on test pairs
sampled from Set 3, but with half (12 samples) and one quarter
(24 samples) of the perturbation used in (a).

of randomly perturbed landmarks. Both algorithms have
the same constant ν in Equation (14), and also the same ter-
mination condition. That is, if the number of iterations is
larger than 55 or the RMSE between consecutive iterations
is less than 0.025 pixels. Figures 13(a)(c)(e) plot the AFC
of the BRM and BAM against the amount of the initial land-
marks perturbation, computed over Set 1, Set 2, and Set 3,
respectively. In particular, for each perturbation value, each
image of each set is randomly perturbed 5, 6, or 9 times
depending on whether it belongs to Set 1, Set 2, or Set 3,
respectively.

The AFC plots in Figure 13 show that BRM-based align-
ment is substantially more robust than BAM-based align-
ment for both seen and unseen data. In contrast, the ac-
curacy improvement of the BRM over the BAM, demon-
strated by HRMSE, is not as large as the AFC melioration.
For example, on Set 3 the average (± the standard devia-
tion) BRM-RMSE is 0.5745± 0.1725, whereas the average
BAM-RMSE is 0.6533 ± 0.1594. This means that, when
approaching convergence, BAM and BRM have compara-
ble ability to rank pairs. This aspect is confirmed also by
the left-most plot of Figure 12(b).
Speed. When computing Figure 13(c) on a low-end PC,
we recorded the time and number of iterations taken by our
MatlabTM implementation of the BAM, and of the BRM, to
converge. When both algorithms converge, the BAM takes
an average of 8.06 iterations, and 0.122 seconds, whereas
the BRM takes an average of 7.4 iterations, and 0.112 sec-
onds. We attribute this improvement to the superior prop-
erty of the ranking function of the BRM, compared to the
classifier function of the BAM.

9. Conclusions
We have introduced the Boosted Ranking Model (BRM),
a new discriminative face model suitable to perform face
alignment. The BRM is associated to a score function
learned from data, which is meant to be concave to ensure
that fitting can be achieved via gradient ascent. Learning
a BRM corresponds to training a boosted classifier with a
particular structure, that makes it equivalent to learning a
boosted ranking function. This is done by extending Gen-
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Figure 13. Alignment Performance. From top to bottom, AFC
and HRMSE of both BAM and BRM computed on Set 1, Set 2,
and Set 3, respectively. The HRMSE is computed on the trials
where both algorithms converge.

tleBoost to rank-learning, which we found to work better
than other methods. The BRM outperforms the BAM for
both seen and unseen subjects, especially in terms of align-
ment robustness (due to the concave properties of the score
function), while slightly improving the accuracy and com-
putational speed. This is a parsimonious model (especially
if compared with the AAM), with enhanced generalization
properties, that holds the promise of fitting multiple face
models to new subjects in real-time.

Our approach is not bounded to work with faces, and it
could be extended to work with other objects of interest.
Moreover, the idea of building a concave function through
rank-learning could be applied to other vision problems,
such as discriminative object tracking, which could greatly
benefit from a smooth and concave tracking score function.
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