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Abstract
A moving plane observed by a fixed camera induces a

fundamental matrix F across multiple frames, where the ra-
tios among the elements in the upper left 2×2 submatrix are
herein referred to as the Fundamental Ratios. We show that
fundamental ratios are invariant to camera parameters, and
hence can be used to identify similar plane motions from
varying viewpoints. For action recognition, we decompose
a body posture into a set of point triplets (planes). The simi-
larity between two actions is then determined by the motion
of point triplets and hence by their associated fundamental
ratios, providing thus view-invariant recognition of actions.
Results evaluated over 255 semi-synthetic video data with
100 independent trials at a wide range of noise levels, and
also on 56 real videos of 8 different classes of actions, con-
firm that our method can recognize actions under substan-
tial amount of noise, even when they have dynamic timeline
maps, and the viewpoints and camera parameters are un-
known and totally different.

1. View-invariant Action Recognition
Human action recognition has been the subject of exten-

sive studies in the past, highlighted in recent survey papers

such as [5, 10, 15]. The main challenges are due to perspec-

tive distortions, differences in viewpoints, unknown cam-

era parameters, anthropometric variations, and the large de-

grees of freedom of articulated bodies [18]. To make the

problem more tractable, researchers have made simplify-

ing assumptions on one or more of the following aspects:

(1) camera model, such as scaled orthographic [13] or cali-

brated camera [16]; (2) camera pose, i.e. little or no view-

point variations; (3) anatomy, such as isometry [11], copla-

narity of a subset of body points [11], etc.

There are mainly two lines of research to tackle view-

invariance: One is based on using multiple cameras, such as

[16, 1, 9, 4], and the second is based on multiple frames of a

stationary camera. The obvious limitation of multi-camera

approach is that most practical applications are limited to

a single camera. In the second category several ideas have

been explored, e.g. the invariants associated with a given

camera model, e.g. affine [12], or projective [11], rank con-

straints on the action space represented by a set of basis

functions [13], or the use of epipolar geometry induced by

the same pose in different views [14, 17, 6].

1.1. Our Approach: Overview
Our approach falls in the last category. We assume a

fully projective unknown camera with no restrictions on

pose or viewpoint. Moreover, our formulation relaxes re-

strictive anthropometric assumptions such as isometry. Un-

like existing methods that regard an action as a whole, or

as a sequence of individual poses, we represent an action as

a set of pose transitions defined by all possible triplets of

body points, i.e., we break down further each pose into a set

of point-triplets and find invariants for the motion of these

triplets across frames. Therefore, the matching score in our

method is based on pose transitions of all possible triplets

of body points, instead of being based directly on individual

poses or on the entire action.

2. Fundamental Ratios
In this section, we establish specific relations between

homographies induced by world planes (determined by any

triplet of non-collinear 3D points) and the fundamental ma-

trix associated with two views. More specifically, we derive

a set of feature ratios that are invariant to camera intrinsic

parameters for a natural perspective camera model of zero

skew and unit aspect ratio. We then show that these feature

ratios are projectively invariant to similarity transformations

of the triplet of points in the 3D space, or equivalently in-

variant to rigid transformations of camera.

Proposition 1 Given two cameras Pi ∼ Ki[Ri|ti], Pj ∼
Kj [Rj |tj ] with zero skew and unit aspect ratio, denote the
relative translation and rotation from Pi to Pj as t and
R respectively, then the upper left 2 × 2 submatrix of the
fundamental matrix between two views is of the form

F2×2 ∼
[
ε1sttsrt1 ε1sttsrt2
ε2sttsrt1 ε2sttsrt2

]
, (1)

where rk is the k-th column of R, the superscript, e.g.
i, refers to ith element of a vector, and εrst for r, s, t =
1, . . . , 3 is a permutation tensor1.
Remark 1 The ratios among elements of F2×2 are invari-
ant to camera calibration matrices Ki and Kj .

The upper left 2× 2 sub-matrices F2×2 for two moving

cameras could be used to measure the similarity of camera

motions [3]. That is, if two cameras perform the same mo-

tion (same relative translation and rotation during the mo-

tion), and F1 and F2 are the fundamental matrices between

1The use of tensor notation is explained in details in [8], p563.

1

978-1-4244-2243-2/08/$25.00 ©2008 IEEE



any pair of corresponding frames, then F2×2
1 ∼ F2×2

2 . This

also holds for the dual problem when the two cameras are

fixed, but the scene objects in both cameras perform the

same motion. A special case of this problem is when the

scene objects are planar surfaces, which is discussed below.

Proposition 2 Suppose two fixed cameras are looking at
two moving planar surfaces, respectively. Let F1 and F2

be the two fundamental matrices induced by the two mov-
ing planar surfaces (e.g. by the two triplets of points). If the
motion of the two planar surfaces is similar (differ at most
by a similarity transformation), then

F2×2
1 ∼ F2×2

2 (2)
where the projective equality, denoted by ∼, is invariant to
camera orientation.

Here similar motion implies that plane normals undergo

same motion up to a similarity transformation. The projec-

tive nature of the view-invariant equation in (2) implies that

the elements in the sub-matrices on the both sides of (2)

are equal up to an arbitrary non-zero scale factor, and hence

only the ratios among them matter. We call these ratios the

fundamental ratios, and as propositions 1 and 2 imply, these

fundamental ratios are invariant to camera intrinsic param-

eters and viewpoint. To eliminate the scale factor, we can

normalize both sides using F̂i = |F2×2
i |/‖F2×2

i ‖F , i =
1, 2, where | · | refers to absolute value operator and ‖ · ‖F
stands for the Frobenius norm. We then have

F̂1 = F̂2 (3)

In practice, F̂1 and F̂2 may not be exactly equal due to

noise, computational errors or subjects’ different ways of

performing same actions. We, therefore, define the follow-

ing function to measure the residual error:

E(F̂1, F̂2) = ‖F̂1 − F̂2‖F (4)

3. Action Recognition Using Fundamental Ra-
tios

We are given a video sequence {It} and a database of

reference sequences corresponding to K different known

actions, DB = {J1
t }, {J2

t }, . . . , {JKt }, where It and Jkt
are labeled body points in frame t. Our goal is to identify

the sequence {Jkt } from DB such that the subject in {It}
performs the closest action to that observed in {Jkt }.

Existing methods for action recognition such as [2, 17]

consider an action as a whole, which usually requires

known start and end frames and is limited when action ex-

ecution rate varies. Some other approaches such as [6] re-

gard action as a sequence of individual poses, and rely on

pose-to-pose similarity measures. Since an action consists

of spatio-temporal data, the temporal information plays a

crucial role in recognizing action, which is ignored in a

pose-to-pose approach. We thus propose using pose tran-
sition. One can thus compare actions by comparing their

pose transitions.

Ii Ij Jkm Jkn

Figure 1. Fundamental matrix induced by a moving plane is dual

to a stationary plane with moving camera.

3.1. Matching Pose Transition
The 3D body structure of a human can be divided into

triplets of body points (see Fig. 1), each of which de-

termines a plane in the 3D space when the points are not

collinear. The problem of comparing articulated motions

of human body thus transforms to comparing rigid motions

of body planes (triplets). According to proposition 2, the

motion of a plane induces a fundamental matrix, which

can be identified by its associated fundamental ratios. If

two pose transitions are identical, their corresponding body

point triplets have the same fundamental ratios, which pro-

vide a measure for matching two pose transitions.

3.1.1 Fundamental matrix induced by a moving triplet
We are given an observed pose transition Ii → Ij from se-

quence {It}, and a second one Jkm → Jkn from sequence

{Jkt }. When Ii → Ij corresponds to Jkm → Jkn , one can

regard them as observations of the same 3D pose transition

from two different cameras P1 and P2, respectively. There

are two instances of epipolar geometry associated with this

scenario:

1- The mapping between the image pair 〈Ii, Ij〉 and the im-

age pair 〈Jkm, Jkn〉 is determined by the fundamental matrix

F [8] related to P1 and P2. The projection of the camera

center of P2 in Ii or Ij is given by the epipole e1, which is

found as the right null vector of F. Similarly the image of

the camera center of P1 in Jkm or Jkn is the epipole e2 given

by the right null vector of FT .

2- The other instance of epipolar geometry is between tran-

sitioned poses of a triplet of body points in two frames of

the same camera, i.e. the fundamental matrix induced by a

moving body point-triplet, which we denote as F . We call

this fundamental matrix the inter-pose fundamental matrix,

as it is induced by the transition of body point poses viewed

by a stationary camera.



Let Δ be a triplet of non-collinear 3D points, whose mo-

tion lead to different projections on Ii, Ij , J
k
m and Jkn as

Δi,Δj ,Δk
m and Δk

n, respectively:

Δi = 〈x1,x2,x3〉,Δj = 〈x′1,x′2,x′3〉,
Δk
m = 〈y1,y2,y3〉,Δk

n = 〈y′1,y′2,y′3〉.
Δi and Δj can be regarded as projections of a stationary

3D point triplet 〈X1,X2,X3〉 on two virtual cameras P′i
and P′j , as shown in Fig. 1. 〈X1,X2,X3〉 defines a world

plane π, which induces a homography Hij between P′i and

P′j . It is known that a homography may be computed from

four corresponding image points. In this case, the four

points can be the image points x1, ...,x3 and x′1, ...,x
′
3 to-

gether with the epipoles in P′i and P′j . Let e′i and e′j be

these epipoles. If e′i and e′j are known, then Hij can be

computed, and hence F1 induced by Δi and Δj can be de-

termined using

F1 ∼ [e′j ]×Hij , or F1 ∼ H−T
ij [e′i]×. (5)

Similarly, F2 induced by Δk
m and Δk

n is computed as

F2 ∼ [e′n]×Hmn, or F2 ∼ H−T
mn[e

′
m]×, (6)

where e′m and e′n are the epipoles on virtual cameras P′m
and P′n, and Hmn is the induced homography.

The difficulty with (5) and (6) is that the epipoles e′i, e
′
j ,

e′m and e′n are unknown, and cannot be computed directly

from the triplet correspondences. Fortunately, however, the

epipoles can be closely approximated as described below.

Proposition 3 If the exterior orientation of P1 is related to
that of P2 by a translation, or by a rotation around an axis
that lies on the axis planes of P1, then under the assump-
tion:

e′i = e′j = e1, e′m = e′n = e2, (7)

we have: E(F̂1, F̂2) = 0. (8)

Under more general motion, the equalities in (7) become

only approximate. However, we shall see in section 4.1.1

that this approximation is inconsequential in action recog-

nition for a wide range of practical rotation angles. As de-

scribed shortly, using equation (4) and the fundamental ma-

tricesF1 andF2 computed for every non-degenerate triplet,

we can define a similarity measure for matching pose tran-

sitions Ii → Ij and Jkm → Jkn .

Degenerate triplets: A homography cannot be com-

puted from four correspondences if three points are

collinear. Even when three image points are close to

collinear the problem becomes ill-conditioned. We call such

triplets as degenerate, and simply ignore them in matching

pose transitions. This does not produce any difficulty in

practice, since with 11 body point representation used in

this paper (see Fig. 2), we obtain 165 possible triplets, the

vast majority of which are in practice non-degenerate. A

special case is when the epipole is close to or at infinity, for

which all triplets would degenerate. We solve this problem

by transforming the image points in projective space in a

manner similar to Zhang et al. [19]. The idea is to find a

pair of projective transformations Q and Q′, such that after

transformation the epipoles and transformed image points

are not at infinity. Note that these transformations do not

affect the projective equality in Proposition 2.

3.1.2 Algorithm for Matching Pose Transitions
The algorithm for matching two pose transitions Ii → Ij
and Jkm → Jkn is as follows:

1. Compute F, e1, e2 between image pair 〈Ii, Ij〉 and

〈Jkm, Jkn〉 using the method proposed in [7].

2. For each non-degenerate triplet Δ� that projects onto

Δi,Δj ,Δk
m and Δk

n in Ii, Ij , J
k
m and Jkn , respectively,

compute F̂1, F̂2 as described above from (5), (6) and

(7), and compute e� = E(F̂1, F̂2) from equation (4).

3. Compute the average error over all non-degenerate

triplets using

E(Ii → Ij , J
k
m → Jkn) =

1
L

∑
�=1...L

e�, (9)

where L is the total number of non-degenerate triplets.

4. If E(Ii → Ij , J
k
m → Jkn) < E0, where E0 is some

threshold, then the two pose transitions are matched.

Otherwise, the two pose transitions are classified as

mismatched.

3.2. Action Recognition
Given two sequences A = {I1...n} and B = {J1...m},

we match or align A and B by seeking the optimal map-

ping ψ : A → B such that the cumulative similarity score∑n
i=1 S(i, ψ(i)) is maximized, where S(.) is the similar-

ity of two poses. This is solved by dynamic programming,

which has been proven successful in sequence alignment,

and its application in action recognition can also be found in

[11]. The key is to define S(.) based on matching pose tran-

sitions: S(i, j) = τ − E(Ii→r1 , Jj→r2), where (r1, r2) =
argmin
r1,r2

{min
s1,s2

E(Ir1→s1 , Jr2→s2)}, r1, s1 ∈ [1, n] and

r2, s2 ∈ [1,m]. The matching score of sequences A and

B is then defined by S (A,B) = max
ψ

∑n
i=1 S(i, ψ(i)).

To solve the action recognition problem, we need a refer-

ence sequence (a sequence of 2D poses) for each known ac-

tion, and maintain an action database of K actions, DB =
{J1
t }, {J2

t }, . . . , {JKt }. To classify a given test sequence

{It}, we match {It} against each reference sequence in

DB, and classify {It} as the action of best-match, say

{Jkt }, if S ({It}, {Jkt }) is above a threshold T . Due to

the use of view-invariant fundamental ratios, our solution is

invariant to camera intrinsic parameters and viewpoint. To

ensure the approximation of epipoles discussed above, ref-

erence sequences from 2-3 viewpoints may be used for each

action.

4. Experimental Results and Discussion
We first examine our method on semi-synthetic data, and

then test our solution on real video data.
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Figure 2. Left: Our body model. Right: Experiment on view-

invariance. Two different pose transitions P1 → P2 and P3 → P4

from a golf swing action are used.

4.1. Analysis based on motion capture data
We generated our data based on the CMU Motion Cap-

ture Database, which consists of 3D motion data for a large

number of human actions. We generated the semi-synthetic

data by projecting 3D points onto images through synthe-

sized cameras. In other words, our test data consist of video

sequences of true persons, but the cameras are synthetic,

resulting in semi-synthetic data to which various levels of

noise were added. Instead of using all body points provided

in CMU’s database, we employed a body model that con-

sists of only eleven points, including head, shoulders, el-

bows, hands, knees and feet (see Fig.2). This model is also

used in the experiments in section 4.2.

4.1.1 Testing View Invariance
We selected four different poses P1, P2, P3, P4 from a golf

swinging sequence (see Fig.2). We then generated two cam-

eras as shown in Fig.3 (a): camera 1 was placed at an ar-

bitrary viewpoint (marked by red color), with focal length

f1 = 1000; camera 2 was obtained by rotating camera 1

around an axis on x-z axis plane of camera 1 (colored as

green), and a second axis on y-z axis plane of camera 1

(colored as blue), and changing focal length as f2 = 1200.

Let I1 and I2 be the images of poses P1 and P2 on camera 1

and I3, I4, I5 and I6 the images of poses P1, P2, P3 and P4

on camera 2, respectively. Two sets of pose similarity errors

were computed at all camera positions shown in Fig.3 (a):

E(I1 → I2, I3 → I4) and E(I1 → I2, I5 → I6). The re-

sults are plotted in Fig.3 (b) and (c), which show that, when

two cameras are observing the same pose transitions, the

error is zero regardless of their different viewpoints, con-

firming proposition 3.

Similarly, we fixed camera 1 and moved camera 2 on a

sphere as shown in Fig.3 (d). The errors E(I1 → I2, I3 →
I4) andE(I1 → I2, I5 → I6) are shown in Fig.3 (e) and (f).

Under this more general camera motion, the pose similarity

score of corresponding poses is not always zero, since the

epipoles in equations (5) and (6) are approximated. How-

ever, this approximation is inconsequential in most situa-

tions, because the error surface of different pose transitions

is in general above that of corresponding pose transitions.

Fig.3 (h) shows the regions (black colored) where approx-

imation is invalid. These regions correspond to the situa-

tion that the angles between camera orientations is around
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Figure 4. Robustness to noise: I1 and I2 are the images in camera

1, and I3, I4, I5 and I6 are the images in camera 2. Same and

different actions are distinguished unambiguously for σ < 4

90 degrees, which usually implies severe self-occlusion and

lack of corresponding points in practice. The experiments

on real data in section 4.2 also show the validity of this ap-

proximation under practical camera viewing angles.

4.1.2 Testing Robustness to Noise
Without loss of generality, we used the four poses in Fig.2

to analyze the robustness of our method to noise. Two cam-

eras with different focal lengths and viewpoints were exam-

ined. As shown in Fig.4, I1 and I2 are the images of poses

P1 and P2 on camera 1 and I3, I4, I5 and I6 are the images

of P1,P2,P3 and P4 on camera 2. We then added Gaussian

noise to the image points, with σ increasing from 0 to 8.

The errors E(I1 → I2, I3 → I4) and E(I1 → I2, I5 → I6)
were computed. For each noise level, the experiment was

repeated for 100 independent trials, and the mean and stan-

dard deviation of both errors were calculated (see Fig.4).

As shown in the results, the two cases are distinguished un-

ambiguously until σ increases to 4.0, i.e., up to possibly 12

pixels. Note that the image sizes of the subject were about

200×300, which implies that our method performs remark-

ably well under high noise.

4.1.3 Performance in Action Recognition
We selected 5 classes of actions from CMU’s MoCap

dataset: walk, jump, golf swing, run, and climb. Each ac-

tion class is performed by 3 actors, and each instance of

3D action is observed by 17 cameras, as shown in Fig.5.

The focal lengths were changed randomly in the range of

1000±300. Fig.6 shows an example of a 3D pose observed

from 17 viewpoints.

Our dataset consists of totally 255 video sequences, from

which we generated a reference action Database (DB) of 5
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Figure 3. Analysis of view invariance. (a) Camera 1 is marked in red, and all positions of camera 2 are marked in blue and green. (b) Errors

for same and different pose transitions when camera 2 is located at viewpoints colored as green in (a). (c) Errors of same and different

pose transitions when camera 2 is located at viewpoints colored as blue in (a). (d) General camera motion: Camera 1 is marked as red, and

camera 2 is distributed on a sphere. (e) Error surface of same pose transitions for all distributions of camera 2 in (d). (f) Error surface of

different pose transitions for all distribution of camera 2 in (d). (g) The regions of confusion for (d) marked in black (see text).

Viewpoints
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# of sequences 10 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
# of errors 0 1 1 0 1 1 1 2 0 1 13 2 0 4 11 7 1
Accuracy (%) 100 93.3 93.3 100 93.3 93.3 93.3 86.7 100 93.3 13.3 86.7 100 73.3 26.7 53.3 93.3

Table 1. Recognition accuracy for various viewpoints illustrated in Fig. 6.
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Figure 5. The distribution of cameras used to evaluate view-

invariance and camera parameter changes.

video sequences, i.e. one video sequence for each action

class . The rest of the dataset was used as test data, and

each sequence was matched against all actions in the DB

and classified as the one with highest score. For each se-

quence matching, 10 random initializations were tested and

the best score was used. The overall classification accu-

racy for all viewpoints is 81.60%, with very low accuracy at

viewpoints 11, 14, 15, 16, which correspond to severe view-

ing angles from below or above the actor. This is consis-

tent with observations pointed out in section 4.1.1. Exclud-

ing these viewpoints, the classification accuracy increases

to 94.21%.

4.2. Results on real data
We collected video data from Internet, consisting of 56

sequences of 8 classes of actions. Fig.7 (a) shows an ex-

ample of matching action sequences. The frame rates and

viewpoints of two sequences are different, and two players

Ground-true Recognized as action
actions #1 #2 #3 #4 #5 #6 #7 #8

#1 3
#2 1 10
#3 5
#4 7
#5 3
#6 1 6
#7 3
#8 9

Table 2. Confusion matrix. The actions are denoted by numbers:

1 - ballet fouette, 2 - ballet spin, 3 - pushup, 4 - golf swing, 5 -

one handed tennis backhand, 6 - two handed tennis backhand, 7 -

tennis forehand, 8 - tennis serve. The diagonal nature of the matrix

indicates high accuracy.

perform golf-swing action at different speeds. The accumu-

lated score matrix and back-tracked path in dynamic pro-

gramming are shown in Fig.7 (c). Another result on tennis-

serve sequences is shown in Fig.7 (b) and (d). More details

and more results are included in the supplementary video.

We built an action database DB by selecting one se-

quence for each action; the rest were used as test data, and

were matched against all actions in the DB. An action was

recognized as the one with highest matching score. The

confusion matrix is shown in Table 2, which indicates an

overall 95.83% classification accuracy for real data.

5. Conclusion
There are three major contributions in this paper: (1) we

introduce the concept of fundamental ratios and apply it to
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Figure 6. A pose observed from 17 viewpoints. Note that only 11 body points in red color are used. The stick shapes are shown here for

better illustration of pose configuration and extreme variability being handled by our method.

(a) Example 1: matching two golf-swing sequences.

(b) Example 2: matching two tennis-serve sequences.
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Figure 7. Examples of matching action sequences. (a) and (b) are

two examples in golf-swing and tennis-serve actions. (c) and (d)

show the accumulated score matrices and backtracked paths, re-

sulting in the alignments shown in (a) and (b), respectively.

action recognition; (2) we propose to compare transitions of

two poses, which encodes temporal information of human

motion and keeps the problem at its atomic level; (3) we

propose to break a human pose into a set of triplets and

represent a human action by the motion of planes of triplets.

This converts the study of non-rigid human motion into that

of multiple rigid motions of planes, making it thus possible

to apply well-studied rigid motion concepts, and providing

a novel direction to study articulated motion.
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