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Abstract

Region based features are getting popular due to their
higher descriptive power relative to other features. How-
ever, real world images exhibit changes in image segments
capturing the same scene part taken at different time, un-
der different lighting conditions, from different viewpoints,
etc. Segmentation algorithms reflect these changes, and
thus segmentations exhibit poor repeatability. In this paper
we address the problem of matching regions of similar ob-
jects under unstable segmentations. Merging and splitting
of regions makes it difficult to find such correspondences
using one-to-one matching algorithms. We present partial
region matching as a solution to this problem. We assume
that the high contrast, dominant contours of an object are
fairly repeatable, and use them to compute partial match-
ing cost (PMC) between regions. Region correspondences
are obtained under region adjacency constraints encoded
by Region Adjacency Graph (RAG). We integrate PMC in
a many-to-one label assignment framework for matching
RAGs, and solve it using belief propagation. We show that
our algorithm can match images of similar objects across
unstable image segmentations. We also compare the perfor-
mance of our algorithm with that of the standard one-to-one
matching algorithm on three motion sequences. We con-
clude that our partial region matching approach is robust
under segmentation irrepeatabilities.

1. Introduction
The regions of an object obtained by many segmenta-

tion methods in images taken under slightly different imag-
ing conditions (e.g. lighting, viewpoint, etc.) differ signif-
icantly. This is because the existing segmentation algo-
rithms do not always produce perceptually meaningful re-
gions. This results in splitting and mergers of adjacent re-
gions, even if the contrast changes very slightly. On the
other hand, in conditions where stable regions can be reli-
ably obtained, for instance, by using additional information
such as, shape cues as in [20], the efficacy of region based
matching has been successfully demonstrated for high level

vision tasks such as object recognition. Despite their de-
scriptive power, regions have not been a very popular choice
for computer vision tasks requiring image matching, partly
because of the lack of segmentation algorithms which pro-
duce repeatable regions.

Most of the existing algorithms for region correspon-
dences employ both the absolute region properties e.g.
shape, area, mean intensity etc., as well as relational con-
straints e.g. adjacency (regions sharing boundary) and hi-
erarchy, encoded in graph structures e.g. Region Adjacency
Graphs (RAGs) [17, 20] (encoding adjacency), or segmen-
tation trees [1, 2, 13] (encoding hierarchy). The splits and
mergers of regions corresponding to the same scene consid-
erably affect both (i) the regions’ absolute properties, and
(ii) their relationships with other regions in the image. Con-
sider for instance two example segmentations of the same
object, shown in Fig. 1. The corresponding RAGs are over-
laid on the top of segmented images (middle column). Here
region b in the top image is a merger of regions b1 and b2
in the bottom image. In the ideal case, b should be matched
to both b1 and b2. However, absolute properties of b1 and
b2 differ significantly as compared to their merger b there-
fore the unary match cost of b is high with both b1 and b2.
Also note that the adjacency relationships between regions
change considerably, e.g., b2 in the bottom image is not ad-
jacent to a, but b in the top image, which is the merger con-
taining b2, is adjacent to a. This causes irrepeatability in the
structure of (RAGs) of the two images, commonly referred
to as structural noise. Matching b with its fragments b1 and
b2 is thus difficult by i) any algorithm that outputs a one-to-
one matching between regions, or ii) any algorithm that uses
only the unary match cost based on regions’ absolute prop-
erties. This paper is aimed at providing a solution for both
of the above problems. It proposes a novel cost measure
between regions, one that depends on the properties of the
portion of overlap between regions after transforming them
appropriately and not the properties of entire regions. We
denote this measure by Partial Match Cost (PMC). Also,
the paper integrates this cost measure into a many-to-one
region matching framework.

Prior Work. One solution to the segmentation instabil-
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ity problem is allowing access to region segmentations at
multiple scales, e.g., contrast levels, [1, 2, 13]. However,
even searching all possible scales of segmentation does not
guarantee perfect repeatability. Similar observation is re-
ported in [11], wherein the authors use regions obtained
from multiple segmentations, at multiple scales, and deter-
mine if these regions reliably correspond to the spatial sup-
port of natural objects. They conclude that even with large
number of regions available per image, explicit mergers of
regions are still required to obtain desirable levels of sup-
port. Since mergers lead to combinatorial complexity, us-
ing regions under such conditions becomes computationally
prohibitive quickly. An approach that would allow partial
matching of regions, so that the split portions could match
the whole, is therefore desirable.

The problem of structural noise in graphs has been ad-
dressed before by relaxing the enforcement of relational
constraints between regions. For instance, instead of using
the direct parent-child constraints between regions while
matching segmentation trees, Torsello et al. [16] suggest us-
ing transitive closures in trees which connect every node in
the tree to every descendant. Thus any ancestor-descendant
pair in one tree can match with any such pair in the other,
even if their levels are different. As another example, the
technique in [17] uses a fixed number of regions with near-
est centroids, instead of directly adjacent regions while
matching RAGs. However, even with the relaxed con-
straints, the assumption of one-to-one correspondence is of-
ten found to be too restrictive for real images.

Another class of approaches perform explicit region
mergers, to deal with problem of high unary match cost
between absolute region properties caused by region merg-
ing and splitting [7, 8, 13, 17]. These are guided by some
heuristically set thresholds, e.g., those depending on inten-
sity contrast between two regions. However, such mergers
may not produce perfect one-to-one correspondences. Ke-
selman et al. [9] obtain a model RAG, referred to as Least
Common Abstraction (LCA), using RAG of exemplar im-
ages of a particular object category. Finding LCA requires
search for isomorphic RAGs among those obtained by all
possible region mergers in the original RAGs. Matching
explicit splits and mergers of regions as performed by the
above techniques can quickly become computationally pro-
hibitive due to their combinatorial nature. The partial re-
gion matching approach proposed in this paper can reduce
this combinatorial search space drastically. Another class of
previous approaches is that of inexact graph matching [18],
wherein graph edit operations such as node (or edge) substi-
tution, deletion and insertions are defined to handle the in-
consistencies in graph structure. Inexact graph matching is
an n-p complete problem and is computationally intractable
for real images, since the space of all possible edit opera-
tions is huge. A number of approximate solutions have been

proposed in literature; however, the convergence in these
cases depends heavily upon initialization.

Overview of our approach. We provide a solution to
deal with the irrepeatibility of regions caused by merging
and splitting, and noise in graph structure, while matching
region adjacency graphs. We define the match score be-
tween two regions in a robust fashion, which allows frag-
ments of the same region to have low unary match cost with
the original region. We denote this cost as the Partial Match
Cost (PMC). Towards computing PMC, we assume that the
dominant contours of object are repeatable under different
imaging conditions. In this paper, we consider adjacency
relationships between regions contained in RAG. However
note that PMC is generic enough to be integrated with other
types of relations, e.g. containment, as observed in segmen-
tation hierarchies (trees). To handle the structural noise in
RAGs, we formulate the problem of RAG matching as a
many-to-one label assignment problem, i.e., allowing for
multiple regions from one RAG to match with a single re-
gion in the other RAG. We solve this assignment problem
using the loopy belief propagation technique. Our algo-
rithm can thus match fragments with their merger region,
while respecting the adjacency constraints. In Fig. 1, third
column, we show example results of our algorithm. Notice
that our algorithm can handle both of the problems due to
segmentation noise, mentioned above. This paper has the
following contributions: 1) It uses partial region matching
which is a robust similarity measure between regions. This
eliminates the need for performing a combinatorially large
number of explicit region mergers, which is otherwise nec-
essary to deal with irrepeatibility of regions observed under
unstable segmentations. 2) This paper also proposes an ef-
fective solution of many-to-one label assignments for the
problem of structural noise in RAGs, which is possible due
to our definition of partial match cost.

The rest of the paper is organized as follows: In Sec. 2,
we explain our partial region match cost. In Sec. 3, we ex-
plain our label assignment formulation for RAG matching.
Experiments and results are described in Sec. 4. Finally, we
conclude the paper in Sec. 6.

2. Partial Region Matching
Since the global properties of regions change drastically

among segmentations of the same scene under slightly dif-
ferent conditions, (e.g., lighting, viewpoint, etc.), they can
not be used to obtain a reliable match between the segmen-
tations. The properties of regions should instead be com-
pared in the portions common to the two regions. Consider
for instance the regions b and b1 shown in Fig. 1, corre-
sponding to the torso and shirt of the man. Instead of com-
paring their global properties, if we compare the properties
only in the common physical portion of these regions, i.e.,
shirt, we will be able to assign low cost to a match between



Figure 1. Images in the first column show adjacent frames of a
video sequence. Second column shows the region splitting phe-
nomenon and the changed RAG structure due to it. We show only
a part of RAG for better visibilty. Third column shows some of the
matched regions obtained by our algorithm. Matched regions are
shown with the same color. Notice that shirt and pant fragments in
the bottom image are successfully matched to the torso fragment
in the top image.

these regions. We denote the match cost obtained in such
a manner as Partial Match Cost (PMC). As we shall next
explain, we hypothesize that deduction about such a com-
mon portion between the regions in different images can be
obtained as a transformation T, by robustly registering their
contours. For two regions, r1 in the first image and r2 in
the second image, and the transformation T between them,
we can then define overlapping portions as o1 = r1∩T(r2)
and o2 = r2 ∩T

−1(r1), in the domains of the first and sec-
ond images, respectively. We define the PMC between r1

and r2 as

PMC(r1, r2) = ||f(o1) − f(o2))|| (1)

where f(r) denotes the properties of region r and || · ||
is the euclidian norm. Since Eq. (1) computes the cost of
matching overlapping portions of registered regions, assum-
ing that the transformation between regions has been com-
puted correctly, it will always return low cost for matching
a region with one of its fragments (e.g. b with b1 in Fig. 1).
Below we explain our methodology for estimating the trans-
formation T.

2.1. Region transformation
We assume that dominant contours corresponding to

physical boundaries of different parts of an object are fairly
repeatable. Due to the presence of a few spurious pixels
on the boundaries, the originally closed regions of the ob-
ject leak out to form big regions. It is this leakage that is
mostly responsible for irrepeatability of regions across im-
ages of the same object. We therefore want to exploit the
parts of the region boundaries which are undisturbed by the
image noise, to estimate the transformation T between re-
gions r1 and r2. Let us denote the boundaries of r1 and r2

by bo1 = {x1
1, . . . , x

1
k} and bo2 = {x2

1, . . . , x
2
m} where

(a) (b)

(c)
Figure 2. KDC Registration. Boundaries of regions from the first
image are shown in blue and the transformed boundaries of corre-
sponding fragments in the second image are overlaid on the top in
different colors. (a) Regions from image pair in Fig. 3(c) are ac-
curately registered despite huge scale variations. (b) Regions from
image pair in Fig. 3(b) are accurately registered under affine trans-
formations. (c) The face-neck region is successfully registered to
face and neck regions (see Fig. 3(a)).

x
1
i , i ∈ {1, . . . , k} and x

2
j , j ∈ {1, . . . ,m} are boundary

pixels of regions r1 and r2 respectively. Our goal is to align
pieces of boundaries which are common in the two regions.
Moreover, in order to successfully align fragments of a re-
gion with the whole region, we must do this alignment in a
manner such that it is robust to outliers. There has been a
much towards robustly estimating a transformation between
point clouds in such a correspondenceless setting [6,14,19].
We adopt robust kernel density correlation (KDC) machin-
ery, described in [15], for solving this problem. According
to [15], the problem of robustly matching point clouds is
formulated as that of matching the respective kernel den-
sity (also known as parzen window) estimates [5] of the
samples in each of these point clouds. KDC is used as a
measure of match between these kernel density estimates.
The equivalence between kernel density estimators and ro-
bust M-estimators was shown in [3], and it is from here that
KDC inherits its robustness to outliers.

Following the formulation in [15], we assume that the
point sets bo1 and appropriately transformed bo2 are gen-
erated from the same underlying pdf. The quality of match
between bo1 and T(bo2) is then given by the correlation of
the corresponding estimates of the underlying pdf, given by
the following equation, as described in [15].

KDC(bo1, T(bo2)) =
∑

xi∈bo1

xj∈bo2

K(H−1(xi−T(xj))) (2)

where, K is the kernel function with zero mean, unit area



and identity covariance matrix, and H is a non singular
bandwidth matrix. We use Gaussian kernel in our experi-
ments. Maximizing KDC measure in Eq. (2) gives us the
T between two regions. Given an appropriate initialization,
the maximizer of Eq. (2) can be estimated efficiently in an
iterative fashion by using variational optimization machin-
ery, as shown in [15]. In our implementation, we restrict T

to be an affine transformation. We discuss the initialization
in Sec 4.

Fig. 2 shows some example results of our region trans-
formation estimation using KDC. Boundary of the region in
first image is shown in blue. The corresponding region of
the object was broken into fragments in the segmentation
of the second image. See segmentation images in second
row in Fig. 3. We have shown the boundaries of the frag-
ment regions overlaid on the top of the original region after
transforming them using the computed transformation, with
different colors. Notice how each fragment from second im-
age is robustly registered on the single merger region in the
first image.

3. Matching Region Adjacency Graphs
We abstract the segmentation of each image as a Region

Adjacency Graph (RAG) constructed in the following fash-
ion. For an image I , we define an RAG G = (P,N ) con-
sisting of a set of nodes P and a set of edges N ⊂ P × P .
Each node p ∈ P represents a region in the image. An
edge (p, q) ∈ N exists if regions p and q share a common
boundary (are adjacent), i.e., p ∼ q. Towards matching
RAGs of two images, G1 = (P,N1) and G2 = (L,N2), we
want a correspondence between their nodes which has a low
partial match cost, and preserves adjacency relations. We
also want this correspondence space to include many-to-one
matches since a node in one RAG might exist as multiple
fragments in the other RAG. We thus define RAG matching
as the minimum unary cost labeling or mapping l : P → L
satisfying the constraints that ∀(p, q) ∈ N1, we have ei-
ther (l(p), l(q)) ∈ N2 or l(p) = l(q). For convenience,
we use the notation lp = l(p). Note that the constraints on
the labeling preserve adjacency by allowing adjacent nodes
in G1 to take labels corresponding to adjacent nodes in G2

and can produce many-to-one matches by allowing adjacent
nodes to take the same label. Following this discussion, we
can write the energy associated with a labeling l as

E(l) =
∑

p∈P

Dp(lp) +
∑

p,q∈N1

V (lp, lq) (3)

Here, Dp(lp) is the unary cost of matching nodes p ∈ P
and lp ∈ L computed as partial match cost using Eq. (1),
i.e., Dp(lp) = PMC(p, lp). The term V (lp, lq) is the cost

of violating the constraints, defined as

V (lp, lq) =

{

0 if lp, lq ∈ N2 or lp = lq
K if lp, lq /∈ N2

(4)

Here, K is the constraint violation penalty and is set to a
high value. Thus the minimizer of E(l) gives an optimum
assignment in terms of both the unary cost and adjacency
relations.

Estimating a global minimum of the energy function in
Eq. (3) requires a search over the discrete space of all possi-
ble labelings. However, efficient iterative techniques based
on message passing algorithms [12] and graph cuts [10]
have been proposed in literature to estimate strong local
minimum of such an energy function. We use loopy belief
propagation (LBP), which is a message passing algorithm,
to solve the minimization in Eq. (3). In LBP, each node it-
eratively receives messages from its neighbors in the graph,
and updates its own confidence of having a certain label.
Once the messages stop changing beyond a threshold, the
iterations are terminated, and each node computes the re-
sulting belief over all the labels. The per node label is then
obtained by maximization over these individual beliefs. If
convergent, LBP has proved to be a good approximation for
many applications [12]. In our experiments, LBP converges
in approximately 50 iterations. For our formulation, we can
write the message passed by node p to its neighbor q for
label lq at iteration t as

mt
p→q(lq) = min

lp









V (lp, lq) + Dp(lp) +
∑

s6=q
(s,p)∈N1

mt−1
s→p(lp)









After T iterations of message passing, the belief vector at
node q for label lq is computed as

bq(lq) = Dq(lq) +
∑

{(p,q)∈N1}

mT
p→q(lq) (5)

Finally, the label l∗q that minimizes bq(lq) at node q is se-
lected.

4. Experiments and Results
We test the performance of the proposed PMC and many-

to-one matching approach with two different experiments:
(a) matching images of similar objects taken under differ-
ent imaging conditions, and (b) matching images of a mo-
tion sequence. For image matching, we present qualitative
results on image pairs with varying degrees of complexi-
ties, validating the ability of our algorithm towards match-
ing a region with its fragments, and many-to-one region
matching (see Sec. 4.1). For matching images of motion
sequences, we present both qualitative and quantitative re-
sults. On these sequences, we compare the performance of



our algorithm against its one-to-one counterpart which does
not use PMC (explained in Sec. 4.2).

For all the experiments, image segmentation is per-
formed using the mean-shift clustering approach [4]. For
each image pair, we use the same scale parameters for the
mean-shift segmentation. However, in order for our as-
sumption of having repeatable contours in both images be-
ing valid, we pick a scale which preserves dominant con-
tours in segmentation output of the two images. As we
shall see in the results, there still are numerous examples
of region irrepeatabilites making the region correspondence
task really difficult. This selection of the scale parameter
can be completely avoided by taking regions from segmen-
tation outputs obtained at multiple scales. Note that we do
not separately tune the scale parameters for each image in
the pair to get similar regions. We set the value of constraint
violation cost K in Eq. (4) to 100 and the region property
function f in Eq. (1) is chosen as gray scale absolute inten-
sity difference at each pixel. Further, we assume that the
transformation to be estimated using KDC, T, is an affine
transformation. KDC being an iterative approach requires a
good initialization to search for the global optimal. For im-
age matching experiments, we use multiple initializations,
obtained by matching local appearances at corner points on
the image pairs. For matching images of a motion sequence,
we initialize the transformation as an identity transforma-
tion.

4.1. Matching image pairs
We show the results of our RAG matching algorithm on

a set of image pairs consisting of similar objects, captured
under different conditions. Each image is represented as an
RAG, and PMC is computed between every region pair con-
sisting of a region from the first image and a region from the
second image. Region correspondences are then obtained
by matching RAGs using the algorithm described in Sec 3.
Note that our original formulation for label assignment is
many-to-one, however, we re-run the algorithm by revers-
ing the order of images to obtain many-to-many correspon-
dences. For each set of images in Fig. 3, the original images
are shown in the top row, the segmentations in the middle
row, and, the matched regions are shown in the same colors
in the bottom row. The nodes which are not matched are
shown in black.

Fig. 3(a) shows the matching of face images of the same
person on different backgrounds. Here, the regions corre-
sponding to face, neck and right collar in the left image
fuse together to form a single face-neck-collar merger in the
right image. Note that our formulation is able to find cor-
respondences between this merger and its individual frag-
ments. This shows the robustness of PMC based unary
cost and the ability of our RAG matching algorithm towards
handling many-to-one matches. Also note that the regions

neighboring the face-neck-collar portion in the images still
get matched appropriately despite their significantly differ-
ent neighborhoods. Thus, our algorithm can also handle
structural noise in RAGs. Fig. 3(b) shows matching results
on images of a graffiti which have complex adjacency struc-
ture. Matching these images using any global region match
measure or one-to-one RAG matching methodology would
be very difficult, due to huge differences in segmentations
in terms of mergers and splits of regions, as well as the adja-
cency structure. However, our matching framework is able
to handle this successfully. Note the partial matching for
the regions shown in blue, where the corresponding region
in the second image occupies less than half of the area of the
region in the first image (see the corresponding registrations
in Fig. 2). Also note that despite of instances of structural
noise in the graphs, we are able to match them correctly.
For instance, the regions colored in blue and orange are ad-
jacent in the first image, but not in the second, and yet they
are matched correctly.

Fig. 3(c) and (d) show matching results on images of the
Kremlin and the Statue of Liberty, respectively. Note that
the Kremlin appears as a single region in one image and is
fragmented into multiple regions in the second image. Our
algorithm is able to match these fragments with the entire
region. Many of these fragments, as shown in Fig. 2(a), are
successfully registered to the single Kremlin region, provid-
ing a low match cost between these corresponding regions.
A similar effect can be seen for the Statue of Liberty image
pair.

Fig. 3(e) and (f) show matching results for rhino and
horse images pairs. Note that the many regions correspond-
ing to the object are matched correctly, but background re-
gions are not. This is because the background regions and
their adjacency relationships are different in these images.
Also, some regions inside the object are not matched cor-
rectly. due to lack of sufficient boundary overlap for reliable
transformation estimation using KDC.

4.2. Matching Motion Sequences
We compare the results of our algorithm, both qualita-

tively and quantitatively, against a one-to-one region match-
ing algorithm, which uses absolute region properties for
computing match cost between regions instead of PMC,
implemented in the following manner. The regions are
described using their area, centroid, eccentricity, solidity,
perimeter, and, mean and variance of intensities. The cost
of matching two regions is computed as sum-of-squared-
differences between these absolute properties. The one-
to-one RAG matching algorithm implemented is the same
as the one described in Sec. 3, except that we change the
constraint cost in Eq. (4) so that V (lp, lq) = 0 only when
lp, lq ∈ N2. Thus, there is a high cost for neighboring re-
gions taking the same label, i.e., penalizing many-to-one



(a) (b) (c)

(d) (e) (f)
Figure 3. Image matching results. Each set of images shows the original images in the top row, the segmented images in the middle row,
and matching results in the bottom row. Matched region pairs are shown with the same color in the two images. Images in (a) show results
for matching face of a person on different backgrounds. Images in (b) show matching results for Graffiti images which have complex
adjacency structure. Note that the instances of partial matching and many-to-many matchings are detected correctly. Images in (c) shows
matching of the Kremlin images under scale variations, all the fragments of the structure are correctly matched to the corresponding merger
region. Similarly (d), (e), (f) show results on instances of the Statue of Liberty, rhinos and horses. Notice how the different segments on
the object are matched accurately. (This figure is best viewed in color.)

matching.
We choose motion sequences for this comparison. Note

that the assumption of one-to-one correspondence is suit-
able under this setting. We have considered three differ-
ent motion sequences here, namely, the house sequence
from CMU motion database, the man sequence of a per-
son walking on static background, and, the Kwan sequence
of olympic ice-skater Michelle Kwan. Matching is per-
formed on successive frames, returning matched region
pairs, which are compared against ground truth region
matches marked by us. A region pair is termed as an er-
ror, if either a) it is a ground truth pair, but not returned by
the algorithm, or, b) it is returned by the algorithm, but not
a ground truth match pair. The total region mismatch error
per image is computed as the ratio of the total number of er-
roneous matched pairs returned by the algorithm, and the to-

tal number of ground truth region pairs. The pixel mismatch
error for an erroneous pair is computed as the minimum of
the areas of the two regions in the matched pair. We choose
the minimum area to respect partial matching. The per im-
age pixel mismatch error is computed as the ratio of sum of
pixel mismatch errors of each erroneous pair, and the total
image area. For each sequence, we report the mean per im-
age region and pixel mismatch errors, computed as the av-
erage of region and pixel mismatch errors of all the frames
of that sequence, shown in Fig. 4. Note that the many-to-
one matching algorithm has lower errors as compared to the
one-to-one matching algorithm, for each of the sequences.
As can be seen in Fig. 5, the house sequence has the highest
ambiguity due to multiple window regions which are very
similar in appearance. This is not the case with the other se-
quences, and hence they have lower region matching errors.
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Figure 4. Performance comparison. Detection error for our
method (many-to-one) is shown in pink and the error for one-to-
one matching method is shown in blue. Average errors for three
motion sequences are shown. (a) We have obtained lower region
detection error for all the three sequences. Performance gain is
the highest for house sequence because of its complex RAG struc-
ture, due to which this sequence is more prone to structural noise.
(b) Pixel matching error using one-to-one matching is high for
the kwan sequence since it has large background clutter and a num-
ber of instances of non-repeating regions in adjacent frames. Our
PMC based method gives very low error on this sequence. Man
sequence was the least challenging amongst the three and hence
both the methods perform almost equally well on it.

However, the area occupied by these ambiguous regions is
very small, and hence the pixel matching errors are lower
than the Kwan sequence. The man sequence is the easiest
with not much complex motion, and high repeatability, and
hence produces lowest errors.

In Fig. 5 we show example frames of the above motion
sequences. Top row shows original images of consecutive
frames in the motion sequences middle row shows matching
results by our method and the bottom row shows matching
results returned by the one-to-one method. Notice how our
method can match shirt, pant with the torso region in the
man sequence. Also hair and face regions are matched by
our method but not by one-to-one. In kwan sequence similar
effect can be observed. We can match the torso of kwan
with both upper body and lower body whereas one-to-one
matches it only with the upper body.

5. Computational Complexity
The most expensive step towards computing the par-

tial match cost is the computation of robust transformation
using KDC. From Eq. (2), the complexity of computing
the KDC similarity measure between samples from bound-
aries of two regions, bo1 = {x1

1, . . . , x
1
k} and bo2 =

{x2
1, . . . , x

2
m} for a given transformation T is O(km),

where k and m are the number of boundary points in the
respective boundaries. Let us assume that the KDC con-
verges to a stable transformation in T iterations. Then
the complexity of KDC computations for estimating T is
given by O(mkT ). Let us denote by nbj

i , the number of
boundary points in th i-th region of j-th image, and by

Nbj =
∑

i nbj
i , the sum of boundary points of all regions

in the jth image. Then, the total complexity of KDC stage
can be computed as

CKDC = O(
∑

i1,i2

Tnb1
i1nb2

i2) = O(TNb1Nb2) (6)

The loopy belief propagation for many-to-one RAG match-
ing has the complexity, CBP = O(N1N2N2t), with num-
ber of nodes (regions in first image) N 1 and number of la-
bels (regions in second image) N 2 and t iterations. The one-
to-one matching approach without PMC has computational
complexity of O(N1N2) for computing the match cost be-
tween N1 regions in the first image and N 2 regions in the
second image. The complexity of graph matching stage us-
ing label assignment is same as CBP for both the methods.
Thus PMC provides increased accuracy at the cost of in-
creased computations. However, as demonstrated earlier,
even in simplest settings assumption of one-to-one region
correspondences is very restrictive. Note that, as compared
to methods which perform explicit region mergers we save
substantially in terms of computations. For instance, if we
consider all possible mergers of N 1 nodes we get 2N1 nodes
and this thus makes the complexity of computing match cost
exponential O(2N1

2N2

). The cost of graph matching stage
is also increased exponentially.

6. Conclusion
In this paper, we propose a solution of partial region

matching for matching a region with its component frag-
ments. We further address the problem of structural noise in
region adjacency graphs through our formulation of many-
to-one assignment problem. The results of our algorithm for
matching images of similar objects with different segmen-
tations show that the concept of partial region match cost
is promising for handling irrepeatability usually observed
in the output of image segmentation algorithms. We also
demonstrate performance enhancement with our many-to-
one matching method based on partial match cost, over the
one-to-one method which takes absolute properties of the
regions into consideration. An immediate possible exten-
sion of our work is matching region adjacency graphs con-
structed using regions obtained from multiscale segmenta-
tion outputs, to ensure better repeatability in terms of image
contours. Possibility of integrating hierarchical and adja-
cency constraints in such region adjacency graphs can also
be explored.
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(a) House Sequence (b) Kwan Sequence (c) Man Sequence
Figure 5. Example frames from three motion sequences. Original images are shown in the top row, matching results obtained by our
method is shown in the middle row and one-to-one matching results are shown in the bottom row. Matched regions are shown with the
same color in the left and right images, regions which are not matched are shown in black. (a) House. Note that some of the small regions
corresponding to windows are not matched correctly by one-to-one method while we can match them. (b) Kwan. We can match the lower
body and upper body of kwan in the right image with the whole body region in the left image whereas one-to-one matching can not achieve
this. (c) Man. Notice how the shirt, face, and hair regions are left unmatched by one-to-one method which are matched accurately by our
method.
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