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Abstract

Time-of-flight range sensors have error characteristics
which are complementary to passive stereo. They provide
real time depth estimates in conditions where passive stereo
does not work well, such as on white walls. In contrast,
these sensors are noisy and often perform poorly on the tex-
tured scenes for which stereo excels. We introduce a method
for combining the results from both methods that performs
better than either alone. A depth probability distribution
function from each method is calculated and then merged.
In addition, stereo methods have long used global meth-
ods such as belief propagation and graph cuts to improve
results, and we apply these methods to this sensor. Since
time-of-flight devices have primarily been used as individ-
ual sensors, they are typically poorly calibrated. We intro-
duce a method that substantially improves upon the manu-
facturer’s calibration. We show that these techniques lead
to improved accuracy and robustness.

1. Introduction

Depth sensing is one of the fundamental challenges of
computer vision. Applications include robotic navigation,
object reconstruction, and human computer interaction. A
range sensor that is robust, accurate, and real time would
be the enabling component in these applications. Unfor-
tunately no existing range sensing method is perfect on its
own. Laser scanners are too slow for real time use. Passive
stereo fails on textureless scenes. Time-of-flight sensors are
low resolution, noisy, and poorly calibrated. Photometric
stereo is prone to low frequency distortions.

Time-of-flight sensors provide real time independent
range estimates at each pixel, and are only recently becom-
ing available from companies such as Canesta [2], Swiss-
Ranger [3], and 3DV [1] at commodity prices. Due to their
recent introduction, most applications use the sensors indi-
vidually and rely on the manufacturer’s calibration. Despite
their promise, relatively little literature explores the ways in
which the quality of these sensors might be improved.

This paper seeks to improve the range estimates provided
by time-of-flight sensors, by combining them with both the
data and relatively more sophisticated algorithms common
to passive stereo vision.

Time-of-flight sensors are characterized by independent
pixel range estimates, each of which has relatively high
noise that can be modeled as a Poisson distribution around
the true depth. Texture causes difficulties since these sen-
sors frequently have biases as a function of object albedo.
Passive stereo is characterized by outliers and correlations
between neighboring pixels. Textureless regions and re-
peated patterns will cause multiple local minima to appear
in the cost volume, resulting in a relatively complex error
model.

We combine the probability distribution functions on
depth from each of these sensor modalities using a Markov
random field (MRF) model to produce a combined sensor
with superior characteristics.

Modern passive stereo methods are quite sophisticated
and have been carefully categorized according to the ef-
fects of changing the local matching function, aggregation
function, and global regularization [22]. Time-of-flight sen-
sors provide only local data, analogous to performing stereo
using a simple sum-of-squared-distance (SSD) correspon-
dence match only. We apply belief propagation (BP) as a
global regularization term and show that it improves time-
of-flight accuracy, just as it improves stereo.

Any attempt to combine multiple sensors requires that
they be calibrated in a common coordinate frame. Unfor-
tunately time-of-flight sensors are usually designed only to
provide relative depth, as opposed to measurements in a cal-
ibrated Euclidean frame.

We introduce an empirical calibration method which
builds a look-up table (LUT) with 4 dimensions, mapping
observed intensity and 3D positions reported by the sensor
to ground truth distance. Table entries are obtained by mov-
ing a planar card to known depths in a 400 mm calibration
region. We quantize intensity into simply black and white,
linearly interpolating for values in between. Results show
the depth error within the calibrated distance range is re-
duced from 1.8% to 0.6% of the working volume.
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The contributions of this paper include: a method for us-
ing data from both time-of-flight and stereo methods to pro-
duce enhanced depth estimates, application of global regu-
larization methods to time-of-flight data, and a method for
improving calibration of time-of-flight sensors.

2. Related Works
There are many ways to obtain scene depth information.

In general, they can be categorized into two major classes:
passive range sensors and active range sensors. Among the
plethora of passive range sensing methods, stereovision [23]
is probably the most well known, least expensive, and most
widely used. It is beyond the scope of this paper to provide
even a brief review of existing stereo methods, interested
readers are refereed to an excellent review by Scharstein
and Szeliski [22]. Despite significant progress made during
the last few years, the fundamental problems in stereo such
as occlusion and textureless regions, remain to be unsolved.
Thus, stereo results from real scenes are often quite fragile.

Time-of-Flight (TOF) range sensors use an active tech-
nique to obtain near real-time scene depth. The basic prin-
ciple of depth calculation in TOF is based on timing the
round-trip of a pulse of light. TOF sensors are able to pro-
duce a full depth frame simultaneously, therefore allowing
their application to dynamic scenes. Lange [21] describes a
TOF camera using modulated visible and near-infrared ra-
diation. An excellent classification of TOF for acquiring
depth can be found in [17]. A key issue for TOF depth
sensors is low spatial resolution, making these sensors less
appealing for most vision algorithms. Therefore several su-
per resolution methods [10] [26] are reported to enhance
the resolution of depth images. These are mainly based on
the fact that discontinuities in range and coloring tend to co-
align [12]. As a separate issue, the capture frequency can be
increased by a CMOS-based technique [6]. Several types of
commercial TOF sensors are now available [3, 2, 1].

Although the basic principle of TOF sensors is sim-
ple, the accuracy of depth measurement is subject to many
factors. The main noise source is photon shot noise
which is theoretically Poisson distributed [5]. Others, like
flicker noise and thermal noise, can be modeled as a con-
stant. Anisotropic LED lights and lens distortions are re-
garded as internal errors which can be reduced by calibra-
tion [14]. External uncertainties like environmental tem-
perature, background light, multiple reflection, light scatter-
ing, glossy reflection and color difference all have impacts
on accuracy. Ambient light is particularly important and
special purpose calibration [11] as well as in-pixel back-
ground light suppression [17] have been investigated. How-
ever, there is currently no general and simple methods to
handle general noise and most applications use depth from
TOF sensors directly, which may not be sufficient in high
accuracy applications.

There are already several approaches to merge a TOF
sensor with a stereo rig. A comparisons between depth from
TOF and depth from stereo rig has also been performed [8].
Refined 3D estimation by regional selection of depth from
a stereo rig and depth from TOF is reported by [16, 20, 7].A
similar setup to ours is [4] which also improves the 3D esti-
mation by finding the correspondence between images from
TOF sensor and stereo rig. However, none of these methods
reported metric improvement over TOF or stereo sensors,
nor provided disparity images comparable in quality to the
current state of the art in stereo. In this paper we present
a general calibration method that does not assume specifics
of our TOF sensor and provide a detailed evaluation on a
number of real scenes.

3. Multi-Sensor Setup

We combine a TOF sensor with a pair of stereo cam-
eras (as shown in Figure 1). The TOF sensor we have is a
Swiss Ranger SR3000 [3], which can continuously produce
a depth map of 176 × 144 resolution with an operational
range up to seven meters. In our current setup, the two
CCD stereo cameras have a baseline about 100mm and are
verged towards each other at five degree from the parallel
setup. Our set up is designed to provide optimal coverage
at about one meter range.

Figure 1. Multi-sensor setup(Left). Calibration setup, notice the
rails on the table to move the pattern(Right).

4. Multi-Sensor Calibration

Our calibration method utilizes the stereo cameras to tri-
angulate 3D points (Xst) as ground truth to guide all steps.
Since stereo camera calibration is a well studied problem we
do not need to construct elaborate 3D calibration objects for
any sensor. We limit the calibration range from 1m to 1.40m
using 16 distance intervals which we called steps (each step
has a distance size around 25mm). To minimize saturation
effects, optimal camera integration time procedure [18] is
used.



4.1. Geometric Calibration

During our calibration procedure, a planar object cover-
ing the largest field of view is vertically placed to face the
stereo and sensors. This plane, painted with checkerboard
patterns, is movable on a metric board with two guide rails
(shown in Figure 1 right). We move the pattern from near
to far in each step, note that precise movement is not neces-
sary.

In each step, stereo captures the left/right view while the
TOF sensor returns an intensity image and a depth image
with (x, y, z) information. The correspondence between the
stereo image and sensor depth image is defined by a homo-
graphical transformation. There are altogether three coor-
dinate systems (CS) involved in our geometrical model: the
stereo CS, the calibration (world) CS and the sensor CS. 3D
points in these CS are denoted as Xst, Xdc, and Xds, re-
spectively. The theoretical explanation of their relationship
is illustrated in Figure 2:

Figure 2. Geometric relationship of depth sensor and stereo
rig.Since the scene is a plane (for calibration), the geometrical re-
lationship between the depth sensor and the left/right camera is
homograph (H1, H2). From standard camera calibration, we can
estimate [R1|T1] to transform between Xst and Xdc. And as-
suming rigid transformation between Xdc and Xds, the geomet-
rical relationship among three CSs are fixed. K, P is the intrinsic
matrix and projective matrix of sensor.

Referring to Figure 2, The transformation between the
three cameras (treating the TOF’s intensity image as from
a camera) can be readily computed using standard camera
calibration techniques (such as [28]). Besides, we know
the correspondence between Xds and its 2D location pds
on the sensor’s intensity image, however we do not know
the “back-projection” to map the 2D pixel to Xds, causing
problem to transformXds toXdc for correction and fusion.

Given a pixel pds from the sensor, we find its ground
truth in calibration using the following steps:

1. Calculate matched pair in the stereo rig byH1 andH2.

2. Triangulate the matched pair and get its 3D point Xst
in stereo CS.

3. Transform from stereo CS to calibrated CS using
[R1|T1], and we get the ground truth Xdc.

Now we have two coordinates for pds, Xdc and Xds.
This 3D-3D correspondences can be used to estimate the
transformation s[R2T2] by a closed form method [19].
Thus, the alignment matrix between Xst and Xds is:

X̄ds = s[R2T2]−1 [R1T1]Xst = MXst (1)

Based on above analysis, we calculate the distance cor-
rection value between Xds and Xst in pixel simply by:

Xd = X̄ds −Xds = MXst −Xds (2)

In each step, a per pixel array of distance correction value
is calculated and added to a distance look up table (LUT).
After calibration, we have a 3D table in which each cell
stores the correction value Xd. During run-time, we can
use this LUT to refine sensor depth. Given Xds, we first
locate two nearest cells from the LUT throughXds’s sensor
pixel coordinates and reported sensor range. Through linear
interpolation, the distance correction for Xds is calculated
and applied to Xds.

4.2. Photometric Calibration

Based on the fact that the mean accuracy correlates with
mean intensity of the scene [18], white and black planar ob-
ject are used to calibrate the intensity influence on distance
accuracy. Figure 3 shows depth value both in white and
black intensity in 16 steps. Only the result of the 72th scan
line is plotted for clarity. We see that an almost constant
shift exists between the white and black in each step. Based

Figure 3. Distance of the 72th scan line from white and black. In
each distance step (25mm), the distance difference is quite same
(within 5mm), which shows that intensity influence on depth ac-
curacy is independent of distance.

on this fact, we build a per-pixel intensity-range bias table,



which basically record the constant range bias between a
black and a white reference object. For a gray-scale object,
the range bias is proportionally adjusted based on its inten-
sity difference to the black and white reference value. For
each TOF sensor image, we first perform this photometric-
based correction, then apply the geometric correction in
Section 4.1.

4.3. Calibration Verification

To verify our calibration results, plane and box are tested.
Depth error and pixel re-projection error (PRE) on three
views are analyzed. PRE is defined as the mean difference
between 3D points re-projected on a view and their posi-
tions originally selected manually.

The Plane Experiment In this test, a planar board with
checker patterns is placed inside the calibration range. Data
are captured in 5 postures: orthogonal, forward, backward,
left and right (see figure 4).

left   

forward   

orthogonal  
backward   

right  

step(2.5cm

calibration range(16*2.5cm)    

depth sensor  

red infernal light   

Figure 4. LUT verification using planar plane. 5 postures are
tested, and each is placed at different position but within calibra-
tion range.

Figure 5 shows the effect of the rigid transformation.
One plane posture is used. Figure 6 plot the 3D locations of
depth points from different methods. One can see that the
ones after LUT refinement are much closer to the ground
truth.

PRE and mean metric depth error (e.g.,Xd) are presented
in Table 1. This table shows points after LUT refinement
have much smaller error, which is approximately one third
of their original value.

The Box Experiment In this test, we place a box inside
the calibration range and let two orthogonal patches be the
target. We want to show that the orthogonal relationship is
better preserved by our LUT method than the TOF sensor.

(a)

(b)

Figure 5. Visual comparison of rigid transforation. In (a), raw data
from sensor (in red color) is obviously not in the same coordinate
system with ground truth (in blue color). After rigid transforma-
tion , it is aligned in world CS in (b).

As same in first test, we read out raw points from sensor and
calculated revised points by LUT. To compare the metric
accuracy, the angle between two patches is estimated using
3D plane fitting method. Figure 7 illustrate the results.

Based on above tests, we verify that our calibration LUT
improves the depth accuracy. To further improve the depth
accuracy, we present our fusion technique in the following
section.

5. Sensor Fusion

The current state of the art in stereo matching is achieved
by global optimization algorithms (e.g., [15, 13, 25]). These
methods formulate stereo matching as a maximum a poste-
rior Markov Random Fields (MAP-MRF) problem. In de-
tail, we denote X = xi as hidden variables, corresponding
to the disparities of each pixel and Y = yi as observed vari-



Table 1. Result of depth error (in the second column only) and re-projection error (in pixel). Numbers in bold are after LUT refinement.
The re-projection error is much smaller on the sensor view because of its low resolution.

Posture Depth Error (mm) Pixel Error Sensor View Pixel Error Left View Pixel Error Right View
orthogonal 17.0 (5.3) (0.34 0.36) (0.02 0.04) (1.82 2.35) (1.85 1.63) (3.50 2.21) (1.91 1.72)

left 17.0 (6.1) (0.35 0.28) (0.03 0.06) (3.33 2.68) (1.87 1.64) (1.68 2.62) (2.44 1.65)
right 20.3 (5.0) (0.32 0.35) (0.02 0.05) (1.96 2.44) (1.77 1.67) (4.21 2.23) (2.91 1.65)

forward 19.2 (5.1) (0.39 0.31) (0.02 0.08) (6.24 4.72) (3.75 3.33) (5.81 4.60) (4.41 3.14)
backward 16.3 (4.6) (0.36 0.33) (0.02 0.06) (2.44 2.48) (1.86 1.69) (3.12 2.31) (2.10 1.71)

Figure 6. Visual comparison of points before and after calibration.
Ground truth is plotted in blue, points after LUT correction is in
green, and point after rigid transformation is in red. The view
direction is aligned with the ground truth plane.

Figure 7. Angle comparison of two orthogonal patches. Using 3D
plane fitting, the angle from LUT refined method is 91◦ while that
from the sensor is 97◦.

ables, corresponding to the intensity based matching cost at
specific disparity. Solving the stereo matching problem is
equivalent to maximize the following posterior.

P (X|Y ) ∝
∏

i

fd(xi, yi)
∏

i

∏
j∈N(i)

fs(xi, xj) (3)

where N(i) represents the neighbors of node i, function fd

is the local evidence for node i based on the initial pixel-
wise matching cost (data term) and fs is a symmetric func-
tion measures the smoothness assumption about the scene.
One nice feature of this MAP-MRF formulation is that it
provides a natural way to integrate the information from
multiple sensors. With our TOF sensor, we define a set of
observed variables Z = zi, which corresponds to the depth

value returned by the sensor. The new posterior is

P (X|Y,Z) ∝
∏

i

fd(xi, yi)fr(xi, zi)
∏

i

∏
j∈N(i)

fs(xi, xj).

(4)
where fr(xi, zi) is the additional local evidence based on
the measurement from the TOF sensor.

We choose belief propagation (BP) to maximizing
P (X|Y,Z)), or in fact log(P (X|Y,Z)). We also introduce
two weighting factors to allow more flexibility for the data
term (after log). That is

d = ws · log fd(xi, yi) + wr · log fr(xi, zi) (5)

where wd and wr are the weighting factors for stereo and
TOF data term. By setting wr to zero, we have a standard
BP-based stereo algorithm; and by setting wd to zero, we
have an algorithm to globally optimize the raw sensor depth
data. While simple in retrospect, we do not believe such
a global-optimization based approach has been applied to
any of these active sensors, such as structured light or TOF
sensors.

5.1. Data Term from Stereo Matching

The data term derived from stereo matching encodes the
color consistency of pixel correspondences. In our imple-
mentation the pixelwise matching cost are obtained using
a similar manner as was recently proposed by [24]. In de-
tail, the per-pixel difference is first computed using Birch-
field and Tomasi’s pixel dissimilarity [9] and an additional
adaptive weight aggregation step [27] is applied to over-
come matching ambiguities caused by occlusion boundaries
or sensor noise etc. This two-step approach has shown to be
remarkably effective for getting reliable matching cost in
[24].

5.2. Data Term from the TOF Sensor

The data term from depth sensor encodes the depth con-
sistency between the stereo and depth sensor. The cost vol-
ume is built based on the current depth map using quadratic
error model. In order to allow large depth variations, as cur-
rent depth values from depth sensor are not guaranteed to
be correct, the cost function should become constant as the
differences become large. Given a range of disparity can-
didates, the cost volume is computed by following steps:



firstly we triangulate all potential correspondences and get
3D points candidates Xc

st; secondly we transform Xc
st to

the calibrated CS Xc1
dc and project them onto the intensity

image with result of 2D pixel candidates uvc
dc; thirdly, we

select the 3D points in the sensor CS Xc
ds based on uvc

dc

and transform them to the calibration space by LUTs Xc2
dc ;

finally, the depth cost is calculated based on the Z differ-
ence between Xc1

dc and Xc2
dc .

fr = min(η ∗ L, (Zc1
dc − Z

c2
dc)2) (6)

L is the search range, η is a constant.
The two weighting factors are empirically calculated by

comparing with ground truth (See Section 6). We notice
that setting ws = 0.1 and wr = 0.4 achieves good results
in most cases.

6. Experimental Results
In order to verify the accuracy of our methods, we set

up a single structured light scanner to acquire scene depth.
Basically we use a projector to project a single line sweep-
ing over the scene. The orientation of the line is roughly
orthogonal to the epipolar line of the cameras, therefore the
correspondence problem can be uniquely determined in the
stereoscopic image pair. Based on the cameras’ calibration
data and sensor resolution, our structured light scanner is
able to achieve a depth accuracy of 5mm over a one-meter
range.

In order to provide a fair comparison, we differentiate
between local and global methods. This distinction was
originally from stereo-vision. As defined in the taxonomy
by Scharstein and Szeliski [22], a local method associates
a pixel’s disparity (depth) value to the one with the mini-
mum matching cost, e.g., a local “winner-takes-all” (WTA)
approach. In contrast, a global method typically makes dis-
parity decision using an energy-minimization framework.
We can then define the following different methods to com-
pute the depth map using the range sensor alone: (A) local
method, (B) local method with LUT correction, (C) global
method, and (D) global method with LUT correction. (A)
is essentially the raw depth reading reported by the depth
sensor. To generate the depth map from (C), we just need
to change the data term in the BP optimization framework
by setting ws in equation 5 to zero. (D) is similarly defined.
The methods for using the stereo cameras alone include a
local method (E) and a global method (F) that sets wr in
equation 5 to zero. Finally we can define a local fusion
method (G), which applies WTA to the data term in equa-
tion 5, and a global fusion method (H) which applies the
entire BP-based optimization.

We test our algorithms on a number of scenes. For each
scene, we first use the scanner to obtain the ground truth,
then apply methods (A)–(H) to compute the depth maps.

We first show a simple scene (wall) with two planes: one is
uniformly colored while the other has a checker board pat-
tern. As expected, the TOF sensor and the stereo method
exhibit complimentary characteristics for these two planes:
the TOF sensor performs well in area with constant/smooth
intensities while the stereo method performs well in area
with a lot of textures. It is also interesting to see that the
sensor’s depth maps (in (C) and (D)) improved after apply-
ing a global optimization step.

Then we tested with two complex scenes (teddy and
head). The results from global method are shown in Fig-
ure 9. Overall, fusion reduces the depth map’s noise and
provides better results on depth discontinuities.

Finally we tested with a scene (cup) containing a glossy
object (Figure 10). We can see that the reading from TOF
sensor is grossly wrong on the right side of the cup. It is
due to inter-reflection; notice that the right side of the cup is
brighter than the left side while the scene is uniformly illu-
minated from the top. BP-based stereo matching, which as-
sumes a lambertian object, is in fact quite robust on objects
with small specular highlights or inter-reflections. From
this experiment we can see that our TOF sensor is very sus-
ceptible to inter-reflection. This is a place where sensor fu-
sion can help substantially.

HF

Figure 10. An test case with inter-reflection. The top right image is
the raw sensor depth map. The depth in the marked area is wrong.
(F) is from global BP-stereo alone and (H) is the globally fused
result.

The numerical comparison against the ground truth is
presented in Table 2. The last scene (cup) has strong specu-
lar reflection that distorted the result from our simple struc-
tured light scanner therefore it is not included for numerical
evaluation. The fused result is always the best, reducing the
distance error by half on average as compared to the raw
sensor data (after rigid transformation). Comparing Table 2
with 1, we can see that the accuracy from real-world scenes
is not as good as that from the controlled setup. We believe



Input Ground Truth

A B C D

E F G H

Figure 8. Depth map from a simple scene with two walls. Label A to H indicates which reconstruction method is used. (A) and (B) are
calibrated depth maps from the sensor, (C) and (D) are after global optimization. (E) and (F) are the local and global stereo method, and
(G) and (H) are from local and global fusion.

D H

HF

F

D

Figure 9. Depth maps from two complex scenes. The last column shows the ground truth. Global senor method (D), global stereo method
(F), and global fusion method (H) are used.

it is due to the complex lighting and surface reflectance and
texture variations. This is a place for further study.

7. Conclusion

In this paper we present a simple and effective calibra-
tion method to improve the performance of time-of-flight
(TOF) sensors. Our method is general and needs no addi-
tional equipment other than a pair of cameras. We in fact
use the stereo camera to build a virtual 3D calibration ob-
ject so that the sensor can be calibrated in any desired range.
Evaluation shows that our calibrated depth map can achieve
an absolute accuracy of about 5mm over a range of one me-
ter.

This is a about three times improvement compared to
the raw depth map (after rigid transformation). We further

present a probabilistic framework to fuse the depth maps
from stereo and the TOF sensor. We show that for complex
scenes with specular highlight, large texture variations, or
even inter-reflections, our fused results reduce the over-all
error by 50%.

In the future, we would like to explore the fusion of depth
maps over dynamic scenes. We expect to see more dramatic
improvement since TOF sensors are known to be sensitive
to motion.
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Table 2. Numerical comparison with ground truth. Mean depth error (in millimeter) for scenes wall, teddy, and head; The number in italic
is the mean disparity error.

scene: wall scene: teddy scene: head
Local Global Local Global Local Global

raw sensor 31.7 (2.0) 29.3 (1.9) 53.5 (2.7) 53.97 (2.7) 35.2 (1.75) 45.1 (2.4)
LUT corrected 49.7 (2.85) 23.0 (1.2) 27.0 (1.3) 28.8 (1.3) 40.6 (2.0) 42.1 (2.2)

stereo 41.2 (2.4) 33.3 (1.9) 36.8 (1.9) 22.0 (1.0) 35.5 (1.83) 28.5 (1.4)
fusion 28.6 (1.7) 19.0 (1.0) 21.6 (1.0) 17.1 (0.8) 28.7 (1.4) 24.0 (1.2)
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