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Abstract

Computational color constancy is the task of estimating
the true reflectances of visible surfaces in an image. In this
paper we follow a line of research that assumes uniform
illumination of a scene, and that the principal step in es-
timating reflectances is the estimation of the scene illumi-
nant. We review recent approaches to illuminant estimation,
firstly those based on formulae for normalisation of the re-
flectance distribution in an image — so-called grey-world
algorithms, and those based on a Bayesian formulation of
image formation.

In evaluating these previous approaches we introduce a
new tool in the form of a database of 568 high-quality, in-
door and outdoor images, accurately labelled with illumi-
nant, and preserved in their raw form, free of correction
or normalisation. This has enabled us to establish sev-
eral properties experimentally. Firstly automatic selection
of grey-world algorithms according to image properties is
not nearly so effective as has been thought. Secondly, it is
shown that Bayesian illuminant estimation is significantly
improved by the improved accuracy of priors for illuminant
and reflectance that are obtained from the new dataset.

1. Introduction
Color constancy is the tendency to perceive surface color

consistently, despite variations in ambient illumination [11].
Most generally, illumination variations occur both within
scenes, and from scene to scene, and theories such as the
“Retinex” [12] have been devised to explain color con-
stancy under such conditions. Here we address only the
problem of variation from scene to scene, making the com-
mon assumption that illumination within a given scene is
approximately uniform. Some theories seek to compute
invariant descriptors of color in order to facilitate such
tasks as object recognition and tracking e.g. [9]. Other
theories address the problem of estimating the illuminant
[8, 14, 3, 6, 1, 13, 16, 10, 15] and this allows constancy to
be achieved by recoloring any given image under a standard

Figure 1. Example results on an image from our new Color
Checker Database. The upper image is taken with a Canon 1D
in autowhitebalance mode. The lower image was corrected using
the algorithm proposed in this paper.

illuminant.
In this paper we are concerned with illuminant estima-

tion, and this has been tackled in several ways: by gamut
mapping, by reflectance normalisation, and by Bayesian es-
timation. Each of the approaches models image intensity as
a product of a uniform illuminant with a reflectance function
over the visible scene. It is clear that the problem is under-
constrained in principle, but this can be resolved by exploit-
ing assumptions about the variability of scene reflectance.
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In gamut mapping [8], the gamut of colors in a test image is
remapped to the visible gamut under a standard illuminant,
and that mapping constrains the illuminant. In normalisa-
tion approaches, the range of reflectances is normalised in
each color channel, and the adjustment required for normal-
isation yields an estimate of the illuminant. For example,
“scale-by-max” takes the maximum intensity in each color
channel, and maps the resulting tristimulus vector to white
reflectance [12]. This is a special case of the class of “grey-
world” algorithms which map the mean reflectance of a test
image, under the p-norm, to grey [7]. A variation of this
is the “grey-edge” algorithm [16] which instead maps the
mean contrast of edges to grey. Recently a statistical fusion
of grey-world algorithms has used a classifier to try to select
the optimal algorithm for a given image [10].

Bayesian approaches [14, 3, 13] model the variability of
reflectance and of illuminant as random variables, and then
estimate illuminant from the posterior distribution condi-
tioned on image intensity data. Earlier attempts to do this
did not outperform gamut mapping [1], but the use of non-
parametric statistical models for reflectance, exploiting the
insight of the “color by correlation” method [6] to capture
the tendency of nearby pixels to be correlated, finally pro-
duced results of leading quality [13]. It is interesting to note
that the grey-world algorithms are special cases of Bayesian
estimation, so it is to be expected that Bayesian models
should exist that outperform grey-world algorithms [13].

Earlier research on statistical approaches to illuminant
estimation used synthetic data, but more recently the “grey-
ball” set of real images [4], in which a grey sphere is in-
cluded in each scene to allow the true illuminant to be calcu-
lated, has been used in several studies [10, 15]. This dataset
was captured by video camera which has the advantage that
a large number (more than 11000) of images can be col-
lected. However there are some limitations. Firstly, nearby
images in the video tend to be correlated, so care must be
taken when sampling from the image-set to avoid correla-
tion. Secondly, the camera has gamma correction built in
and this makes precise photometric calibration more diffi-
cult. A further dataset [2] is available with labelled illu-
minant, but containing only 30 indoor scenes, under vari-
ous illuminants, which is useful for testing purposes but not
sufficiently diverse for training.

The paper reports on three new results. Firstly we have
introduced a new dataset1, captured using a high-quality
digital SLR camera in RAW format, free of color correc-
tion. A copy of the “Macbeth” color chart is included in
every scene and this allows us to compute accurate illumi-
nation labels for each image. A total of 568 images are
available, both indoor (246) and outdoor (322). Secondly
we examine the fusion algorithm [10] which has appeared

1available online together with the code at re-
search.microsoft.com/vision/cambridge

to give performance better than any individual greyworld
algorithm. Using the new database, rather than the grey-
ball database with its high degree of correlation among im-
ages, we have shown that the fused algorithm is after all
not significantly better than the best greyworld algorithm.
Thirdly, we have revisited the Bayesian approach of Rosen-
berg et al. [13] using the new data-set. Where Rosenberg et
al. [13] trained using illumination labels that were only esti-
mated (by scale-by-max), the new dataset provides accurate
illumination labels. This should make it possible to learn
more precise priors for illumination and reflectance. Tests
show that this leads to illuminant estimation for which the
improvement in accuracy is statistically significant, at least
for outdoor images. The newly trained Bayesian algorithm
is shown also to perform significantly better than the grey-
world algorithms, even when the greyworld algorithms are
enhanced by inclusion of an illumination prior.

2. A Bayesian Approach to Color Constancy
This section reviews the framework of [13]. Let y be

an image pixel with three color channels (yr, yg, yb) repre-
sented in a linear RGB space. The pixel value is assumed
to the reflection of a single light source off of a Lambertian
surface. The light has power (lr, lg, lb) ranging from zero
to infinity in the three color channels. The surface reflects
some proportion of this light. We call this proportion the re-
flectance (xr, xg, xb) and it ranges from zero to one in each
color channel. Thus the model for an observed pixel is

yc = lcxc, c = {r, g, b} (1)

or with L = diag(l) y = Lx. An image is given as
Y = (y(1), . . . ,y(N)) with unknown reflectances X =
(x(1), . . . ,x(N)). We assume that the illumination and the
reflectances are independent thus p(x, l) = p(x)p(l). The
illumination prior distribution p(l) can be estimated from
real world data and will be further described in Section 2.2.
The most challenging part is to derive a model p(x) for
the reflectances in an image. The approach taken in [13]
is to assume exchangeability of the reflectances. With this
assumption one only needs to define probabilities over re-
flectance histograms (n1, . . . , nK) in an image where nk
are the number of reflectances in the kth bin of the his-
togram

p(X) ∝ f(n1, . . . , nK) (2)

The model used in [13] is

f(n1, . . . , nK) =
∏
k

mνk

k (3)

νk = n
clip(nk)∑
s clip(ns)

(4)

clip(nk) =

{
0 if nk = 0
1 if nk > 0

(5)



with mk being the probability of a surface having a re-
flectance value in bin k. Practically bin clipping is very im-
portant. Consider an image with one domain surface which
has everywhere the same reflectance, e.g. a big red wall
(see Figure 2). Without clipping the red wall would con-
siderably skew the reflectance distribution, however, clip-
ping will balance that each surface in the image has more
equal distribution. Additionally we experimented with a
more moderate clipping function and replace νk in Equa-
tion (4) with

νk = n
tanh(λnk)∑
s tanh(λns)

, (6)

where the parameter λ controls the shape of the function.
For high values of λ almost all bin entries will be clipped
whereas low values of λ correspond to a softer clipping be-
haviour.

The likelihood of the observed data for an illuminant L
is

p(Y|L) =
∫
X

(∏
i

p(y(i)|L,x(i))

)
p(X)dX (7)

= |L−1|np(X = L−1Y) (8)

and the posterior for L is

p(L|Y) ∝ |L−1|np(X = L−1Y)p(L) (9)

To estimate the illuminant with minimum risk one simply
places a grid over all admissible illuminants and computes
the posterior mean in a single loop over all those illuminants
in the grid.

2.1. The Greyworld algorithms

The greyworld algorithms as well as the more general
class of grey-edge algorithms [16] are special instances of
the formalism presented above. Greyworld algorithms and
grey-edge algorithms are parameterized in the following
form (

N∑
i=1

∣∣∣∣∂nfi(x)
∂xn

∣∣∣∣p
) 1

p

= kl. (10)

The illuminant is estimated up to a scalar constant k which
is independent of its color. In this approach three param-
eters need to be set, the derivative order n, usually in the
range n = 0, 1, 2, its width σ, and the norm parameter
p. All Greyworld algorithms of this form can be seen to
be special instances of the Bayesian framework presented
above. Each algorithm corresponds to a reflectance distribu-
tion whose maximum likelihood estimate yields exactly the
same illuminant. For example the scale-by-max or white-
patch algorithm

lc = max
i
yc(i) (11)

corresponds to a constant p(X). Greyworld algorithms with
no derivative n = 0 correspond to a reflectance distribution
which is independent for each pixel and channel p(x) =∏
c∈{r,g,b} p(xc) of the following form

p(xc) =
αcpc

Γ (1/pc)
exp

(
− (αcxc)p

pckpc

)
. (12)

Here we give the most general model using a scale pa-
rameter αc and a parameter pc for each channel indepen-
dently. In the Greyworld algorithms the parameters are set
to αr = αg = αb = 1 and pr = pg = pb. The general
form of Equation (12) expands the set of Greyworld algo-
rithm but needs more parameters to be set. If one however
has an accurate model for the reflectances or for example
believes that there evidence for different scale parameters
αc it is possible to build an algorithm based on the more
general form.

One potential drawback of the grey-edge method is the
following. It computes yi − yi+1. If we were to operate in
log space, it would give: log(yi/yi+1) = log(x(i)/x(i +
1)). This means in log space the observation is indepen-
dent of the illuminant. In practice, images are converted
from raw camera data to an image format which involves a
gamma correction, which is similar in form to a log opera-
tion.

2.2. A Prior for the Greyworld algorithms

By noting that the class of Greyworld algorithms are
special cases of the Bayesian approach it is now possible
to equip them with a prior for the illuminant p(L). Us-
ing the reflectance distribution of the Greyworld algorithms
introduced in Section 2.1 together with an illuminant one
searches for a maximum of Equation 9. By introducing the
prior distribution the maximum posterior is no longer given
in closed form as it was the case with the Greyworld al-
gorithms. However all necessary statistics to solve for the
maximum l can be precomputed which makes the optimiza-
tion problem very efficient. Thus solving with gradient de-
scent incurs almost no extra computational time.

In this approach, it is necessary to balance the strength of
the reflectance distribution versus the illuminant prior. The
Greyworld reflectance distribution incorrectly assumes all
pixels are independent and consequently the likelihood (7)
vastly overcounts the amount of information in the image,
overwhelming the prior. In order for the prior to have an
effect, we must reduce the overcounting in the likelihood.
One approach is to use bin clipping as in [13]. Another
approach, complimentary to bin clipping, is to dampen the
likelihood with an exponent η, representing the fraction of
independent pixels in the image. This leads to the posterior:

p(L|Y) ∝ p(Y|L)ηp(L), (13)



The value of η was determined with cross validation in the
experiments from the set {10−4, 10−3, 10−2, 10−1}. Usu-
ally the value selected was η = 0.001. The prior was
obtained by fitting a Gaussian distribution to the training
split of the new Color Checker Database (results reported
as (CC)). We also tried to use a different set of illuminants,
namely the illuminants from the Greyball datasets (reported
as (GB)). However the inclusion of either prior is not found
to perform statistically significantly different to each other
or the Greyworld algorithm alone.

3. Training with known illuminant color
Training data is needed to estimate the parameters of

the reflectance prior p(X) and the illumination prior p(L).
In [13] the training data consisted of news photographs in
which the true illuminant and reflectances were completely
unknown. The illuminant was estimated by the scale-by-
max algorithm and the resulting reflectances were assumed
to be correct, potentially biasing the results.

In this paper, we remove this bias by training only on im-
ages with known illuminant color. Specifically, each image
has an object with known albedo placed in it. We assume
the reflectance of the object to be the albedo times the co-
sine of the angle of incident light: x = a cos(θ). This gives
the equation y = La cos(θ). With y and a known, we can
solve for L up to a scale factor. Since the angle of incidence
is unknown, we cannot recover the exact brightness of the
light source from this equation.

Now the problem is reduced to estimating the brightness
of the light source for each training image. We have ex-
perimented with two approaches. In the first approach, we
estimate L as above and then scale by w where

w = max
c

max
i

yc(i)
`c

(14)

This chooses the smallest possible brightness consistent
with the constraint that all reflectances in the image must
be less than 1.

In the second approach, we iteratively re-estimate p(X)
and w to make the reflectance distribution as compact as
possible. Starting from the estimate (14) for each train-
ing image, estimate the reflectances X = w−1L−1Y, and
then compute the overall training set frequencies mk from
these reflectances. Now revisit each training image and re-
estimate the brightness w so that the resulting reflectances
align with the frequencies mk. The cost function we mini-
mize is:

f(w) =
∑
k

(mk −m′k(w))2 (15)

where m′k(w) is the frequency of reflectance k in the train-
ing image after division by the brightness w.

3.1. Illumination Prior

We use a different illuminant prior than [13]. In [13],
the illuminant prior was chosen to be uniform over a subset
of illuminants. Instead we use the empirical distribution of
the training illuminants. That is, during test time we com-
pute the likelihood (7) for all training illuminants and then
take a likelihood-weighted average in chromaticity space.
This has the advantage of biasing the algorithm toward fre-
quently occurring illuminants.

3.2. Indoor/outdoor separation

The typical illuminants and reflectances in outdoor im-
ages are significantly different from indoor images. Rather
than lump the statistics together into one compromise distri-
bution, we can instead learn separate distributions for each
type and switch between them at test time. For example, if
we have an indoor/outdoor detector then we can apply only
the reflectance/illumination prior appropriate for that image
type.

4. Datasets for Color Constancy
To our knowledge there seem to be two different large-

scale datasets for the task of color constancy. The first
dataset [2] consists of 30 images of constructed scenes taken
under 11 different illuminant sources. For each illuminant
source the spectral distribution is known. Thus the dataset
is of high quality but does not represent the full variation of
typical scenes as outdoor scenes are missing. The second
dataset is introduced by Ciurea and Funt [4] which consists
of more than 11.000 frames from video, 6490 being outdoor
scenes and 4856 indoor scenes. A grey ball is mounted
onto the camera tripod and appears in each image in the
lower right corner, to be used as a color reference. This
dataset has however the shortcoming that the images have
been subjected to correction and are available in low resolu-
tion only. Additionally the frames are highly correlated due
to the continuous recording of video. Arguably around 600
uncorrelated images can be extracted from the full set.

Given these problems, we have collected a new dataset of
568 images, with a wide variety of indoor and outdoor shots
also including a number of portraits. The images were taken
with two high quality DSLR camera (Canon 5D and Canon
1D) with all settings in auto mode, and pictures were stored
in RAW format. In each image a MacBeth color checker
chart was placed as a reference. We took care to place the
chart so that it is illuminated by what we perceived as the
most dominant illuminant of the scene. Some example im-
ages are shown in Figure 2. The exact position of the chart
was hand labeled. The last row of the chart consists of six
patches of achromatic reflectance. Those patches were used
to calculate the illuminant of the scene omitting very dark
and too bright pixels.



Figure 2. Example images from the Color Checker database. A
MacBeth Color Checker chart is placed in the image so that it is
illuminated by the most dominant illuminantion source.

The images are available in RAW format and all white-
balance multipliers of the camera are stored alongside.
Therefore it is possible to convert the images according to
any of the different white balancing modes the cameras pro-
vide. For the experiments we used the Canon Digital Photo
Professional program to convert the images into tiffs and
rescaled them to 20% of their original size (813 × 541 and
874×583). We corrected for chromatic aberration and used
the auto whitebalance setting of the Canon camera. We also
checked with the program dcraw [5] and found that we ob-
tain almost identical results.

5. Experiments
5.1. Error metrics for Color Constancy

There are several ways to measure the performance of
color constancy algorithms, where ideally one is interested
in a perceptual measure, unless one aims for color correc-
tion as a preprocessing step for feature extraction. Two
metrics are used frequently, angular error and root mean
squared error (RMSE). These two measures are indepen-
dent of the brightness of the illuminant and simply compare
colors. Angular error is the angle between the illuminant es-
timate l = (lr, lg, lb) and the ground truth illuminant vector
for the image. RMSE is computed between the chromatic-
ities of the illuminant (lr/(lr + lg + lb), lg/(lr + lg + lb))
and the ground truth illuminant.

For each algorithm we report three statistics of the er-
ror distribution. The mean RMSE of the predicted illu-
minant, the mean RMSE of the best 75% of the images
(“Top75”) and the mean RMSE of the worst 25% images
(“Worst25”). For all algorithms we found the error distri-
bution to be heavily skewed and thus use three measures to
better represent its statistic. The “Worst25” measure is of
particular interest for color correction applications, since it

is the grossest errors which are least acceptable to the view-
ers of photographs.

5.2. Results on the fusion approach

Our first experiment with the new dataset re-examines
the fusion approach proposed in [10]. The idea is as follows.
From each training image a number of feature descriptors
are computed. The set of all feature descriptors for all train-
ing images are subsequently clustered using K-means. For
each cluster center one computes the performance of a set
of proposal algorithms for all images whose descriptors fall
into its Voronoi cell. The best performing algorithm is as-
signed to the cluster. During test phase one computes the
features of the test image and searches for the closest clus-
ter center. The illuminant of the test image is then estimated
with the algorithm which is assigned to this cluster.

We follow exactly the protocol reported in [10]. Two
derivative filters are applied to each color channel of each
image, one in the horizontal and one in the vertical direc-
tion. A Weibull distribution is fitted to the statistics of these
6 images, and each distribution has two parameters, giving a
12-dimensional feature descriptor. We used K-means with
100 restarts and set the number of cluster centersK alterna-
tively to be 5, 15 or equal to the number of training images.
We used the very same 5 algorithms as in[10] ((n, p, σ) =
{(0, 1, 0), (0,∞, 0), (0, 13, 2), (1, 1, 6), (2, 1, 5)} as pro-
posal algorithms; however the conclusions should not de-
pend too precisely on this choice. Each experiment is re-
peated 100 times and the RMSE and the we report the aver-
aged RMSE and standard error.

The conclusions in [10] are based on the validation error
from threefold cross validation, using the entire Greyball
dataset. Since this dataset is highly correlated, the results
reported in [10] are overly optimistic. The feature descrip-
tors of consecutive frames of the video stream are likely to
be very close and, given the random sampling schemes used
for training and test, could lead to severe overfitting. That
is indeed what happens, as can be seen in Table 1. The col-
umn “GB all” shows results using the whole dataset, and
with sufficiently many cluster centers, the selection algo-
rithm appears to beat the best fixed algorithm. (This is a sin-
gle algorithm, not selected according to features of the data,
but simply chosen as the algorithm that performs best on av-
erage over the training set.) However, to test the approach
fairly, one has to restrict the dataset to a subset of inde-
pendent images, so we take 500 images, evenly distributed
throughout the videos. Using this “GB 500” dataset, the
performance of the fusion approach drops severely (bot-
tom of second column of the table), and now performs no
better than the best fixed algorithm. To further investigate
if the Weibull parameters are discriminative for the selec-
tion of different algorithms we plotted the parameters of the
Weibull distribution of the first derivative image in Figure



GB all GB 500 CC
performance bound 23±0.2 23±0.2 41±1.5
best fixed algorithm 45±0.3 46±1.4 60±2.3
K = 5 43±0.3 44±1.5 57±2.0
K = 15 42±0.3 44±1.5 57±2.0
K = #training images 35±0.3 44±1.6 59±2.1

Table 1. Results of the fusion approach proposed in [10]. RMSE
validation error with standard error (times 1000) is reported for
threefold cross validation using the entire Greyball dataset (GB
all), only 500 images taken at distant time steps (GB 500) and
on the database introduced in this paper (CC). All numbers are
averaged over 100 independent runs. The numbers in the “GB
all” column are obtained by using the same experimental protocol
as [10] and show clear evidence of overfitting — see text.

3. For each image we compute the best performing algo-
rithm from the proposal which is coded with the markers in
the Figure. The same markers correspond to the same al-
gorithms. If the features are discriminative one would see
clusters of the same algorithms. Obviously this is not the
case.2

Now the fusion experiment is repeated with the new
Color Checker database, in which images are shot indepen-
dently, and illuminants are accurately labelled. The last col-
umn of Table 1 shows again that no benefit is gained from
algorithm selection, since the improvement is not statisti-
cally significant.

In other words, no benefit at all is obtained from select-
ing an algorithm according to image features.

Note that a perfect selection method could, in principle,
obtain a substantial performance gain (top row of Table 1,
“performance bound”). However, no beneficial selection
procedure has been obtained as yet. In seeking such a pro-
cedure, we tried features based on RGB histograms and rg
chromaticity information to guide the selection but this did
not improve the results using theK-means selection scheme
(results not reported here). We also tried using the entire set
of Weibull and other features to choose between the two
best performing Greyworld algorithms with a discrimina-
tive approach using an SVM, but the results were never sig-
nificantly better than the best fixed algorithm.

5.3. Results of Bayesian estimation

In this section we use the new Color Checker dataset to
revisit the Bayesian estimation algorithm of Rosenberg et
al. [13] to see whether its claimed superiority over Grey-
world algorithms persists when accurate illumination labels
and a large uncorrelated set of data are available.

2We also checked with more informative projections obtained by Lin-
ear Discriminant Analysis but observe the same behaviour. This plot is not
to be confused with the ones presented in [10]. Those plots are color coded
by first clustering the data and subsequently assigning an algorithm to each
Voronoi cell.

−6 −5 −4 −3 −2 −1
−2.5

−2

−1.5

−1

−0.5

0

0.5

log γ

lo
g

 β

Figure 3. The two parameters of a Weibull distribution which are
used in the fusion algorithm. Each different marker type corre-
sponds to a Greyworld algorithm. If the Weibull parameters are
informative one would see clusters of the same markers.

Before considering experiments with Greyworld algo-
rithms, we first provided two baseline algorithms as sanity
checks. The first is the built in color-correction algorithm
for the Canon camera (“AutoWB”). The second is the triv-
ial algorithm which simply returns a constant standard illu-
minant independent of the input image, this standard being
computed as a mean over the training set illuminants. Two
separate means are computed, one for indoor and one for
outdoor images. We term this trivial algorithm “Mean Pre-
diction”. Since both also depend on the transformation used
to convert the RAW images to RGB we tried both dcraw and
the Canon converter shipped with the camera and found that
both qualitatively give the same results.

Now Greyworld algorithms for comparison with
Bayesian methods are chosen as follows. We created a pro-
posal set of Greyworld algorithms by varying the parame-
ters n = 0, 1, 2, p = 1, 5, 20 but fixed the derivative width
for the GreyEdge algorithms to be 1. For outdoor images,
we select the single Greyworld algorithm which best esti-
mates illuminants for the training data, on average. For in-
door images the algorithm selected is n = 0, p = 1 and for
outdoor scenes the one with n = 2, p = 5. In addition we
tested versions of the Greyworld algorithms with the addi-
tion of learned illuminant priors as in Section 2.2. For all
experiments we perform three fold cross validation and re-
port the validation error in Figure 4 (with further details in
Table 2). All experiments are run separately on indoor and
on outdoor test images.

For the Bayesian algorithm the training set is used to
estimate the reflectance distribution as in Section 3. The
ground truth set of training illuminants is used as a point-
set representation of the prior distribution for illumination,
separately over indoor and outdoor scenes. The results of
these experiments are reported in Figure 4 as “Bayes (GT)”.
For comparison we applied the Bayesian algorithm using



the scale-by-max algorithm (SBM) proxy for illumination
as in [13] and results are reported as “Bayes (SBM proxy)”
in the figure. As a further experiment we obscured, in the
training set, the indoor/outdoor image labels so that a sin-
gle reflectance distribution was learned on both indoor and
outdoor images jointly, and also used a joint indoor/outdoor
illumination prior. Results are reported under the heading
“Bayes (no indoor/outdoor)”.

In addition, two variations on the Bayesian estimation
were investigated that, it was thought, might improve the
quality of estimates. First we replaced the clipping function
(4) with a soft clipping function given in Equation (6), in
order to improve the robustness of likelihood computation.
We tried parameter values λ = 0.001, 0.01, 0.1, 1, 2, 5 and
again report three fold cross validation results. For all folds
on indoor images the best λ was found to be 0.001 which
corresponds to almost no clipping. Outdoor images exhibit
the opposite behaviour with best performance with high val-
ues of λ = 1, 2, 5. Results are presented “Bayes (tanh)”.
Next we experimented with re-estimating the brightness of
the illuminant in order to sharpen the estimated reflectance
distribution. This was done as described in Section 3 by
minimizing Eq.(15). The results are reported as “Bayes (re-
estimate)”.

The following conclusions can be drawn from the experi-
mental results in Figure 4, paying due attention to error bars
and the statistical significance of claims.

1. In all cases the Bayes GT algorithm outperforms the
baseline algorithms, the Canon auto white-balance
(AutoWB) and trivial algorithm that returns mean il-
lumination whatever the input image.

2. For outdoor images, Bayesian estimation with the new
training data (Bayes GT) performs significantly better
than Greyworld, even when Greyworld has the benefit
of the illuminant prior.

3. Also on outdoor images, Bayes GT is significantly bet-
ter than the Bayesian algorithm trained only with the
proxy for illumination (SBM proxy).

4. On indoor images, the new Bayes GT algorithm with
soft clipping performs significantly better than Bayes
with only proxy illuminant labels, but does not signifi-
cantly outperform Greyworld.

5. Two variations on the Bayes GT algorithm are tested
— iterative re-estimation of illuminant to determine
its magnitude and softened clipping in the evaluation
of likelihoods — but neither are found to affect perfor-
mance to a statistically significant degree.

6. Obscuring indoor/outdoor labels in the training set
may have reduced performance (Bayes (no in-
door/outdoor) relative to Bayes GT) but the effect is

not statistically significant. However even with the ob-
scured labels, the Bayesian estimator performs signif-
icantly better than the Greyworld algorithms on out-
door images, even when the Greyworld algorithm has
the benefit of separate training on indoor and outdoor
images.

6. Discussion and future work
The experiments reported have characterised thoroughly

the performance of Bayesian estimation of illumination,
relative to Greyworld algorithms. This study is particu-
larly authoritative because, for the first time, image data
is uncorrected and has accurate illumination labels, thanks
to our new Color Checker dataset. We have confirmed
that Bayesian estimation significantly outperforms Grey-
world algorithms. We have demonstrated that accurate il-
lumination labels significantly enhance the performance of
Bayesian illumination estimation. In all cases, improve-
ments over the manufacturer’s built-in correction algorithm
is substantial. In the future we hope to extend the Bayesian
framework further by exploiting object detection.
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