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Abstract
An image acquired through a glass window is a super-

position of two sources: a scene behind the window, and a
reflection of a scene in front of the window. Light rays inci-
dent on the window are reflected back and forth inside the
glass. Such internal reflections affect the radiance of both
sources: a spatial effect is created of dimmed and shifted
replications. Our work generalizes the treatment of trans-
parent scenes to deal with this effect. First, we present a
physical model of the image formation. It turns out that
each of the transmitted and reflected scenes undergoes a
convolution with a particular point spread function (PSF),
composed of distinct delta functions. Therefore, scene re-
covery involves inversion of these PSFs. We analyze the
fundamental limitations faced by any attempt to solve this
inverse problem. We then present a solution approach. The
approach is based on deconvolution by linear filtering and
simple optimization. The input to the algorithm is a pair
of frames, taken through a polarizing filter. The method is
demonstrated experimentally.

1. Introduction
Transparent scenes pose a challenge to computer vi-

sion. They exist in setups having a semireflecting win-
dow, which superimposes the scene behind the window
to a reflected scene. This creates confusing images. A
range of methods were developed to attack this problem,
based on motion [4, 9, 18, 25, 27] stereo [22], polariza-
tion [11, 12, 20, 21], focus [19, 23], illumination modula-
tion [1] and image priors [14]. They successfully demon-
strated separation of the scenes (layers). However, the prior
studies ignored a spatial effect of internal reflections in such
scenes, which we describe next. Therefore, the prior meth-
ods are valid only in the limit where this effect is negligible.

Fig. 1 demonstrates this effect in a real photograph taken
via a window. In addition to the superimposed scenes (toys
of a star vs. a tree in the sun), a shifted and weaker replica
of the sun and tree are clearly seen. This is caused by inter-
nal reflections that take place inside a window. In addition
to that clear replica, there is also a replica of the other scene
(star). Additional higher order replicas exist for both ob-

Figure 1. A real-world frame S⊥ acquired through a transparent
window. In addition to the superposition of two scenes, notice the
secondary reflections (replications), e.g., of the sun and tree. For
clarity, please view the color images on the computer monitor.

jects, but are often too dim to see. Overall, the acquired pho-
tograph contains a superposition not only of the two origi-
nal scenes, but also of those same scenes displaced to vari-
ous distances and in different powers. The prior studies on
transparent scenes did not account for this effect. There, the
model and algorithms focused on the limit case, in which
the displacement between the replicas was negligible. This
is not a valid situation in general.

In this work we explicitly model this effect and deal with
it, hence generalizing the study of transparent scenes. Op-
tical reflections create visual spatial displacements. This is
analogous to temporal displacement created by reflections
of temporal signals of sound and radio-frequency. In anal-
ogy to the displaced replica in our study, a sound reflection
creates a delayed echo. In the field of acoustics [3], this ef-
fect is generally referred to as reverberations. Hence, we
use the term visual reverberations to describe the effect we
deal with. A similar echo effect in radio frequency is af-
fecting received television signals, creating shifted replicas.
There, cancellation of the effect is termed deghosting [8].

We model the effect by physics-based expressions that
account for properties of optical reflections, including po-
larization. Then, the paper translates the model to the
language of signal-processing. It formulates the effect as
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Figure 2. Primary and secondary reflections for Lt [solid] and
Lr [dotted]. The distance between the emerging rays is d′.

convolution with point spread functions (PSFs), which are
given in closed form. Transparent layers are thus a mix-
ture of convolved scenes. The model used by prior studies
is a special (limit) case. The fundamental limitations of this
recovery problem are analyzed. Then, we present a physics-
based method for inverting the image formation model. It
recovers the separate scenes, while overcoming the spatial
effect of visual reverberations. The parameters of the prob-
lem are derived from the raw images. The method is based
on frames taken with a polarizing filter.1 It is demonstrated
in various examples, including real experiments.

2. Image Formation Model
A camera observes a scene via a semireflecting window.

The object behind the window is transmitted through the
window, thus variables associated with it are denoted by
‘t’. In addition, there is an object on the camera-side of
the window. It is reflected, thus variables associated with
it are denoted by ‘r’. Specifically, Lt is the radiance2 of
the object behind the window, as measured when there is no
window. Similarly, Lr is the radiance of the reflected object,
as measured if the window was replaced by a perfect mirror.

Consider Fig. 2. A light ray from the object Lr reaches
the window. There, it undergoes a series of reflections and
refractions. The internal reflections inside the window cre-
ate a series of rays emerging from the window. Since the
window is flat, all the rays are in the same plane, termed the
plane of incidence (POI). The distance between successive
emerging rays (secondary reflections) is d′. The power of
successive secondary reflections rapidly tends to zero. A
similar effect occurs with a ray from the object Lt, as illus-

1Polarization has been used in studies of various computer vision is-
sues [2, 6, 7, 16, 17, 24, 26, 28, 29].

2There is a constant proportion between the object radiance and the
image irradiance. The proportion coefficient does not depend on the scenes
or on the parameters of the problem. This coefficient depends only on the
camera, and thus we disregard it in the context of our problem.

trated in Fig. 2. Prior studies neglected the shift d′, hence
spatial effects of secondary reflections were ignored. This
assumption was valid as long as the window was thin and
viewed in low spatial resolution, but it is not true in general.

Reflection is sensitive to polarization.3 The polarization
component perpendicular to the POI is denoted by ⊥, while
‖ denotes the component parallel to the POI. The reflectance
coefficients [21] from each interface of the window are

R⊥ =
sin2(φ − φg)
sin2(φ + φg)

, R‖ =
tan2(φ − φg)
tan2(φ + φg)

, (1)

where φ is the angle of incidence of light on the window
(relative to the surface normal). Here φg is the angle of the
refracted ray inside the glass. This angle is derived using
Snell’s law sin(φg) = sin(φ)/n, where n is the index of
refraction of the window (for typical glass, n ≈ 1.5). The
transmittance coefficients [21] of light passing any one of
the window interfaces are

T⊥ = 1 − R⊥ , T‖ = 1 − R‖. (2)

The image coordinates are (x,y), where x is the horizontal
coordinate. Here the horizontal direction in the image is
defined as the projection of the POI on the detector plane.

It is clear from Fig. 2 that the secondary reflections cre-
ate a spatial effect. Each object point is sensed simultane-
ously in different pixels, as its energy is dissipated among
the different reflection orders. Hence the transmitted scene
undergoes a convolution with a particular PSF: as seen in
Fig. 2, the PSF of the transmitted scene is

h
‖
t = T 2

‖ [δ(x) + R2
‖δ(x − d) + R4

‖δ(x − 2d) . . .] , (3)

when measuring only the polarization component parallel
to the POI, while R‖ and T‖ are given in Eqs. (1,2). Here
d indicates the distance between successive visual echoes
of Lt, as received by the camera (in pixels). It is given by
d = αd′, where d′ is the physical distance (in centimeters)
between secondary reflections, depicted in Fig. 2, and α is
the camera magnification.

Note that in this model, each object point corresponds
to a parallel set of rays, which in turn correspond to a set
equally interspaced pixels. This is consistent with ortho-
graphic projection,4 which we use for simplicity. Similarly,
the PSF of the reflected scene is

h‖
r = R‖[δ(x) + T 2

‖ δ(x− d) + T 2
‖R2

‖δ(x− 2d) . . .] , (4)

when measuring only the parallel polarization component.
The perpendicular components also undergo convolutions.

3Ref. [15] analyzed the polarization in internal reflections, in order to
recover object shapes, including a flat slab.

4In perspective projection, chief rays are not parallel, but correspond to
a slightly fanning beam emanating from the object point. In perspective,
d and the PSFs are not spatially invariant. The consequences of the non-
orthographic nature of the camera are discussed in [10].



Figure 3. Simulated objects. [Left] Lt. [Right] Lr.

Figure 4. A simulated acquired frame S⊥. It exhibits both sec-
ondary reflections and superposition of a reflected scene with a
transmitted scene. The separate scenes are shown in Fig. 3.

The corresponding PSFs h⊥
r and h⊥

t are derived analo-
gously, by using R⊥ and T⊥ instead of R‖, T‖ in Eqs. (3,4).

The acquired image intensity is a linear superposition of
the reflected and transmitted scenes. In Refs. [11, 21], this
superposition was pointwise, since in the imaging condi-
tions there, spatial effects were not seen. In contrast, here
the superposition is of convolved scenes. Specifically, let us
mount a polarizing filter on the camera, and orient the filter
to pass only the parallel polarization component. Assum-
ing as in Refs. [5, 11, 12, 21] that the objects {Lt, Lr} are
largely depolarized, the acquired frame is

S‖ = Lt � h
‖
t + Lr � h‖

r , (5)

where � denotes convolution. Similarly, orienting the polar-
izer perpendicular to the POI yields

S⊥ = Lt � h⊥
t + Lr � h⊥

r . (6)

We can illustrate this using a simulation. Fig. 3 repre-
sents the original objects Lt and Lr. Let φ = 70o in a glass
window and d = 30 pixels. Based on these values, the re-
flectance, transmittance and PSFs are given in closed form
by the expressions above. Hence the simulated acquired im-
ages are given by Eqs. (5,6). Specifically, Fig. 4 shows S⊥.

3. Frequency Analysis of Conditioning
Sec. 2 showed that Lt and Lr are convolved by PSFs in

the raw frames S‖ and S⊥. Therefore, in order to restore Lt
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Figure 5. Frequency response of hr for d = 30 pixels and
φ = 27o. The frequency is normalized by the Nyquist frequency.

and Lr we need to perform deconvolution. Let us examine
the frequency response of these PSFs. The PSF h

‖
t is given

in Eq. (3). Plotting its frequency response reveals that the
response is rather flat, and typically ∼ 1. The same applies
to h⊥

t . Hence inverse-filtering of these PSFs is expected to
be stable, making the recovery of Lt well-conditioned. The
situation is different for Lr. Its PSF h

‖
r is given in Eq. (4).

The corresponding frequency response is plotted in Fig. 5.
This response has values close to 0. Thus, some frequen-
cies of the original Lr are greatly attenuated. Consequently,
recovery of Lr is ill-conditioned around such frequencies.

4. Recovery with Deconvolution
In this section we recover the source objects {Lt, Lr}.

We show that this can be done using linear filters that are de-
rived in closed-form, and invert the image formation model.
Then, we point to a problem of simplistic inversion. Finally,
we describe how recovery was performed by us in practice.

4.1. Linear Filtering
For the moment, assume that the values of the parameters

d and φ are known. Their estimation is described in Sec. 5.
Based on d and φ, the coefficients R⊥, R‖, T⊥ and T‖ are

derived, thus the PSFs h
‖
t , h

‖
r , h⊥

t , h⊥
r are known (Sec. 2).

First, we eliminate Lt. It is easy to show that the filters

h̃
‖
t (x) =

1
T 2
‖

[δ(x) − R2
‖δ(x − d)], (7)

h̃⊥
t (x) =

1
T 2
⊥

[δ(x) − R2
⊥δ(x − d)] (8)

satisfy

h̃⊥
t � h⊥

t = δ(x) , h̃
‖
t � h

‖
t = δ(x) . (9)

Let us convolve Eq. (5) with Eq. (7). Then based on Eq. (9)

S‖ � h̃
‖
t = Lt + Lr � h‖

r � h̃
‖
t . (10)

Similarly, convolving Eq. (6) with Eq. (8) yields

S⊥ � h̃⊥
t = Lt + Lr � h⊥

r � h̃⊥
t . (11)



Subtracting Eq. (10) from Eq. (11) yields

U = Lr � p, (12)

where
U = S⊥ � h̃⊥

t − S‖ � h̃
‖
t , (13)

and
p ≡ h⊥

r � h̃⊥
t − h‖

r � h̃
‖
t . (14)

Eqs. (12) and (13) eliminate Lt, thus isolating Lr. How-
ever, Lr is still not recovered, since it is convolved with p in
Eq. (12). Hence, we need to deconvolve the effect of p. In
other words, we need the function v that satisfies

v � p = δ(x). (15)

This function has a simple analytical form, directly in the
spatial domain. We detail it in Sec. 4.2. Applying v on
Eq. (12) yields an estimate

L̂r = U � v , (16)

based on Eq. (15). Plugging Eq. (13) in Eq. (16) yields

L̂r = S⊥ � q⊥r + S‖ � q‖r , (17)

where
q⊥r = h̃⊥

t � v , q‖r = −h̃
‖
t � v. (18)

We now solve for Lt. Using Eqs. (13,16) in (11) yields

L̂t = S⊥ � q⊥t + S‖ � q
‖
t , (19)

where

q⊥t = h̃⊥
t −h̃⊥

t �v�h⊥
r �h̃⊥

t , q
‖
t = h̃

‖
t �v�h⊥

r �h̃⊥
t . (20)

Eqs. (17) and (19) are the basic recovery formulae. They
show that {Lt, Lr} can be recovered by operation of linear
filters given in closed form directly in the spatial domain.
These filters are given by Eqs. (7,8,18,20), and rely on v
that is given in closed form in Sec. 4.2. To see the form of
these filters, Fig. 6 plots q⊥t corresponding to φ = 27o and
d = 5 pixels. The filters q

‖
t , q⊥r , q

‖
r have a similar form.

4.2. The Filters p and v
We now derive the operator v. Define the coefficients

a ≡
(

R⊥
T 2
⊥

− R‖
T 2
‖

)
, b ≡

(
R⊥ − 2R2

⊥
T 2
⊥

−
R‖ − 2R2

‖
T 2
‖

)
.

(21)
Using Eq. (21) in Eqs. (3,4,7,8) and (14), it can be shown
that p has a simple form

p(x) ≡ aδ(x) + bδ(x − d). (22)

From Eqs. (15) and (22), v should satisfy

v � [aδ(x) + bδ(x − d)] = δ(x). (23)
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Figure 6. The filter q⊥t defined in Eq. (20). Here φ = 27o,
d = 5 pixels. The effective width of q⊥t is ρ⊥

t d, based on Eq. (28).

To derive v, we use Fourier analysis. Following Eq. (22),
the frequency response of p is

P (ω) = a + be−jωd. (24)

where ω is the spatial frequency. From Eqs. (15,23), v is the
inverse filter of p, hence the frequency response of v is

V (ω) =
1

P (ω)
=

1
a
· 1
1 − (−b

a

)
e−jωd

. (25)

We note that b and a defined in Eq. (21) satisfy |b/a| < 1.
Hence, the left hand side of (25) is a geometric series, i.e.,

V (ω) =
1
a

∑∞
m=0

(−b

a

)m

e−jωmd. (26)

The inverse Fourier transform of Eq. (26) is the sum

v(x) =
1
a

[
δ(x) +

∑∞
m=1

(−b

a

)m

δ(x − md)
]

. (27)

This result can be verified in the spatial domain: convolving
Eq. (27) with p (Eq. 22), the result can be shown to yield a
δ function, as required by Eqs. (15,23).

4.3. Problems Caused by Boundary Conditions
The recovery problem seriously suffers from unknown

boundary conditions. Actually, this problem is so serious,
that sometimes it is preferable not to attempt inversion of
the reverberations, unless the effect of unknown boundary
conditions is addressed. Eqs. (5) and (6) are valid for im-
ages that have infinite support in the x-axis. In practice, the
raw frames have a finite support x ∈ [0, W ]. However, the

convolution kernels q⊥t , q
‖
t , q⊥r and q

‖
r require values outside

the boundaries of the raw frames.
Without loss of generality, let d > 0. Then, the support

of h
‖
t , h

‖
r , h⊥

t , h⊥
r (Eqs. 3,4) resides only in x ≥ 0, i.e., these

are causal filters. Consequently, only the unknown values in
x < 0 cause a problem of boundary conditions. Unknown
values at x > W are not problematic.
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Figure 7. The effective widths ρ⊥
t , ρ

‖
t , ρ

⊥
r , ρ

‖
r as multiples of d.

The plot corresponds to a glass window (n = 1.5). For most an-
gles φ, the values of ρ⊥

r and ρ
‖
r are significantly larger than ρ⊥

t , ρ
‖
t .

The filters q⊥t , q
‖
t , q⊥r and q

‖
r are causal and have an infi-

nite support. Their infinite support stems from the presence
of v in them (Eq. 18,20), as seen by Eq. (27). However,
practically, these filters decay fast, and we may define their
effective width. The effective width of q⊥t is defined by

ρ⊥t =
1
d

√√√√√
∑
x

x2q⊥2
t (x)∑

x
q⊥2
t (x)

, (28)

as multiples of d. Similarly, the effective widths ρ
‖
t , ρ

⊥
r and

ρ
‖
r corresponding respectively to q

‖
t , q⊥r and q

‖
r can be calcu-

lated. Fig. 7 plots these values as a function of φ. For most
angles φ, the values ρ⊥r and ρ

‖
r are significantly larger than

ρ⊥t and ρ
‖
t . Recall that L̂r is affected by ρ⊥r and ρ

‖
r (Eq. 17),

while L̂t is affected by ρ⊥t and ρ
‖
t (Eq. 19). In other words,

L̂r is affected by filters with effectively much longer ‘tails’
than L̂t. Thus, problems associated with boundary condi-
tions are generally expected to be more severe in L̂r.

Fig. 8 shows this severe effect, when reconstruction is
based simply on zero-padding. In this simulation, Lt = 0,
thus the only task of the recovery is elimination of the sec-
ondary reflections of Lr. In some cases, the created strips
may be more disturbing (subjectively and objectively) than
the original reverberations, undermining the recovery.

4.4. Solution in Practice
We now describe how we performed the recovery in

practice. First, to significantly reduce problems associated
with boundary conditions, we use mirror-padding at x ≤ 0.
The resulting images still have artifacts, but they decay with
x. Then, reconstruction of Lt is done using Eq. (19). We
found that practically L̂t tolerates the unknown boundary
conditions (provided that mirror padding is used). More-
over, as discussed in Sec. 3, the PSFs that act upon Lt are
well conditioned. For this reason, the fast and simple linear
filtering in Eq. (19) proved sufficient.

Figure 8. Inversion using zero padding yields sharp stripe artifacts.

The reconstruction of Lr is more difficult. It suffers more
from unknown boundary conditions, due to the larger ef-
fective widths of q⊥r and q

‖
r . Moreover, some frequency

components of L̂r are fundamentally ill conditioned, as dis-
cussed in Sec. 3. Therefore, we do not calculate L̂r by the
simplistic linear filtering described in Sec. 4.1. Rather, we
pursue deconvolution of p as a solution to a regularized op-
timization problem. Based on Eq. (13), we solve

L̂r = arg min
Lr

(
‖U − Lr � p‖2 + λ

∥∥∇2Lr

∥∥2
)

. (29)

In Eq. (29), the term ‖U − Lr � p‖ is a fitting term. It
is minimal when the data fits the model well. The term
λ
∥∥∇2Lr

∥∥ introduces regularization. The parameter λ sets
the relative weight between these two terms. Here regular-
ization leads to a smooth image L̂r. However, other regu-
larization terms from the literature [13] can be used.

The computational complexity of the filtering operation
is O(# of image pixels). The regularized solution is some-
what slower, since Eq. (29) is solved iteratively. Each itera-
tion is O(# of image pixels), and we observed that conver-
gence effectively occurred within ≈ 25 normalized steepest
descent iterations.

5. Estimation of Parameters
Up to this point, the parameters of the problem (d and

φ) were assumed to be known. Their estimation is now de-
tailed. The incidence angle φ at the window is independent
of the wavelength. The displacement d is also practically
insensitive to the wavelength. Hence, these parameters are
estimated based on a grayscale (panchromatic) representa-
tion of the raw images, discarding the color.
Determining φ and the x axis: Estimation of φ is done
in the same manner as in [21]. Furthermore, Ref. [21] de-
scribes how the axis corresponding to the POI is determined
in the image plane, based on the polarization.5 In our work,
this determines the x axis, along which the displacement d
of the visual reverberations occurs, as written in Sec. 2.
Determining d: A challenge raised by this study is the esti-
mation of d. First, we estimate |d|. Then, sign(d) is found.

5This is determined up to a 90o ambiguity.
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Figure 9. Aτ in a simulation corresponding to images as appear in
Figs. 3,4. The peaks at d̃ = 30 are marked by small red circles.

The reverberations in Figs. 1 and 4 create displaced replica-
tions of the image content. Apparently, this should create a
secondary peak of the autocorrelation of a raw frame (S⊥),
as a function of a hypothesized displacement d̃. In prac-
tice, often such a peak at |d| does not appear. Nevertheless,
the anticipated peak at |d| appears when autocorrelation is
performed over the horizontal derivative of a raw frame,
e.g., |∂xS⊥(x, y)|. There is a still a problem in practice:
local maxima of the autocorrelation function appear in ad-
ditional values of d̃ 
= |d|. These incorrect maxima change
if ∂xS⊥(x, y) is blurred (by a Gaussian filter of width τ ).
On the other hand, the correct peak at d̃ = |d| is consistent
despite such blurring action.

This is seen, for instance, in Fig. 9. This plot is based
on a simulated frame, similar to Fig. 4. The autocorrelation
Aτ function is parameterized by the Gaussian width τ . The
consistency of the correct peak at |d| despite the change in τ
is revealed by a simple voting process. This yields the final
estimate d̂. For example, in Fig. 9, this correctly yielded
d̂ = |d| (which was 30 pixels in this case).

The Sign of d

An autocorrelation function is symmetric around the ori-
gin. Hence, it gives no indication whether d > 0 or
d < 0. To determine sign(d), a different criterion is devel-
oped, based on the following observation. Consider a sin-
gle horizontal line profile of the images at ỹ. There, let the
source images {Lr(x, ỹ), Lt(x, ỹ)} be flat, except for a sin-
gle edgel at x̃ in one of the sources. This edge appears also
in the raw frames, e.g. in S⊥(x̃, ỹ), with an absolute deriv-
ative |∂xS⊥(x̃, ỹ)|. Due to internal reflections, this edge
reverberates and appears also in (x̃ + d, ỹ), (x̃ + 2d, ỹ) etc.
However, the strength of the edge weakens in each order, as
the PSFs h

‖
t , h

‖
r , h⊥

t , h⊥
r . Hence,

|∂xS⊥(x̃, ỹ)| > |∂xS⊥(x̃ + |d̂|, ỹ)| > |∂xS⊥(x̃ + 2|d̂|, ỹ)|.
(30)

if 0 < d and d̂ = d.
Consider a typical image, having a typical content and

random noise, but no reverberations. Take a triplet of pixels

Figure 10. Simulated reconstructions corresponding to Fig. 3.
[Left] L̂r. [Right] L̂t.

{(x̃, ỹ), (x̃ + |d̂|, ỹ), (x̃ + 2|d̂|, ỹ)}. Eq. (30) should hold in
some positions (x̃, ỹ), and be violated in other places in this
image. Define C+ as the set of all pixels (x̃, ỹ) in the image
that satisfy Eq. (30), for a specific d̂. Similarly, define C−
as the set of all pixels (x̃, ỹ) in the image that satisfy

|∂xS⊥(x̃, ỹ)| < |∂xS⊥(x̃ + |d̂|, ỹ)| < |∂xS⊥(x̃ + 2|d̂|, ỹ)|.
(31)

On average, in a typical image, Eq. (30) is expected to hold
in a similar number of possible triplets as the number sat-
isfying Eq. (31). For a random image having N pixels,
|C+| = |C−| = N/4. However, the presence of reverber-
ations creates a bias in this randomness. For instance, pix-
els satisfying Eq. (31) comply with a reverberation model
in which d < 0 (orders decay leftwards). Hence, we set

sign(d̂) = sign (|C+| − |C−|) . (32)

We applied this criterion successfully in various simulations
and in the experiments. The bias of |C+| vs. |C−| was ≈ 8%.

6. Validation
6.1. Simulation Example

The reflectance (Eq. 1) is typically much smaller than the
transmittance (Eq. 2). Thus, to get a noticeable mixup of
the two layers in the acquired images S⊥ and S‖, Lr should
typically be very bright. We used Lt and Lr as in Fig. 3,
where Lt(x) ∈ [0, 113] and Lr(x) ∈ [0, 513]. The maximal
value of S⊥ and S‖ was 255.

We used x ∈ [−d, W ], where W = 226 pixels, d=30
pixels, and φ = 27o. Gaussian noise having standard devia-
tion of 3 gray levels was added independently to every pixel
in S⊥ and S‖. The simulated acquired images S⊥ and S‖
look similar to Fig. 4. Then, the unavailability of boundary
values is simulated by chopping off the whole part corre-
sponding to x < 0 in the frames, leaving their support to be
x ∈ [0, W ]. Now, we simulated the reconstruction. We used
mirror extrapolation as described in Sec. 4.3. Fig. 10 depicts
the reconstructions obtained as described in Sec. 4.4, using
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Figure 11. The setup used in the experiments.

λ = 0.01. The scenes are separated, and the reverberations
are eliminated, making the result more visually pleasing.

Quantitative Assessment

To quantitatively measure the recovery, we use the mean
squared error (MSE) in simulations, where we have access
to the ground truth. First, let us ignore the spatial effect of
the visual reverberations, as in the state of the art. In this
case, we simply run the pointwise method of [21]. Here
we obtained a value MSEpointwise

r = 161. When account-
ing for the spatial effect of reverberations using our method,
we obtained MSErecovery

r = 53. Hence, quantitatively, the
method greatly improved the MSE. This quantitative im-
provement is evident, since reverberations in the raw data
were significant quantitatively and subjectively (visually).

6.2. Experimenting with Real-World Objects
We applied the method on a real setup. We used a Nikon

D100 camera, to obtain data which is linearly related to the
scene radiance (no γ correction). A 200mm lens and a
polarizer were fitted to it. The camera was set in front of
a glass window, similarly to the way depicted in Fig. 11.
We acquired a few frames in various polarizer orientations.
Based on them, we derived S⊥ and S‖, as described in [17].
The image S⊥ is shown in Fig. 1. It clearly demonstrates the
secondary reflection (reverberation), as well as the confu-
sion caused by the superposition of the reflected and trans-
mitted scenes. The image S‖ looks similar to it.

The estimation of the parameters was performed as de-
scribed in Sec. 5. The automatic estimation of d yielded
d̂=36 pixels, which was consistent with manual measure-
ment. The estimated φ is 41o. Consequently, the recovery
described in Sec. 4.4 was applied separately to each color
band. Finally, all the processed color bands were com-
bined to the resulting output color images. The final6 re-
constructed L̂t is depicted in Fig. 12 while the final L̂r is
depicted in Fig. 13. The reconstructions are visually pleas-

6The reconstructed images contain residual edge artifacts. An explana-
tion hypothesis and the way we overcame them are described in [10].

Figure 12. The reconstructed L̂t in the experiment corresponding
to Fig. 1. It has neither visual reverberations nor apparent trace of
the complementary scene Lr, whose estimate is shown in Fig. 13.

Figure 13. The reconstructed L̂r in the experiment corresponding
to Fig. 1. It has neither visual reverberations nor apparent trace of
the complementary scene Lt, whose estimate is shown in Fig. 12.

Figure 14. [Left] A real-world image S‖. It contains a superposi-
tion of two scenes. The visual reverberation, e.g., of the baby, can
clearly be seen. [Right] The reconstructed L̂r is separated while
the reverberation is eliminated.

ing. They have no crosstalk (good separation) and the vi-
sual reverberations are eliminated. In another experiment,
the acquired image S‖ appears on the left side of Fig. 14.

The acquired image S⊥ looks similar. The reconstructed L̂r

in this experiment appears on the right side of Fig. 14.



7. Discussion
The presented closed form physical model elucidates the

fundamental limitations of the problem (conditioning and
boundary conditions), for each source scene. Furthermore,
it creates the basis for future, improved recovery algo-
rithms. The task is essentially one of solving a convolutive
mixture (see [23]). The work can be extended to methods
that do not rely on a polarizer, as has been done in other
studies that dealt with transparent scenes. Note that the
true d may be non-integer. This creates residual errors that
may need to be assessed. Moreover, this aspect may be
incorporated explicitly into the algorithm. The analysis
may also be generalized to non-planar windows.
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