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Abstract

Human faces are neither exactly Lambertian nor entirely
convex and hence most models in literature which make
the Lambertian assumption, fall short when dealing with
specularities and cast shadows. In this paper, we present
a novel anti-symmetric tensor spline (a spline for tensor-
valued functions) based method for the estimation of the
Apparent BRDF (ABRDF) field for human faces that seam-
lessly accounts for specularities and cast shadows. Fur-
thermore, unlike other methods, it does not require any 3D
information to build the model and can work with as few
as 9 images. In order to validate the accuracy of our anti-
symmetric tensor spline model, we present a novel approxi-
mation of the ABRDF using a continuous mixture of single-
lobed spherical functions. We demonstrate the effectiveness
of our anti-symmetric tensor-spline model in comparison to
other popular models in the literature, by presenting exten-
sive results for face relighting and face recognition using
the Extended Yale B database.

1. Introduction

BRDF measurements have attracted immense interest
from both the vision and graphics community. To measure
the BRDF, which is a function of both viewing and illumi-
nation directions, two popular methods are prevalent. The
first one uses an equipment called the gonioreflectometer
where measurements with explicit control over viewing and
illumination directions can be made [9]. The second class
of techniques use what is called the image based approach,
where a single image of the curved surface is used to pro-
vide multiple samples of the BRDF in various illumination
and viewing directions [20, 18].

Partly due to the inherent efficiency of image based mea-
surements and partly due to the nature of the object in
question, BRDF measurements of human faces have largely
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been done using the image based approach [16, 8]. Depend-
ing on the application they target, the methods in the second
class can be further categorized into ones which use very
specialized and expensive equipment to capture the details
of the human face (e.g. Borshukov and Lewis [5] used vari-
ous specialized equipments and softwares to render faces in
the movie ”The matrix reloaded”, Weyrich et al. [24] used
custom built devices to measure skin reflectance and sub-
surface scattering to render novel face images) and those
which work with images from standard face databases like
Extended Yale [11, 16] or CMU PIE [21]. The method we
propose belongs to this later class of techniques. Using as
few as nine images from standard databases, we are able to
construct the apparent BRDF (ABRDF) field of the human
face, taking into account specularity and cast shadows.

Most of the existing methods, which do not require any
specialized equipment for image based BRDF measure-
ments, make the simplifying assumption that the face is a
convex Lambertian object [2, 19, 23, 25, 11, 16], which, as
we demonstrate (in Fig. 3), is clearly not accurate (as it does
not account for specularities and the cast shadows). Even
with such a simplifying assumption, some of these tech-
niques end up using 3D information (which is expensive
to acquire) [2, 23, 25, 10] and/or require undesirable man-
ual intervention [23, 25]. The existing techniques which do
not require explicit 3D information like those proposed in
[26, 22], suffer from the usual problems with shape from
shading or, as proposed in [13], require a large number of
images taken under controlled conditions. We circumvent
these problems by estimating the ABRDF field from a few
2D images (which unlike the BRDF field, also takes into
account the context of a point).

In this paper we present a novel method for approxi-
mating the facial ABRDF using higher-order (3rd and 5th)
anti-symmetric Cartesian tensors. Unlike the Lambertian
model, which is a 1st-order tensor, higher-order Cartesian
tensors can approximate the complex geometry of spherical
functions with several lobes and therefore can handle shad-
ows and better approximate the specular components of the
facial ABRDF. Furthermore, in order to avoid overfitting
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Figure 1. Illustration of our proposed anti-symmetric tensor spline model. Given a set of 9 images (left) associated with lighting directions,
we estimate a cubic spline field (center) of 3rd-order anti-symmetric tensors and then we employ it to relight the subject using any random
lighting direction (right). Our model can produce realistic images, handling the specularities commonly seen in faces and casting shadows.

problems due to the small number of input images, we use a
bi-cubic B-spline basis as the smoothing/weighting function
of our anti-symmetric tensor-fields. We call this framework
”Anti-symmetric tensor spline” (see Fig. 1). Given only a
few input images (as few as 9) with different known lighting
directions, we approximate the underlying facial ABRDF
by an anti-symmetric tensor spline, and then using it we
synthesize images under novel illumination (relighting).

In order to evaluate quantitatively the capability of our
method in approximating facial ABRDFs, we also present
a novel method for approximating the underlying true
ABRDF using a continuous mixture of single-lobed spher-
ical functions. This continuous mixture model, admittedly
less efficient than our anti-symmetric tensor spline (as it re-
quires a larger number of input images compared to tensor
splines) can successfully approximate spherical functions
with arbitrarily large number of lobes. In our experimental
results we use the continuous mixture model as a validating
benchmark to show that the proposed tensor spline model
can approximate the facial ABRDF field to sufficient accu-
racy.

2. Anti-Symmetric Tensor Splines

In this section we introduce anti-symmetric tensor
splines as splines of tensor-valued functions.

2.1. Spherical functions modeled as Tensors

A spherical function can be approximated by a nth-order
Cartesian tensor, which can be expressed in the form:

T (v) =
∑

k+l+m=n

Tk,l,m(v1)k(v2)l(v3)m (1)

where v = [v1 v2 v3]
T is a unit vector and Tk,l,m are

the real-valued tensor coefficients. It should be noted that
the spherical functions modeled by Eq. 1 are symmet-
ric (T (v) = T (−v)) for even orders, and anti-symmetric
(T (v) = −T (−v)) for odd orders. As a special case of Eq.

1 the 1st-order tensors take the form T (v) = T · v, where
T = [T1,0,0 T0,1,0 T0,0,1] and the 2nd-order tensors take the
form T (v) = vT Tv, where T is a 3 × 3 matrix. It should
be noted that in the case of 3rd-order anti-symmetric ten-
sors there are 10 unique coefficients Tk,l,m in Eq. 1, while
in the case of 5th-order anti-symmetric tensors there are 21.

The ability of a Cartesian tensor to approximate the com-
plex geometry of a spherical function with multiple lobes
increases with its order. However, higher-order tensors can
be perceived to be more sensitive to noise, simply by virtue
of their ability to model high frequency detail. Since it is
impossible to discriminate between high frequency detail in
the data and high frequency noise in the data, it is reason-
able to say that the high order tensors possess higher noise
sensitivity. Thus we need to strike a balance between the
approximation and the noise sensitivity of the fitted tensor.

2.2. Tensor Splines

In this subsection we define tensor splines by combining
a) the Cartesian tensor basis within a single pixel (presented
in Sec. 2.1) and b) the well known B-Spline basis across
the image lattice [7]. Tensor splines were introduced first
by Barmpoutis et al. in [1]. For simplicity, we will fix here
the degree of a spline to 3 (cubic spline), since this degree
of continuity is commonly used in literature.

We define a tensor spline as a B-spline on multilinear
functions of any order in general. In a tensor spline, the
multilinear functions (anti-symmetric tensors in our case)
are weighted by the B-spline basis Ni,k+1, where

Ni,1 =
{

1 if ti ≤ t < ti+1

0 otherwise
(2)

and

Ni,k(t) = Ni,k−1(t)
t − ti

ti+k−1 − ti
+Ni+1,k−1(t)

ti+k − t

ti+k − ti+1

(3)
The Ni,k+1(t) functions are polynomials of degree k, as-
sociated with n+k+2 monotonically increasing numbers



called ”knots” (t−k, t−k+1, ..., tn+1).
By using the above, the equation of a bi-cubic (k=3) ten-

sor spline is given by:

S(t,v) =
∑
i,j

Ni,4(tx)Nj,4(ty)Ti,j(v) (4)

where t = [tx ty], v = [v1 v2 v3]
T is a unit vector, and

Ti,j(v) is given by Eq. 1. It should be noted that in Eq.
4 there is a field of control tensors Ti,j(v), instead of the
control points used in a regular B-spline [7].

In the next subsection we employ bi-cubic tensor splines
for approximating the ABRDF field of a human face given
a set of fixed-pose images under different known lighting
directions.

2.3. Apparent BRDF approximation by Tensor
Splines

The BRDF of a Lambertian surface is given by B(v) =
α(n · v), where the negative values are set to zero and v is
the light-source direction, n is the normal vector at a partic-
ular point of the surface and α is a constant. It is immediate
that the Lambertian model is in the form of a 1st-order ten-
sor (Eq. 1 for n=1) with T1,0,0 = αnx, T0,1,0 = αny and
T0,0,1 = αnz . As a 1st-order tensor, the Lambertian model
is anti-symmetric and has a single peak.

Human faces however are not exactly Lambertian since
specularity can be observed in certain regions (e.g. nose,
forehead). Moreover, the non-convex shapes on the face
(lips, nose) can create cast shadows. The shadows and
specularities of the human face are indicative of a multi-
lobed ABRDF. Therefore, in these cases the ABRDF can-
not be modeled successfully by a 1st-order tensor and hence
higher-order anti-symmetric tensors should be employed in-
stead.

Our problem can be defined as follows. Given a set of
N face images of a given human subject with fixed pose,
In, n = 1 . . .N with associated lighting directions vn, we
want to estimate the ABRDF field of the face using a bi-
cubic tensor spline. The fitting of the tensor spline to the
given data can be done by minimizing the following energy

E =
N∑

n=1

∑
tx,ty


∑

i,j

Ni,4(tx)Nj,4(ty)Ti,j(vn) − In(tx, ty)




2

(5)
where tx, ty run through the lattice of the given images. The
minimization of Eq. 5 is done with respect to the unknown
tensor coefficients Ti,j,k,l,m that correspond to the control
tensor Ti,j(vn). In our experiments we used an uniform
grid of knots 1, 2, 3 . . . in both lattice coordinates. There
were (M + 2)× (M + 2) control tensors, where M ×M is
the lattice size of each given image. Under this configura-
tion, in the case of 3rd-order anti-symmetric tensors, there

are 10 unique coefficients for each control tensor; therefore
the number of unknowns in Eq. 5 is equal to 10(M +2)2. In
the case of 5th-order anti-symmetric tensors the number of
unknowns is 21(M + 2)2. Although, given 9 input images
the number of known samples is 9M2, there is no overfit-
ting issue (at least in the proposed case of 3rd-order tensors)
due to the B-spline regularization. From Eq. 5 we can an-
alytically compute the derivatives dE/dTi,j,k,l,m and thus
any gradient-based functional minimization method can be
used. To evaluate the performance of tensor splines, in the
next section we define a validating model using continuous
mixture of single-lobed functions.

3. Continuous Mixture of single-lobed func-
tions

A natural question to ask is whether the tensor spline
model is capable of approximating ABRDFs on human
faces. In order to give a quantitative answer to this ques-
tion we need to compare tensor splines with a more general
model, which can, in theory, approximate spherical func-
tions with arbitrarily many lobes. In this section we define
such a general model for approximating spherical functions
using a continuous mixture of single-lobed spherical func-
tions. The framework of continuous mixture of functions
was introduced by Jian et al. in [14].

There are various spherical functions with a single lobe
that can be used in a continuous mixture but we pick one
which leads to an analytic solution, given by S(v) =
e−u·v − 1, where u and v are unit vectors. Note that this
function has the following two desirable properties: a) it has
a single peak, and b) S(v) = 0 for all v such that v · u = 0
(because if the surface normal and illumination direction are
perpendicular we expect zero intensity). These properties
are also valid for the Lambertian model.

With this definition of the single-lobed function any
spherical function can be written as a continuous mixture
of such functions. So the ABRDF, a spherical function, can
be modeled as a continuous mixture of functions S(v) as
follows

B(v) =
∫

S2

f(u)(e−u·v − 1)du (6)

where the integration is over the set of all unit vectors u (i.e.
unit sphere) and f(u) is a distribution on orientations. As
von Mises-Fisher is the analog of the Gaussian distribution
on S2, we pick it as the mixing density. The von Mises-
Fisher distribution is given by

f(u|κ, µ) =
κeκµ·u

4πsinh(κ)
(7)

where µ is a unit vector defining the orientation and κ is a
scalar governing the concentration of the distribution.



Here we make the important observation that by sub-
stituting Eq. 7 into Eq. 6 we obtain an integral which is
the Laplace transform of the von Mises-Fisher distribution,
which we have analytically computed to be

B(v) =
κsinh(‖κµ− v‖)
sinh(κ)‖κµ − v‖ − 1. (8)

However the single von Mises-Fisher distribution model
cannot approximate angular distributions with several
peaks, like the human face ABRDFs. Therefore, we pro-
pose to use a finite mixture of von Mises-Fisher distri-
butions, which leads to an alternate definition of Eq. 7
as f̃(u) =

∑
i

wif(u|κ, µi), where wi are the mixture

weights. In our implementation we used a dense sampling
(642 directions) of the unit sphere obtained by the 4th-order
tessellation of the icosahedron. Using this mixture of von
Mises-Fisher distributions we obtain the following expres-
sion for the ABRDF

B(v) =
∑

i

wi

(
κsinh(‖κµi − v‖)
sinh(κ)‖κµi − v‖ − 1

)
(9)

We must emphasize that although f̃(u) has the form of a
discrete mixture, the approximating function B(v) is still a
continuous mixture of single-lobed functions expressed by
Eq. 6.

Given a set of N face images In, n = 1 . . .N , of a hu-
man subject with the same fixed pose, associated with light-
ing directions vn, we can set up a N × 642 matrix An,i by
evaluating Eq. 8 for every vn and µi. Then for each pixel
we can estimate the unknown weights of Eq. 9, by solv-
ing the overdetermined system AW = B, where B is a
N -dimensional vector that consists of the intensities of a
fixed pixel in the N given images, and W is the vector of
the unknown weights. This system can be solved efficiently
to obtain a sparse solution by the non-negative least square
minimization algorithm developed in [15].

For the experiments presented in Sec. 4 we use the
model presented in this section as a benchmark for evaluat-
ing quantitatively the ability of the proposed anti-symmetric
tensor splines in approximating the ABRDF of human
faces.

4. Experimental Results

4.1. Face Image Synthesis

All the experiments in this section used the Extended
Yale B database [17], which has 64 different images per
subject under known illumination directions. After the
training was performed using only 9 images per subject ac-
cording to the method described in Sec. 2.3, we synthesized
64 facial images per subject by evaluating Eq. 4 for the 64
lighting directions provided in the database.

Figure 2. Example of facial image relighting. The images were
synthesized by evaluating the anti-symmetric tensor spline for dif-
ferent extreme lighting directions.

Figure 3. Demonstration of the ability of our method to handle
cast shadows and specularities. First column: ground truth images,
second column synthesized images using Lambertian model, last
column synthesized images using our 3rd-order anti-symmetric
tensor spline model.

Figure 2 presents the synthesized images under several
different lighting directions for a randomly selected subject.
The images demonstrate that our proposed model approxi-
mated well the underlying ABRDF, producing realistic im-
ages. The 9 input images used here are shown in Fig.1.

In Fig. 3 we show some examples of the synthesized
images using the Lambertian model and our tensor spline
model for visual comparison. The first column shows the
ground truth image from the extended Yale B dataset. Note
that the ground truth images presented in this figure were
not part of the training set used for the synthesis of the im-
ages presented in the second and third columns of the figure.
By visual comparison we conclude that the 3rd-order tenso-
rial model can accommodate cast shadows and approximate
well the specular components of the ABRDFs. In contrast,
specularity and shadows are missing from the images syn-
thesized under the Lambertian model which demonstrates
the invalidity of the Lambertian assumption.



Figure 4. Example of the approximated ABRDFs plotted as spher-
ical functions in a region of interest shown in a rectangle on the
left image.

Figure 5. Left: The 9 input lighting directions we used (shown in
the azimuth-elevation plane). Right: Intensity value error compar-
ison of several models. The blue color represents the standard 1st

and 2nd category which contain lighting directions forming angle
φ with the frontal direction smaller than 25o, the green color rep-
resents the 3rd category with 25o < φ < 50o and the red color
represents the 4th category with 50o < φ < 70o.

Figure 4 shows the approximated ABRDFs plotted as
spherical functions in a region of interest that has specu-
larities and shadows. The shapes of the plotted functions
contain up to three lobes and show complexities that cannot
be approximated under the Lambertian assumption.

Finally in order to evaluate the ability of our model to
approximate facial ABRDFs, we employed the continuous
mixture of single-lobed functions (proposed in Sec. 3) to
approximate the underlying ABRDF by using all 64 given
images as the training set. This model, although less effi-
cient (since it requires a much larger training set of 64 im-
ages) than our anti-symmetric tensor spline model (which
uses only 9 images), can approximate spherical functions
with a very complex structure characterized by a large num-
ber of lobes. In contrast, our 3rd-order anti-symmetric ten-
sor spline model can approximate functions whose shape
complexity consists of at most three lobes. By comparing
the performance of the continuous mixture of exponential
functions with that of our anti-symmetric tensor spline, both
presented in Fig. 5(right), we conclude that they yield simi-
lar intensity values. This quantitatively demonstrates that
inspite of the limitations of the 3rd-order anti-symmetric
tensor spline model, we can still capture and approximate
the shape of the underlying facial ABRDFs.

4.2. Application of our method to Face Recognition

Our proposed method of anti-symmetric tensor splines
can also be used in face recognition applications. Given a
set of fixed-pose images under different known illuminat-
ing directions for N subjects (human faces), the problem of
face recognition is to assign to a new test image, a label cor-
responding to one of the N given subjects. We assume that
the new image is provided in the same pose as the N known
subjects, albeit under an unknown illuminating direction.

By employing our method proposed in Sec. 2.3 we can
approximate the apparent BRDF of each subject by an anti-
symmetric tensor spline. Thus, by using our method we
can convert the given dataset of facial images into a dataset
of anti-symmetric tensor splines. Then, given an unknown
test image I , it is classified by minimizing the following
function:

min
n∈[1,...N ],v∈S2

∑
t

(Sn(t,v) − I(t))2 (10)

where Sn(t,v) is the anti-symmetric tensor spline of sub-
ject n given by Eq. 4, v is a unit vector and t is the 2-
dimensional image lattice index. By minimizing Eq. 10 we
simultaneously estimate a) the label n of the unknown test
image and b) the unknown lighting direction v of the test
image. The minimization of Eq. 10 can be performed by
any gradient-based functional minimization algorithm. We
can parameterize the unit vector v by using polar coordi-
nates and then compute for each subject the gradient of Eq.
10 with respect to the azimuth θ and elevation φ angles.

Table 1 shows the percentages of recognition errors for
the standard categories of the test image lighting directions
(described in Fig. 5). The table also contains recognition
percentage errors obtained on the same dataset using other
existing methods such as Correlation [6], Eigenfaces [12],
Linear subspace [4], Illumination cones [11] and 9 points of
lighting (9PL) [17]. The errors for the first five techniques
were taken from the table presented in [11]. A comparison
of the error rates show that our proposed model performs
significantly better than the Correlation, Eigenfaces, Lin-
ear Subspace and Illumination cones-attached methods and
slightly better than the 9PL method. Illumination cones-cast
method, the only technique which performs slightly better
than our model, suffers from inefficiencies inherent in ex-
tracting 3D information using photometric stereo, while our
technique does not involve any such cubersome step.

In our experiments, we used a training set that corre-
sponded to the lighting direction configuration shown in
Fig. 5(left) since this samples well the lighting direction
space and yielded better ABRDF approximations. For other
lighting configurations, which do not sample the azimuth-
elevation space well and therefore do not represent the un-
derlying data well, there was a slight increase (2-5%) in the
percentage errors for the 4th category. This result is ex-



Method N samples 1st&2nd 3rd 4th

Correlation [6] 4 0.0 23.3 73.6
Eigenfaces [12] 6 0.0 25.8 75.7
Linear subspace [4] 7 0.0 0.0 15.0
Cones-attached [11] 7 0.0 0.0 8.6
Cones-cast [11] 7 0.0 0.0 0.0
9PL [17] 9 0.0 0.0 2.8
Our method 9 0.0 0.0 1.6

Table 1. Face recognition percentage errors for several existing
methods for the standard 4 categories of the test set. The second
column reports the minimum number of required training images.

pected, since in any application that involves sampling, the
performance is significantly better when the samples repre-
sent the data well.

5. Discussion

By approximating the local apparent BRDF of a human
face using the model of continuous mixture of a single-
lobed function presented in Sec.3, we show that in gen-
eral the number of lobes in a facial apparent BRDF is at
most 3. We also show that such a complex spherical func-
tion can be efficiently approximated using a 3rd-order anti-
symmetric tensor spline. The continuous mixture model
requires a large number of training images for represent-
ing the apparent BRDF effectively, and therefore performs
worse (in terms of time complexity) than our proposed anti-
symmetric tensor spline model which uses only 9 images.

Another advantage of the tensor spline model is that
it models the apparent BRDF function by using only 10
scalar coefficients. Noting that the extended Yale B dataset
contains 64 images for each subject, our proposed method
”compresses” all the given information into 10 images cor-
responding to the 3rd-order tensor coefficients.

Finally, we should note that a limitation of our method is
that it requires the lighting directions of the training images
to be known. However this limitation can be overcome if we
create a generic tensor spline face by taking, for example,
the average of the tensor splines that approximate the sub-
jects in the extended Yale B database. We can then estimate
the unknown lighting direction of a new image by following
a functional minimization method similar to that described
by Eq. 10 in Sec. 4.2. By incorporating this ”lighting di-
rection recovery” step, our method can work with any set of
fixed-pose facial images with unknown lighting directions.

References

[1] A. Barmpoutis, et al. Tensor splines for interpolation and
approximation of DT-MRI with applications to segmentation
of isolated rat hippocampi. TMI, 26(11):1537–1546, 2007.

[2] R. Basri and D. Jacobs. Lambertian reflectance and linear
subspaces. PAMI, 25(2):218–233, 2003.

[3] A.U. Batur and M. Hayes. Linear subspaces for illumination
robust face recognition. CVPR 2001, 2:296–301, 2001.

[4] P. Belhumeur, D. Kriegman, and A. Yuille. The bas-relief
ambiguity. CVPR 1997, 1040–1046, 1997.

[5] G. Borshukov and J. P. Lewis. Realistic human face ren-
dering for ”the matrix reloaded”. In ACM SIGGRAPH 2003
Sketches & Applications, pages 1–1, 2003.

[6] T. Brunelli, R.; Poggio. Face recognition: features versus
templates. PAMI, 15(10):1042–1052, Oct 1993.

[7] C. de Boor. On calculating with b-splines. J. Approx. Theory,
6:50–62, 1972.

[8] P. Debevec, et al. Acquiring the reflectance field of a human
face. In SIGGRAPH, pages 145–156, 2000.

[9] S. C. Foo. A gonioreflectometer for measuring the bidirec-
tional reflectance of material for use in illumination compu-
tation. Master’s thesis, Cornell University, Ithaca, 1997.

[10] M. Fuchs, et al. Reflectance from images: A model-based
approach for human faces. TVCG, 11(3):296–305, 2005.

[11] A. S. Georghiades et al. From few to many: Illumination
cone models for face recognition under variable lighting and
pose. PAMI, 23(6):643–660, 2001.

[12] P. Hallinan. A low-dimensional representation of human
faces for arbitrary lighting conditions. CVPR, pages 995–
999, 21-23 Jun 1994.

[13] B. K. P. Horn. Robot Vision. McGraw Hill: New York.
[14] B. Jian, et al. Multi-fiber reconstruction from Diffusion MRI

using Mixture of Wisharts. IPMI, 384–395, 2007.
[15] C. Lawson and R. J. Hanson. Solving Least squares prob-

lems. Prentice-Hall, Englewood Cliffs, 1974.
[16] J. Lee, et al. A bilinear illumination model for robust face

recognition. In ICCV, pages 1177–1184, 2005.
[17] K. Lee, et al. Acquiring linear subspaces for face recognition

under variable lighting. PAMI, 27(5):684–698, 2005.
[18] W. Matusik, et al. A data-driven reflectance model. In SIG-

GRAPH, pages 759–769, 2003.
[19] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss. The

FERET evaluation methodology for face-recognition algo-
rithms. PAMI, 22(10):1090–1104, 2000.

[20] Y. Sato, et al. Object shape and reflectance modeling from
observation. SIGGRAPH, 31:379–388, 1997.

[21] A. Shashua and T. Riklin-Raviv. The quotient image: Class-
based re-rendering and recognition with varying illumina-
tions. PAMI, 23(2):129–139, 2001.

[22] T. Sim, et al. The CMU pose, illumination, and expression
database. Automatic Face and Gesture Recognition, 2002.

[23] Z. Wen, Z. Liu, and T. S. Huang. Face relighting with radi-
ance environment map. In CVPR, pages 158–65, 2003.

[24] T. Weyrich, et al. Analysis of human faces using a
measurement-based skin reflectance model. In SIGGRAPH,
pages 1013–1024, 2006.

[25] L. Zhang et al. Face recognition under variable lighting using
harmonic image exemplars. In CVPR, pages 19–25, 2003.

[26] L. Zhang, et al. Face synthesis and recognition from a sin-
gle image under arbitrary unknown lighting using a SH basis
morphable model. In CVPR, pages 209–216, 2005.


