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Abstract

This paper presents a new photometric stereo method
aiming to efficiently estimate BRDF and reconstruct glossy
surfaces. Rough specular surfaces exhibit wide specular
lobes under different lightings. They are ubiquitous and
usually bring difficulties to both specular pixel removal and
surface normal recovery. In our approach, we do not ap-
ply unreliable highlight separation and specularity estima-
tion. Instead, an important visual cue, i.e. the cast shadow
silhouette of the object, is employed to optimally recover
global BRDF parameters. These parameter estimates are
then taken into a reflectance model for robustly computing
the surface normals and other local parameters using an
iterative optimization. Within the unified framework, our
method can also be used to reconstruct object surfaces as-
sembled with multiple materials.

1. Introduction
Shape reconstruction from different lightings has long

been a fundamental problem in machine vision. Early ap-
proaches [25] used photometric stereo to estimate surface
normal and diffuse albedo assuming Lambertian surfaces.
Recent methods [15, 20, 2, 9] were proposed to also deal
with non-Lambertian surfaces. In order to tackle complex
reflections, most previous approaches either require that the
highlight regions in input images are relatively small and
can be easily removed, or assume that the highlights in dif-
ferent input images do not overlap such that Lambertian rule
can be applied to recovering the surface normals. To esti-
mate the normal of one pixel, traditional photometric stereo
uses at least three frames in which the corresponding pixels
contain no specular components.

Specular component removal is not easy for rough spec-
ular surfaces. The micro-facets on these surfaces reflect
light in different directions, producing wide specular lobes
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Figure 1. The wide specular lobes on rough specular surfaces un-
der directional light.

with highly blurred boundary under directional light. Two
examples are shown in Figure 1. Moreover, it is usually
not easy to determine whether the reflected light from the
surface contains any specular components. An imprecise
specularity segmentation makes the surface normal recov-
ery error-prone. In order to remove the wide specular lobes
on surfaces, Mallick et al. [13] proposed a data-dependent
specular separation method using color information. It re-
quires that the diffuse color of the surface and the color
of the incident light are different. Georghiades [8] used a
reflectance model including specularity component to di-
rectly estimate surface normals and BRDF parameters. This
method has to solve an optimization problem containing a
large number of unknowns.

In this paper, we present an efficient photometric stereo
method to robustly estimate both surface normals and
BRDF parameters. Our method does not require specular-
ity separation in order to recover surface normals, thereby is
capable of automatically and precisely reconstructing con-
vex object surfaces with different level of roughness from
a small number of images. The object surface is allowed
to have complex textures and colors without influencing the
computation accuracy.

We adopt a two-step optimization to estimate the nor-
mals and all reflectance parameters. In the first step, we use
the visual information from shadow to estimate the normals
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of some surface points. These recovered normals play a key
role in estimating the global reflectance parameters. In the
second step, with the reduced number of unknowns, a ro-
bust iterative optimization process is applied to estimating
the surface normals and diffuse albedo for all surface points.

In this unified framework, our method can also be ap-
plied to dealing with surfaces assembled with several dif-
ferent materials. The material segmentation, parameter
estimation, and normal computation can be automatically
achieved in our approach.

2. Related Work
Most related work on non-Lambertian surface recon-

struction uses various bi-directional reflection distribution
function (BRDF) models. The pioneer work includes recov-
ering the surface normals using a Torrance-Sparrow model
[14]. Tagare and deFigueiredo [21] estimated both the
shape and reflectance map for diffuse surfaces which consist
of forescatter lobes, normal lobes, and backscatter lobes. In
our method, we estimate the shape and reflectance of a sur-
face containing both specular and diffuse components.

Coleman and Jain [5] used four-source configurations to
detect highlight. In [20], the surface roughness was recov-
ered using the similar four-light setup. In [2], Barsky and
Petrou demonstrated that color can facilitate the detection
of specular pixels with the assumption of no specular re-
flection in at least three images for each pixel.

Using a reference object, Hertzmann [11] proposed an
example-based surface reconstruction method with arbi-
trary BRDFs. It employs the orientation consistency to de-
tect correspondence between the target object and the ref-
erence one. Recently, Wu and Tang [26] introduced a pho-
tometric stereo method using dense image input to estimate
surface normals using graph cuts. Complex surfaces with
discontinuities, highlight, and transparency can be recov-
ered. In [9], spatially-variant BRDFs were assumed and the
object surface was modeled by a linear combination of two
fundamental materials. An iterative optimization on BRDF
parameters and surface normals is applied. This method as-
sumes that the specular lobe is narrow so that the highlight
pixels can be removed by intensity threshold.

In order to robustly reconstruct surface, the specular
components, i.e., the highlight, are usually required to be
removed such that traditional photometric stereo method on
Lambertian surface can be applied. Most highlight removal
methods are based on dichromatic reflection model [19].
Klinker et al. [12] separated specular and diffuse compo-
nents using the RGB color space. Sato et al. [18] proposed
a method based on the color difference between the diffuse
and specular components to estimate reflectance. Mallick
et al. [13] introduced a data-dependent SUV color space
obtained by rotating the RGB color space such that R chan-
nel is aligned with the color of the incident light. Then the

other two channels contain only diffuse color component.
Since these approaches only consider colors, they do not
work well on textured objects where the diffuse color of a
surface and the color of a light are similar.

The highlight separation method proposed in [17] works
on inhomogeneous surfaces using additional light sources.
This method is limited by the problem of color similarity
between the light source and object surface. In [23, 22],
highlight components were removed using single image in-
formation. Most of these methods assume that the diffuse
color does not change too much inside and outside the high-
light region or the specular color is different from that on
surface.

Most of the above image-based highlight removal meth-
ods make assumptions on colors, shape, or brightness. In
this paper, we consider the situation that the specular sur-
face becomes rough and the specular lobes have wide and
severely blurred boundary. This situation brings difficulty
for previous methods to determine the specular components
in the reflected light. Consequently, the highlight removal
methods easily fail on these objects especially when the sur-
face has complex textures.

Georghiades [7] showed that the specularities of surfaces
can be used in uncalibrated photometric stereo. In [8], he
proposed to recover surface normals and reflectance using
iterative optimization over a very large set of variables, in-
cluding reflectance parameters, light directions, and surface
normals. Because there exists a large search space, a good
initialization of all unknowns are generally required. Be-
sides, the efficiency and optimality are also issues for that
optimization process. In [4] and [1], shadow clue was used
to constrain the depth construction of object surface. In our
method, the shadow information is explored in a novel way
- that is, using the cast shadow boundary normal to assist
recovery of surface normals and BRDF parameters.

3. Our System

Similar to the configuration of calibrated photometric
stereo methods in previous work, our input images I =
{I1, I2, ..., In} are taken by a static camera where the tar-
get object is illuminated by varying directional light source.
We put light source far from the object such that parallel
light can be assumed. Input images are assumed to be taken
under orthographic projection. The photometric calibration
is carried out such that the pixel intensities represent the
radiance. The incident radiance direction in each image is
measured using a chrome sphere.

For simplicity’s sake, we first assume that the object is
built of a single material. Our method can be naturally
extended to the objects assembled with different materials,
which will be described in Section 6.

We model the reflectance property of an object’s glossy



surface using Ward BRDF model [24]:

f(i,o) =
ρd

π
+

ρs

4πα2
√
cos θi cos θo

exp
−tan2β

α2 , (1)

where i and o denote the incident and outgoing light direc-
tions. θi and θo are polar angles of i and o respectively. α is
the roughness coefficient, determining the size of the spec-
ular lobe on object surface. Larger α value corresponds to
wider specular lobe with severely blurred boundary. ρd and
ρs measure the diffuse and specular reflectance respectively.
β is the angle between the surface normal and a halfway
vector [24]. Note that other parametric reflectance models
can also be employed similarly in our method.

Ward model is a combination of two terms. ρd
π

is the dif-
fuse term. Other parameters form the specular term which
is highly non-linear with respect to the unknowns. Directly
optimizing all the unknowns in (1) usually results in a slow
and unstable process. In our method, we separate the un-
knowns into two classes and estimate them separately:

• The global parameters ρs and α have fixed values for
all the surface points and they can be estimated in the
first pass. For computation efficiency, a few selected
samples are sufficient to robustly estimate these pa-
rameters. This step is described in Section 4.

• The estimated global parameters are taken back to (1)
to simplify the specular term. We then apply itera-
tive optimization to computing the surface normals and
other local parameters respectively for each pixel. This
step is described in Section 5.

4. Estimation of Global Parameters
We first show that if the normal of one surface point

is known, the global parameters can be computed. In or-
der to use the normal information, we first study the BRDF
measurement on object surface using single directional light
source. The amount of outgoing light, Lo, is given by:

Lo = BRDF (θi, φi, θo, φo)Li cos θi, (2)

where Li is the incoming light. Substituting (1) into (2),
and generally assuming the unit intensity of the incoming
light, we obtain

Lo =
ρd

π
cos θi +

ρs

4πα2

√

cos θi
cos θo

exp
−tan2β

α2 . (3)

Note that if the corresponding normal of one surface point
q is known (the details of deriving this normal will be de-
picted in Section 4.2 and 4.3), the formulation of Lo can be
greatly simplified since θo, θi, and β are determined. We
then estimate other BRDF parameters by minimizing

g(q) =
∑

0≤i<n

(Ii(q)− Lo(q, ρs, α,n, ρd))
2, (4)

where Ii is one of the input images. In the rest of the pa-
per, without causing ambiguity, we simplify the notation of
Lo(q, ρs, α,n, ρd) to Lo(q). We propose the following iter-
ative optimization algorithm to minimize g and estimate the
BRDF parameters.

1. Initialize BRDF parameters.
α is initialized to a value between 0 and 0.4 while ρd
and ρs are initialized to between 0 and 1.

2. Optimize ρd by fixing other parameter values.
In the diffuse term, ρd is the only parameter to be es-
timated for one pixel. It can be exactly computed by
setting ∂g

∂ρd
= 0.

3. Optimize ρs and α by fixing ρd.
In the specular term, ρs and α are optimized together
using the Levenberg-Marquet method.

4. Terminate.
We iterate steps 2 and 3 until the energy of the objec-
tive function does not decrease in successive two iter-
ations.

Since energy g in steps 2 and 3 monotonically decreases,
the whole process is guaranteed to converge to an optimal
solution. This optimization process, in our experiments,
converges rapidly given the small number of unknowns.

The above optimization process shows that the global
BRDF parameters can be efficiently estimated from one or
a set of known surface normals. In the following, we de-
scribe our method of estimating the surface normals using
the shadow visual clue.

4.1. Shadow Separation

Since directional light is used in photometric stereo, the
lighting in each image not only forms specular lobes on ob-
ject surfaces but also produces cast shadow of the object on
the background. This shadow is caused by the occlusion of
incident light.

In order to capture the shadow of the object under dif-
ferent lightings, we place a small Lambertian board on the
back of the object. To reduce the possible interreflection,
the board is painted with mid-grey color to absorb most of
the incident light while the shadow can still be faithfully de-
tected. We show one example in Figure 2 (a). To verify that
using the board does not significantly influence the light,
we carried out several experiments using and without using
the grey board and found that the differences are constantly
very small. One comparison is given in Figure 2 where the
root mean square (RMS) difference of pixel colors between
(a) and (b), taking account of image noise, is only 0.0024.

For automatically separating the shadow and the fore-
ground object in the input images, we observe that the
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Figure 2. Mid-grey backboard configuration. (a) A mid-grey
board is placed behind the object to capture the cast shadow. The
reflection from the board is low. (b) Same scene captured with
black background. The object color difference between (a) and
(b) is very small. (c) and (d) show the automatic foreground ex-
traction. (c) The edge detected using input image information.
Most shadows boundary pixels are removed. (d) Using the level
set method, the foreground map is formed (with white pixels) by
curve evolving from the background.

shadow region varies among the images due to the change
of lighting directions whereas the object in the images has
fixed position. So the object boundary and textures con-
stantly appear in multiple images. We detect the consis-
tent object edges in multiple images using the method pro-
posed in [27] where a two-component GMM is constructed
for each pixel to robustly reject outliers. The output of
this method includes edge pixels detected on the object as
shown in Figure 2(c). To extract the object in all images,
a closure of outermost edge points is computed using the
flood fill or the geometric level set [16] methods. One ex-
ample of the extracted object is shown in Figure 2(d).

When the object has been extracted, only shadow re-
mains in the images. Due to the use of directional light, the
shadow penumbra is narrow. We, thus, can detect shadow
boundary using another edge detection process.

4.2. Normal Estimation Using Shadow Boundary

Once the shadow boundary pixels are detected, we com-
pute image gradients on these pixels. As shown in Figure
3(a), each shadow boundary pixel p in back plane Φ can be
mapped to at least one object surface point p∗. We study
the following two situations in order to compute the surface
normal np∗ at p∗. An illustration is shown in Figure 3.

Case 1: The shadow boundary pixel, e.g., p in Figure
3(a), maps to a single surface point p∗ along the light ray
and the first order derivative exists at p∗. Ideally, the surface
normal np∗ at p∗ is projected to the shadow boundary nor-
mal np. However, in discrete image space, there may exist
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Figure 3. (a) Shadow formation. ip indicates the light direction.
The object casts shadow on back plane Φ. np is the 2-D shadow
boundary normal of p in Φ. p∗ is the corresponding surface point
and np∗ is the surface normal. (b) Shadow silhouette. p1 is at the
junction of two hills’ cast shadow. The gradient computed on p1

does not map to any surface normal.

quantization errors by computing shadow boundary gradi-
ent. In order to reduce them, we adopt a robust estimation
algorithm, which will be depicted in Section 4.3.

Case 2: The shadow boundary pixel, for example, p1

in Figure 3(b), is at the junction of two or more hills’ cast
shadow. The normal of the corresponding surface point
cannot be determined since there exist at least two surface
points projected to that pixel.

In order to estimate the surface normal using cast
shadow, the pixels in case 2 should be rejected. We em-
ploy a feature detection method to detect the shadow bound-
ary pixels at junctions. Specifically, we construct the Har-
ris matrix M(x, y) [10] for each shadow boundary pixel
I(x, y). The junctions are detected when the corner strength
S(x, y) = detM(x,y)

trH(x,y) is larger than a threshold.
After feature removal, we compute image gradients on

the remaining cast shadow boundary pixels and denote them
as {ni

1,n
i
2, ...n

i
mi
} for each image Ii. The corresponding

surface normal for ni
p is denoted by n

i
p∗ , which is computed

under the following conditions.

• n
i
p∗ is a surface normal; it must be perpendicular to

light direction ip:

ip · ni
p∗ = 0. (5)

• n
i
p∗ , ni

p, and ip are coplanar, we thus have

(ip × n
i
p) · ni

p∗ = 0. (6)

• n
i
p∗ is a unit vector

||ni
p∗ || = 1. (7)
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Figure 4. Determining the surface points. On object surface, the
point p∗, on which the normal n

∗

p is computed, is only known
along the ray ip, as shown in green.

Combining (5), (6), and (7), we solve a linear equation
system to compute the surface normals corresponding to the
shadow boundary pixels.

Note that our feature removal may not reject all shadow
pixels in case 2 in computing surface normals. In addition,
errors possibly produced by inaccurate image gradient and
shadow boundary computation may also contaminate the re-
sults. In the next section, we introduce a robust clustering
method to further refine the parameter estimation.

4.3. Global Parameter Estimation and Refinement

We have recovered a set of possible surface normals cor-
responding to the cast shadow boundary pixels. In order to
robustly estimate the BRDF parameters in (1), the 3-D posi-
tions of corresponding surface points should also be known
such that (4) can be optimized.

In most cases, the attached shadow on object surfaces
fades gradually and no clear boundary exists between the
illuminated pixels and the attached shadow. One example
is shown in Figure 4, in which we only know that p∗ cor-
responding to normal np∗ is along the light ray ip. It is
not obvious to determine its exact 3-D position. In our ap-
proach, a small number of surface candidates Sp of p∗ along
ip are collected. All of them are in a transition region be-
tween fully illuminated and shadowed pixels. This region is
shown in green in Figure 4.

Note that using shadow boundary, we have computed
several surface normals in image i, each normal n

i
p∗ has

a set of position candidates S
i
p. To simultaneously estimate

the normal position and the global BRDF parameters, we
introduce the following optimization process.

1. For each surface normal ni
p∗ :

(a) We select one candidate normal position from
S
i
p and take it into the iterative optimization de-

scribed in Section 4 to minimize (4). The residual
error is recorded.

(b) If there exists candidate in S
i
p not used in the

above computation, repeat (a).

(c) We compare the recorded residual errors, and
find the surface point in S

i
p producing the small-

est one. Then we record the values of BRDF pa-
rameters ρs(i, p) and α(i, p) produced using that
surface point.

2. For all recorded values for BRDF parameters ρs and
α, we employ the mean shift clustering [6] to robustly
estimate the best set.

In regard to step 1, among all candidates for a surface
point, we find the one producing the least residual error in
the optimization and regard it as the estimated surface point.
It is shown to be a reliable measurement in experiments. Its
computation is also efficient.

Step 2 is based on an observation that there may exist
noise and outliers. The correspondingly estimated parame-
ter values using these outliers have small probability to be
similar to each other. So we use the statistical clustering
method to refine the parameter estimation.

5. Surface Reconstruction
After estimating the specular parameters, surface nor-

mals and diffuse albedo for all surface points can be recon-
structed without highlight separation. The surface texture is
the recovered diffuse albedo. We first rewrite (3) as

Lo(p) =
ρd(p)

π
i · n(p)+

ρs

4πα2

√

i · n(p)

o · n(p)
exp

1
α2

{

1−
1

[h(p)·n(p)]2

}

,

where i and o denote the incident and outgoing light di-
rections respectively. h and n represent a half-way vector
and the surface normal. We minimize energy function g(p)
where

g(p) =
∑

0≤i<n

(Ii(p)− Lo(p))
2 (8)

in a way similar to that for (4) to reconstruct surface nor-
mals. Comparing to previous methods using only Lamber-
tian components [25, 5, 20, 13], our formulation has the
same number of unknowns. We employ an iterative opti-
mization to estimate them.

1. For each pixel q on an object surface:

(a) The normal nq of q is initialized as the linear
interpolation of the recovered normals from the
previous step.

(b) Optimize ρd(p). ρd(p) can be exactly computed
by setting ∂g(p)

∂ρd(p)
= 0.

(c) Optimize normal nq . The normal vector is
estimated using a gradient based optimization
method. Given the small number of unknowns,
it converges rapidly.

(d) Repeat (b) and (c) until convergence.

The energy in steps (b) and (c) monotonically decreases,
so the convergence is guaranteed. In all our experiments,
the computation terminates in 10 iterations.



(a) (b)

(c) (d)

(e) (f)

Figure 5. Mouse. (a) and (b) show two out of six input images con-
taining large region of highlight, (c) The recovered surface normal
map encoded using RGB colors. (d) Estimated surface textures.
(e) Rendered mouse under a novel lighting direction. (f) The cam-
era captured image using the same lighting direction, which is sim-
ilar to our rendered result (e).

6. Reconstructing Multiple-Material Surface
Our method can also be naturally applied to surface re-

construction of multiple materials. With the similar con-
figuration, we can obtain object silhouettes projected to the
backboard. Similarly applying the method described in Sec-
tion 4, a set of surface normals are computed. Then we em-
ploy the method described in Section 4.3 to estimate several
sets of optimal specular parameter values using these nor-
mals. We place these values in the parameter space. Assum-
ing there are M different materials where M > 1, rather
than using mean shift clustering to find a unique parameter
configuration, we employ mean shift segmentation to form
M partitions in the parameter space. Then the centers of all
partitions with highest density are regarded as the locations
of estimated specular parameter values.

After specular estimation, we use these parameter values
to recover the surface normal for each pixel. Using the op-
timization described in Section 5, we are able to compute a
set of optimal n∗(j) and ρ∗d(j), where 0 ≤ j < M , in terms
of minimizing residual error ξp,j which is given by

ξp,j =
∑

0≤i<n

(Ii(p)− Lo(p, ρs(j), α(j),n
∗(j), ρ∗d(j)))

2.

There should exists only one true surface normal for each
pixel p. However, simply comparing ξp,j for all j’s and

Figure 6. Surface reconstruction result by our method for the ex-
ample shown in Figure 5.

selecting the normal corresponding to the smallest ξp,j is
unreliable in this case. Considering the material continu-
ity property of the object surface, we treat the selection
of an optimal specular parameter set as a labeling problem
in Markov Random Field where the parameter set of each
pixel can be selected from M different assignments. Thus
we minimize an energy defined as

U(f) =
∑

p∈P

ξp,f(p) + α
∑

{p,q}∈N

H(sf(p), sf(q)), (9)

where f : P → S, P and S denote the pixel set and la-
bel set respectively. So f(p) returns the label at p. sj de-
notes the jth set of the specular parameters, where sj =
[ρs(j), α(j)]

T and 0 ≤ j < M . N represents the neigh-
borhood set and α is a weight.

∑

ξp,f(p) is the data term.
∑H(a, b) is the smoothness term given by

H(a, b) = 1− exp[−1
2
(a− b)TΣ−1(a− b)],

which encodes the labeling smoothness between adjacent
pixels. Σ denotes the covariance matrix between vectors a
and b. We minimize (9) using graph cuts [3]. The whole
surface is thereby segmented into partitions with estimated
optimal normal and albedo for each pixel.

In order to faithfully reconstruct normals for an ob-
ject surface consisting of M different materials, M sets of
global parameters must be recovered. It implies there ex-
ist surface points from each material projected to the cast
shadow boundaries. This condition, in our experiments, can
be generally satisfied when several input images under dif-
ferent lightings are used.

7. Results
We show experimental results in this section. Most of

the surfaces contain wide specular lobes in input images.
Since our algorithm does not rely on separation of specular
components, we can faithfully recover surface textures even
if the highlight color is similar to the texture color.



(a) (b) (c) (d) (e) (f)

Figure 8. Toy. (a) The toy surface consists of multiple materials, and the reflection is very complex. (b) Recovered material composition
map. (c) and (d) The computed surface normals and textures. (e) We re-render the toy under a novel lighting condition. (f) The ground
truth image taken by the camera for comparison.

(a) (b)

(c) (d)

Figure 7. Saving box. (a) One of the input images, (b) and (c)
Reconstructed normals and textures. (d) The rendered image under
novel lighting.

Figure 5 shows a “mouse” example with large highlight
area. (a) and (b) illustrate two out of the six input im-
ages. The object and shadow boundaries are automatically
extracted from these images. The surface normal and tex-
ture shown in (c) and (d) are faithfully reconstructed. We
evaluate the efficacy of our method by rendering the object
under a novel lighting as shown in (e) and comparing it with
the ground truth image (f). The RMS error is only 0.0326,
showing that our recovered BRDF parameters and surface

normals are accurate.
In Figure 6, we show our surface reconstruction result

using the “mouse” example. Since our method use shadow
visual clue to estimate the global parameters, the complex-
ity of general surface normal estimation is reduced. In com-
parison, the optimization in [8] takes hours to produce a
surface result whereas our method uses only 50 minutes in
computation.

Figure 7 shows another object in which the reflection is
complex and highlight can be seen in different regions in
the image. We only use 5 input images in this example. We
faithfully recover surface normals and texture as shown in
(b) and (c). The rendered image (d) under novel lighting is
visually satisfying.

Figure 8 illustrates a very challenging example. It is a toy
model with multiple materials on the surface. Each mate-
rial has its own roughness and specularity property. We use
10 input images and the reflections in the input images are
complex. Using our method, different materials can be suc-
cessfully recovered as shown in (b). The material shown in
green is a kind of hard plastic which has strong and overlap-
ping highlight in all images. The material in blue exhibits
smaller highlight whereas the red material is near Lamber-
tian. The recovered normals in (c) preserve sufficient fine
details and structures. Comparing our rendered image with
the one taking by a camera under the same lighting condi-
tion, the RMS error is only 0.0423.

8. Conclusion
To conclude, in this paper, we have proposed an efficient

photometric stereo method to estimate the BRDF parame-
ters and reconstruct surface normals. Our method does not
require general specular component separation and outper-



forms direct specularity fitting methods in terms of accuracy
and convergence rate. Our method uses a new configuration
to capture the cast shadow of an object on a back plane.
Given the small number of input images, the shadow infor-
mation is used to estimate surface normal samples and com-
pute the global parameters. Once these parameters are esti-
mated, the local reflectance and dense surface normals can
be computed separately for all pixels. This largely reduces
the computation complexity and improves the quality of the
reconstructed object surfaces and texture maps. Our future
work consists of exploring other BRDF models on multi-
ple materials, and applying our optimization to anisotropic
reflectance models.
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