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Abstract

Many objects have smooth surfaces of a fairly uniform
color, thereby exhibiting shading patterns that reveal infor-
mation about its shape, an important clue to the nature of
the object. This papers explores extracting this information
from images, by creating shape detectors based on shading.

Recent work has derived low-dimensional models of
shading that can handle realistic unknown lighting condi-
tions and surface reflectance properties. We extend this the-
ory by also incorporating variations in the surface shape.
In doing so it enables the creation of very general mod-
els for the 2D appearance of objects, not only coping with
variations in illumination and BRDF but also in shape al-
terations such as small scale and pose changes. Using this
framework we propose a scheme to build shading models
that can be used for shape detection in a bottom up fashion
without any a priori knowledge about the scene.

From the developed theory we construct detectors for
two basic shape primitives, spheres and cylinders. Their
performance is evaluated by extensive synthetic experi-
ments as well as experiments on real images.

1. Introduction
Many objects have smooth surfaces of a fairly uniform

color, thereby exhibiting shading patterns that reveal infor-
mation about their shape, an important clue to the nature
of the object. Research on extracting shape from shading
has been ongoing since [9], yet information from shading is
rarely used in higher level tasks such as object recognition
with a few exceptions, [15, 19].

The aim of this work is to extract information from shad-
ing in real images. Rather than trying to recover the sur-
face normal at every position under a number of restrictive
assumptions, we try to get a rough estimate of the shape
and without any a priori knowledge and very few assump-
tions about the light source and surface reflectance proper-

ties. This is done by creating detectors for a set of shape
primitives, much like [7].

We follow the tradition of using principal component
analysis (PCA) to learn appearance models under illumina-
tion changes [8] and view changes [12]. Although instead of
performing PCA on a set of images, we apply it directly to
the image formation equation. Variations in the light source,
surface reflectance function (BRDF) and shape define the
variations in the image. By performing PCA on an analytic
formulation we can rapidly train appearance models for a
wide variety of conditions.

2. Shading in Frequency Space
Shading is the gradual change in the image intensity

due to variations in the surface normal relative to the light
source. The image of a surface is a function of the surface
shape, the light source and the surface reflectance proper-
ties. Our aim is to create models of shading that are applica-
ble to any kind of image taken with a normal camera (video
or still). It is therefore necessary to accurately model all the
parts of this process and requires our model to incorporate
arbitrary light sources, unknown reflectance functions and
variations in the shape.

Fortunately, recent research [1, 17] has enabled the mod-
eling of arbitrary light sources through the use of spherical
harmonics, the Fourier basis on the sphere. Surfaces act as
low-pass filters on the incident light making the reflected
light band-limited in frequency. This allows any illumina-
tion condition to be represented with a finite dimensional
model in frequency space. In such a model the lighting con-
ditions are represented by their spherical harmonics coeffi-
cients.

Also the BRDF can be represented in frequency space as
it often is a smooth function. We use the basis for isotropic
BRDF’s by Koenderink and van Doorn [10] based on the
Zernike polynomials, but a basis using spherical harmon-
ics, such as in [18], works equally well. This basis can rep-
resent any isotropic BRDF while incorporating the general
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Helmholtz’s reciprocity.
The image intensity is proportional to the scene radi-

ance which is the sum of reflected light towards the camera,
which in turn is determined by the incident light and the
BRDF. By inserting the frequency space representation of
the light source and BRDF and solving this integral we get
a frequency space basis of the image intensity. The image
intensity, Ii, at point i can then be represented as a linear
combination of basis functions.

Ii =
N∑
k=1

ckEk(αi, βi), (1)

where (αi, βi) is the surface normal, in spherical coordi-
nates, at position (xi, yi) in the image. The coefficients
ck = Lml b

q
op, i.e. are the products of the spherical harmon-

ics coefficients Lml of the light source and the coefficients
of the BRDF, bqop in the Koenderink and van Doorn basis.
The indices l,m, o, p and q are given from k by the specific
ordering of the basis functions. The basis functions Ek are
the results of solving analytically the image formation in-
tegral. They are products of the Wigner D-functions (for
real spherical harmonics) and the Zernike polynomials. For
more details and their explicit form see [14].

The camera projection is approximated as orthographic
as the image intensity otherwise would be dependent on the
view angle as well. We also assume that all points on the
surface are illuminated by the same light source, which is
correct if the light source is distant and there are no cast
shadows. This assumption usually holds when we are ana-
lyzing small image patches as opposed to the whole image
at once.

Equation (1) represents the shading in very general con-
ditions, i.e. arbitrary unknown light source and unknown
BRDF. To be exact an infinite sum is required, but because
the surface low-pass filters the reflected light the series can
be truncated and still be a good approximation. Even so,
while nine basis functions are enough for Lambertian sur-
faces [1, 17], specular surfaces may require thousands, mak-
ing it impractical to use directly. One way to reduce this
representation is to perform PCA on it.

3. Model-Based PCA of Shading
PCA finds the orthogonal set of directions with maximal

variance in a multidimensional dataset. The first principal
component is the vector that maximizes the variance of the
dataset projected onto the vector. The subsequent principal
components maximizes the same variance while being or-
thogonal to the previous components. By using only the low
order principal components we can reduce the dimensional-
ity while maintaining sufficient representational power.

Variations in the light source, surface reflectance and
shape define the variations in the image. By performing

PCA on all images of an object we can acquire a low-
dimensional basis for representing the appearance of the
object. However, the same PCA basis can be computed
with model-based PCA by analytically deriving the prin-
cipal components from the image formation model. Thus,
there is no need to capture or render any images. The prin-
cipal components are computed directly from the variations
in the light source and surface reflectance function. One of
the advantages is that the light source can be rotated con-
tinuously to take into account an infinite number of lighting
conditions.

Previous work has analytically derived the principal
components of Lambertian surfaces under varying illumina-
tion [16, 13] as well as surfaces with variations in the BRDF
[14]. In this paper we extend this to incorporate variations
in the surface shape as well.

3.1. New Extension to Shape Variations

We begin by defining the image set upon which the PCA
will be performed. The image depends on the illumination,
the BRDF and the shape. Hence the set of images is defined
by the variations of these parts.

Let L be the spherical harmonics coefficients of the light
source and pL(L) the probability function describing how
the illumination conditions vary. Likewise, let b the be co-
efficients of the BRDF and pb(b) their probability function.
Finally, define a set of shapes, S where each shape s ∈ S
is represented by a set of surface normals {(αis, βis); i =
1, . . . , np}, where np is the number of pixels in the image.
Also define the probability function ps(s), s ∈ S. All these
probability distributions define the image set. Now we de-
rive the PCA on this set.

We begin by representing the image as a column vector
I. Then equation (1) can be written as a matrix product

I = Ec (2)

where the elements of E are the irradiance basis functions,
eik = Ek(αi, βi) and c contains ck, the products of the
illumination and BRDF coefficients. Note that E depends
on the shape only, while c depends on the illumination and
BRDF, but not the shape.

When computing the image covariance matrix it is im-
portant how the image set is centered. In standard PCA
this is done by subtracting the mean image. We do not do
this. Instead, we center by subtracting the images’ individ-
ual mean from each image. This produces better eigenim-
ages as they will contain no DC component and there is no
need to subtract a mean image before fitting the PCA basis
to an image.

The centered image is the image pixels subtracted by its’



mean. We can write this as another matrix product

Icent = I− (
1
np

np∑
i=1

Ii)1 = Fc (3)

where the elements of F are fik = Ek(αi, βi) −
1
np

∑np

i=1Ek(αi, βi).
Now, the covariance matrix with our centering is

ΣI =
〈
IcentI

T
cent

〉
L,b,s

(4)

where 〈·〉x =
∫
x
·px(x)dx is the expectation operator over

variable x. Inserting (3) into (4) results in

ΣI =
〈
FccTFT

〉
L,b,s

. (5)

As F is independent of L and b we can move their expecta-
tion operator inside the matrix product. We obtain

ΣI =
〈
FVcFT

〉
s

(6)

where Vc =
〈
ccT

〉
L,b

is the second moment matrix of c.
This matrix contains the covariances of the illumination and
BRDF coefficients. The covariance for a number of light-
ing conditions and BRDF’s have been computed in [13] and
[14].

Finally, F varies with the shape. Let Fs be the matrix F
computed with the surface normals of shape s. Then

ΣI =
∑
s∈S

FsVcFTs ps(s) (7)

The PCA is, as always, performed by computing the sin-
gular value decomposition (SVD) of the covariance matrix
ΣI. The resulting eigenvectors Uk are our basis images.

3.2. An Example

To demonstrate this new framework we have computed
the PCA basis for a set of faces. The shape variations are de-
fined by four 3D face models provided by the Max-Planck
Institute for Biological Cybernetics in Tuebingen, Germany
[3]. The variations in light source are described by a set
of captured environment maps (Debevec [5]), each rotated
through all possible 3D rotations. Computing the covari-
ance matrix for all rotations of an illumination map is par-
ticularly easy, as the cross-covariances between coefficients
are all zero and the variances are the sum of squares of the
coefficients of the same order, [13].

In the first basis the surface reflectance properties are set
to be human skin from the CUReT database [4], see Fig-
ure 1a. Note the basis images 1-3 and possible 5, which
represent the illumination changes, while the other images
encode shape variations.

To further demonstrate the framework we have computed
a second basis where the Torrance-Sparrow model is used
for the surface reflectance. The roughness parameter of the
BRDF ranges between 1 and 20, Figure 1b. In contrast to
the previous basis, nearly all of the displayed basis images
are illumination modes.

4. Shape Detection
The calculated PCA basis can be used for shape recogni-

tion by measuring how well the low-dimensional model can
reconstruct a given image signal I. The best estimate of the
signal using the first n vectors of the PCA basis is given by

Î =
n∑
k=1

dkUk + 1Ī , with dk = UT
k I, (8)

where Ī is the image mean.
The residual reconstruction error between the signal and

its estimate is given by

ε2(I) = ‖I− Î‖2 =
N∑

i=n+1

d2
i = ‖I− 1Ī‖2 −

n∑
i=1

d2
i . (9)

A low value of ε2(I) is a sign that the data fits the low-
dimensional model well. However, it may only indicate that
the variance of the considered image patch is low. For in-
stance, a completely flat image will be perfectly recreated
by the model and produce a residual error of zero. There-
fore, image patches with small values of ‖I − 1Ī‖2 are ig-
nored.

The final score used to indicate the presence of a shape
is a normalized version of the residual error

ε̃2(I) =
ε2(I)

‖I− 1Ī‖2
(10)

Low values of ε̃2(I) signify the likely presence of the sur-
face of interest.

4.1. General Approach

The above principle can be used to detect instances of a
shape, but as an object moves and/or changes its pose the
appearance can drastically change. It is not practical to let
all these changes be handled by a single model. We suggest
the following approach which is similar to the view-based
approach in [12].

Scale changes are handled by running a detector on a
multi-scale pyramid of the test image. Moreover, the detec-
tors are trained to handle the variations in size between the
discrete scales in the pyramid. To cope with varying poses
a set of models is created to represent the shape in different
poses. Each model is then trained to handle the small pose
changes between models of adjacent poses.



0.49 (0.485) 0.18 (0.661) 0.11 (0.768) 0.037 (0.805) 0.025 (0.83) 0.019 (0.849) 0.017 (0.867) 0.015 (0.882)

(a) Human Skin BRDF (from the CUReT database)

0.2 (0.202) 0.13 (0.331) 0.069 (0.401) 0.066 (0.467) 0.046 (0.513) 0.036 (0.549) 0.026 (0.575) 0.025 (0.599)

(b) Torrance-Sparrow with varying surface roughness

Figure 1. Eigenfaces computed with Model-based PCA from four 3D face models. The light source conditions were modeled with set of captured
environment maps rotated through all 3D rotations. The top basis a) was computed with the human skin BRDF from the CUReT database. Notice the
first three and the fifth eigenimages capture the illumination changes, while the remaining eigenimages encode shape changes. b) The second basis was
computed with a Torrance-Sparrow BRDF model of varying roughness. The shinier surfaces create more illumination modes as all displayed eigenimages
now encode light source changes.

It is also possible to train the models for shape deforma-
tions such as the differences between individuals in a face
detector, as demonstrated earlier.

To demonstrate the approach we have created detectors
for two basic shape primitives, spheres and cylinders. Due
to these shapes’ rotational invariances, the different poses
are slightly easier to handle than more complex shapes, but
the approach is in principle applicable to any shape or group
of shapes. Note also that an image of sphere contains all the
visible surface normals and essentially any shape is just a
redistribution of those surface normals. Hence, the eval-
uation of a sphere detector also gives an indication of the
performance of shape detection in general.

5. A Sphere Detector

The case of the sphere is relatively simple as it is com-
pletely rotationally invariant. Besides the unknown lighting
and BRDF, we only need to deal with scale changes and
therefore are only required to create one appearance model.

Model-based PCA takes a set of shapes, each in the form
of an image containing the surface normals at each pixel.
A size of the filter is set. We use 13x13 in this case. The
size of the sphere ranges from the size of the filter up to
when it interlinks with the filter running on the next scale
in the image pyramid. We sample this range and compute a
set of surface normals for each size. We also train for sub-
pixel translations as this improves detection. This is done
by sampling the center position in both x and y coordinates
between -0.5 and 0.5. All these variations need to be done
in combination. We sample the size at 10 points and the
translation at 11 points per axis resulting in a total of 1210
different shapes (sets of surface normals).

(a) (b)

Figure 2. The sphere shading model is trained with shape variations due
to scale changes and sub-pixel translations. a) The radius of the sphere is
varied to interlink the scales in the image pyramid. b) The center of the
sphere is also moved within the space of one pixel. To train the model all
combinations of scale and sub-pixels translation are used.

The model also has a mask defining which pixels in the
filter actually “see” the object. The smallest sphere sets the
mask of the filter and the mask is further reduced by the sub
pixels translation as illustrated by Figure 2.

5.1. Lighting and BRDF variations

The lighting conditions are modeled, as in the face bases,
with the set of environment maps by Debevec, rotated
through all 3D rotations.

The surface reflectance properties were selected to be a
set of BRDF’s of Torrance-Sparrow with Beckmann’s facet
distribution, mixed with various levels of Lambertian re-
flectance. Both the specular coefficient kspec and the rough-
ness parameter m where varied as illustrated in Figure 3.
The diffuse coefficient kd was scaled with 1 − kspec. The
BRDF’s were projected onto the BRDF basis and low-pass
filtered, as little as possible, to avoid Gibbs ringing. Fig-
ure 4 shows the resulting sphere basis.
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Figure 3. BRDF’s used for training the detectors, here illustrated by ren-
dered spheres. The BRDF’s are a mix of Torrance-Sparrow with Beckmann
facet distribution and Lambertian reflectance. Both the surface roughness
and specular coefficient is varied as illustrated above. A pure Lambertian
BRDF, although not rendered here, is also included in the set.
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Figure 4. The ten first basis images for the computed appearance model
of a sphere. The numbers show each image’s eigenvalue and within paren-
thesis the cumulative sum of eigenvalues.

6. A Cylinder Detector

Cylinders are partially rotationally invariant. There are
two degrees of freedom that we need to take care of to do
3D cylinder detection. One we deal with and the other we
argue we are invariant to.

Rotation in the image, that is rotation around the normal
vector of the image plane, is handled by creating a set of
models for the different poses.

Rotation into the image plane is not handled. Due to
the bas-relief ambiguity [2] there is an inherent ambiguity
which cannot be resolved. Although this was proven for
Lambertian surfaces only, it also holds to some degree for
non-Lambertian reflectance. Think of it this way. Let the
light field rotate with the cylinder, essentially the camera is
just changing viewpoint. For Lambertian surfaces the shad-
ing will be identical (if we disregard the perspective effects).
The specular reflection will move as the viewpoint changes,
but as we have no knowledge about the light source it is very
unlikely that we will be able to differentiate between differ-
ent rotations into the image plane. For very steep angles the
detector is more likely to fail. If one were interested in the
exact pose of the cylinder one could analyze the perspective

0.77 (0.766) 0.14 (0.907) 0.031 (0.937) 0.021 (0.958) 0.014 (0.972)

(a) (b)
Figure 5. A set of models is created to represent different rotations of a
cylinder. As in the sphere case, each model is trained for scale variations
and sub-pixel translations. a) In addition the models are trained for the
small rotations between models. The gray squares show the resulting mask
due to the variations in pose. b) Computed appearance model for one of
the eight directions of a cylinder.

effects at the edges of the cylinder, but that is beyond the
scope of this paper.

As in the sphere case, each model is trained to handle
small scale variations and sub-pixel translations. Addition-
ally, we train the model to handle the 2D rotations inter-
linking the set of models, see Figure 5a. Again, all these
variations are applied in all combinations.

Lighting conditions and BRDF’s were modeled as in the
sphere case.

To compute the model in Figure 5b we sample the scale
variations at 5 points, translation at 11 points per axis and
the rotation at 7 points. This results in a total of 4235
shapes.

7. Experiments
7.1. Synthetic experiments

The frequency space framework allows for rapid render-
ing of images. Thousands of images can be rendered in an
instant through a simple matrix multiplication. This allows
for extensive testing.

We test the detectors by computing the normalized resid-
ual variance in Equation (10) for a huge number of rendered
images. This shows how well the PCA basis is able to rep-
resent all the possible variations in the image of a shape.

Images are rendered for combinations of illumination, il-
lumination rotation, BRDF, sub-pixel translation and scale
changes. Nine illumination maps rotated with 3726 differ-
ent rotations, 21 BRDF’s, 5x5 sub-pixel and 5 scale changes
results in over 88 million images when evaluating the sphere
detector. The cylinder detector has another 5 combinations
of pose variations resulting in a total of 440 million images!

The normalized residual variance is computed using dif-
ferent numbers of principal components and stored in his-
tograms. Figure 6 shows the mean errors for the sphere
detector for a selection of different BRDF’s and number
of principal components. As expected Lambertian surfaces
has the lowest errors. Smooth (low roughness) and specular
materials require more principal components.

But the errors don’t say much on their own. More prin-
cipal components will reduce the error for spheres, but will
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Figure 6. Residual variances for different materials.
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Figure 7. a) Histogram of the residual variance from the sphere detector
on the BSDS300 training set. b) ROC-curves for the sphere detector.

likely also reduce the errors for non-spheres. To investi-
gate this we run the detectors on the Berkeley Segmentation
Dataset (BSDS300), [11], which to our knowledge contains
no spheres, and record their error histograms. Figure 7a
shows some of the recorded histograms. Together with the
sphere histograms we can plot ROC-curves for the detec-
tors, see Figure 7b.

To further summarize these results we plot the errors at
the equal error rate, i.e. when the false positive rate equals
1 - the true positive rate. Figure 8 shows these graphs for
the sphere and cylinder detector. Again, as expected shinier
BRDF’s require more principal components. Interestingly,
more components lead to better discrimination. The basis
increasingly fits spheres better than non spheres with an in-
creasing number of components. However this might not
be true on real images with other sources of error than the
reconstruction error. The graphs also show that it is impor-
tant to be careful when choosing the number of components.
This is most evident in the cylinder case where having six
or seven actually reduces the performance compared to five
components. This phenomenon is most likely related to the
number of modes needed to create rotational invariance in a
basis.

7.2. Experiments on real images

To further test the approach we constructed a small
dataset of 31 images containing three spheres with differ-
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Figure 8. Predicted false positive rates when threshold is set so that the
false positive rate equal (1 - true positive rate). These graphs summarize
the synthetic experiments quite well. They give an indication on how shiny
materials the models can handle and serve as a guide when choosing the
number of principal components.

Figure 9. Examples from the sphere image dataset

ent surface reflectance properties. The spheres are made of
paper. One is kept as it is, one is painted with a silver color
and the third with a gold color than is slightly shinier than
the silver paint. The images were taken in a number of dif-
ferent illumination conditions such as sunny, overcast and
in various indoor office type environments, see Figure 9 for
examples.

The positions of the sphere are manually marked and it
is computed at which scale and position the sphere should
be detected. At this scale and position the residual variance
is recorded. Figure 10 shows the mean errors. Not surpris-
ingly the shinier sphere the higher error for the same num-
ber of principal components. Plotted are also some results
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Figure 10. Residual variances of the sphere image dataset. The thin lines
show some of the results from the synthetic experiments for comparison.
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Figure 11. Equal error rates for the sphere dataset. The thin lines show
some of the results from the synthetic experiments for comparison.

from the synthetic experiments for comparison. The syn-
thetic errors decrease faster for higher number of principal
components. This is most likely because the real images
have other types of errors which remain when the recon-
struction error is reduced.

To estimate performance of the detector we again com-
pare the errors with the BSDS300 dataset. In Figure 11 the
equal error rates are plotted for the sphere dataset as well
as some relevant results from the synthetic experiments. It
seems that even in real images more principal components
increase the performance of the detector, although the silver
sphere’s curve flattens out at about 12 components.

7.3. Some examples

To get an idea of the performance on more complex im-
ages we have created two collages of spheres, Figure 12a
and cylinders, Figure 13a. The images were gathered from
the web and other source such as the Caltech 256 database,
[6].

The detectors were run on each scale in the image pyra-
mid. The number of principal components used were 33 and
5 for the sphere and cylinder respectively. To visualize the
errors we merge the results from all scales in a winner-take-

(a)

(b)

(c)

Figure 12. Results from the sphere detector. Please view these in color!
The results are discussed in the text.

all fashion. Figures 12b and 13b shows the errors plotted
as e−ε

2/a to get a suitable contrast. As can be seen most
of the spheres and many of cylinders have a high score at
the center, but also near the center (but at a smaller scale).
Texture and occlusion are sources of errors. Shadows and
shape deviations also cause problems. Some of these could
be improved e.g. by modeling smaller parts of shapes.

Figures 12c, 13c and 13d show the scale and direction
for the best fits in the images. These can for the most part
be considered correct.

8. Conclusions

We have presented a systematic approach for the cre-
ation of shape detectors based on shading. This approach
is enabled by extending recent research in frequency space
representations of shading and model-based PCA. A novel
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Figure 13. Results from the cylinder detector. Please view these in color!
The results are discussed in the text.

derivation of model-based PCA allows the inclusion of
shape changes in the formulation. This can be used to han-
dle variations in the object’s size and pose as well as other
shape variations such as between individual faces as demon-
strated in the paper.

We propose to use this extended model-based framework
to detect shapes from shading patterns in images. By ana-
lyzing the goodness of fit of the appearance models created,
it is possible to detect the shape invariant to illumination
conditions and the surface reflectance properties. With the
new framework the models can also be trained to cope with

small variations in scale and pose. Large scale variations
are handled by running the detector on a multi-scale im-
age pyramid. Large pose/view changes are dealt with in the
classic view-based way of creating a set of models, one for
each pose/view.

The approach is demonstrated by creating detectors for
two basic shape primitives, spheres and cylinders. These
shapes’ rotational invariances make it easier to handle pose
changes. More complex shapes would require more work.

The detectors were extensively tested on synthetic im-
ages as well as on a dataset of real images, with nice cor-
respondence between the synthetic and real experiments.
Matte surfaces are easier to detect than shiny, but shiny
surface can be detected as well but requires more principal
components.
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