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Abstract

We consider the problem of capturing shape character-
istics on specular (refractive and reflective) surfaces that
are nearly flat. These surfaces are difficult to model us-
ing traditional methods based on reconstructing the sur-
face positions and normals. These lower-order shape at-
tributes provide little information to identify important sur-
face characteristics related to distortions. In this paper, we
present a framework for recovering the higher-order geom-
etry attributes of specular surfaces. Our method models
local reflections and refractions in terms of a special class
of multiperspective cameras called the general linear cam-
eras (GLCs). We then develop a new theory that correlates
the higher-order differential geometry attributes with the lo-
cal GLCs. Specifically, we show that Gaussian and Mean
Curvature can be directly derived from the camera intrin-
sics of the local GLCs. We validate this theory on both syn-
thetic and real-world specular surfaces. Our method places
a known pattern in front of a reflective surface or beneath
a refractive surface and captures a distorted image on the
surface. We then compute the optimal GLC using a sparse
set of correspondences and recover the curvatures from the
GLC. Experiments demonstrate that our methods are robust
and highly accurate.

1. Introduction

Modeling and reconstructing 3D specular (reflective and
refractive) surfaces is a challenging problem and has drawn
considerable attention in recent years. It can be used in nu-
merous applications, from the Fluid Mechanics perspective
as well as from the Computer Graphics and Vision perspec-
tive. For example, the recovered fluid surfaces can provide
direct quantitative comparisons and validation of existing
fluid models [5, 24]. In catadioptric mirror design, the re-
covered mirror geometry can help reduce distortions. Cap-
tured fluid surfaces have also been directly integrated into

Figure 1. Distortions observed on near-flat window surfaces.

animations and film footage to reproduce realistic phenom-
ena [4].

In this paper, we focus on a special class of specular sur-
faces: near-flat specular surface. These surfaces are par-
ticularly difficult to model using conventional methods that
are based on recovering the lower-order geometry attributes
such as the surface positions or normals. For near-flat sur-
faces, these attributes provide little information to iden-
tify important surface characteristics related to distortions.
A typical example is the image observed on a window as
shown in Figure 1. Although the surface is highly planar
and the normals are approximately the same, the reflection
image still exhibits complex distortions. Konderink have
shown that these distortions are caused by the higher-order
differential geometry attributes such as the curvature [10].

We present a new framework for directly recovering the
higher-order shape characteristics of near-flat specular sur-
faces. We use a special class of multiperspective cameras
called the general linear cameras (GLCs) to model the local
reflections and refractions. The GLC model characterizes
all 2D planes in the ray space as one of the eight multiper-
spective cameras. This analysis allows us to identify the ray
structure at each point on the surface in terms of the GLC.
We then derive a new ray-curvature theory to correlate the
higher-order differential geometry attributes with the GLC
model. Specifically, we show the Gaussian and the Mean
Curvature of the specular surface can be directly computed
using the camera intrinsics of the local GLC.

We validate our new theory on both synthetic and real-
world surfaces. We place a known pattern in front of a re-
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flective medium or beneath a refractive medium and cap-
tures a distorted image on the surface of the medium. We
then compute the optimal GLC using a sparse set of cor-
respondences and recover the curvatures from the GLC.
Experiments demonstrate that our methods are robust and
highly accurate.

2. Related Work

Reconstructing highly specular surfaces is one of the
few remaining open problems in computer vision[8]. Many
single-image-based reconstruction methods have followed
a shape-from-distortion approach by analyzing the distor-
tion of a known pattern placed near the surface. Sander-
son et al. [15] have shown that it is impossible to com-
pletely reconstruct the surface from a single image. There-
fore, many constraints in different forms have been intro-
duced to eliminate this ambiguity, including the planarity
assumption [7, 13], surface smoothness prior [16], surface
integrability constraints[19], and the use of special optics
[23, 20]. A common problem in these methods is that they
are highly sensitive to radiometric inconsistency, calibration
errors, and surface perturbations.

Alternatively, stereo or multi-view reconstruction meth-
ods have been used to more robustly and accurately recover
the specular surfaces. Sanderson et al. [15] proposed to use
a stereo camera configuration for resolving the specular am-
biguity. Blake [1] measured the variations of specularities
from different viewing directions to determine the differen-
tial properties of the surface. Bonfort and Sturm [2] used
multiple-view geometry to build a volumetric reconstruc-
tion of mirror surfaces. Recently, Morris and Kutulakos
[12] used a stereo-camera to recover the refractive dispar-
ity on complex and dynamic fluid surfaces. Bonfort and
Sturm [3] used two images of the same pattern in two dif-
ferent positions to reconstruct specular surfaces. Kutulakos
and Steger further used light-path triangulation to handle
multiple reflections and refractions [11].

In this paper, we focus on modeling a special class of
specular surfaces: near-flat surfaces such as windows and
relatively flat fluid surfaces. Reconstructing these surfaces
is particularly challenging for two reasons. First, most
existing methods are designed to recover the lower-order
shape attributes of the surface. However, the most important
shape characteristics of near-flat surfaces are the high-order
surface attributes such as the curvatures. These attributes
determine the unique appearance of distortions [22], the ap-
perance of silhouettes [9], and the motion of specular high-
lights [10]. Second, the surfaces recovered by traditional
methods are usually noisy due to calibration errors and sur-
face perturbations. Hence, it is impractical to use these
lower-order attributes to directly estimate the higher-order
attributes.

We present a new ray-curvature theory to model the

higher-order geometry attributes on specular surfaces by an-
alyzing the local ray structure. Swaminanthan and Nayar
posposed to use the caustic surfaces to model the ray geom-
etry on catadioptric mirrors [18, 17]. Caustic surfaces are
formed by the focii of the rays. When the camera moves off
the focus of the mirror, the caustic surface quickly evolves
into complicated shapes with discontinuities and becomes
difficult to model [18, 2]. Furthermore, it is unclear how
the caustic surfaces of rays are related to surface differen-
tial geometry. Recently, Yu and McMillan proposed a ray
geometry analysis similar to ours to model reflection distor-
tions. They focused on characterizing the local distortions
as one of the multiperspective cameras whereas we aim to
recover the surface characteristics using the local ray geom-
etry.

Before proceeding, we explain our notation. Super-
scripts, such as dx, dy , and dz represent the x and y and
z component of a point or vector. Subscripts, such as zx

and zy represent the first-order partial derivatives of z with
respect to x and y. And similarly, zxx refers to the second-
order partial derivative of z with respect to x.

2.1. General Linear Cameras

Our ray-curvature theory is based on modeling local re-
flections and refractions as multiperspective cameras. Yu
and McMillan [21] recently proposed the general linear
camera (GLC) model to unify traditional perspective, ortho-
graphic, and multiperspective cameras models. In the GLC
framework, every ray is parameterized by its intersections
with the two parallel planes, where [s, t] is the intersection
with the first and [u, v] the second. This parametrization is
often called a two-plane parametrization (2PP). Except for
those rays parallel to the two planes, 2PP uniquely repre-
sents each ray by mapping it to a point in a four-dimensional
ray space.

In this paper, we simplify the GLC model by substituting
σ = s − u and τ = t − v and we will use this [σ, τ, u, v]
parametrization to represent rays. We also assume the de-
fault uv plane is at z = 0 and the st plane at z = 1, thus
[σ, τ, 1] represents the direction of the ray.

A GLC is defined as the affine combination of three rays,
or, as a plane in the 4D ray space,

GLC = {r : r = α · [σ1, τ1, u1, v1] + β · [σ2, τ2, u2, v2]
+ (1 − α − β) · [σ3, τ3, u3, v3], ∀α, β}

Most well-known multiperspective cameras, such as push-
broom, cross-slit, and the linear oblique cameras are GLCs.
Furthermore, [21] provides a characteristic equation to de-
termine the type of the multiperspective camera for any
GLC specification given three rays:∣∣∣∣∣∣

u1 + λ · σ1 v1 + λ · τ1 1
u2 + λ · σ2 v2 + λ · τ2 1
u3 + λ · σ3 v3 + λ · τ3 1

∣∣∣∣∣∣
= 0 (1)
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Figure 2. We map the reflection (a) and refractions rays (b) into
the ray space and use the GLC to analyze the local ray structure.

Equation (1) yields to a quadratic equation in λ, and
the number of solutions determines how many singularities
(lines or points) all rays in the GLC simultaneously pass
through. A total of eight GLC types describe all 2D linear
manifolds in the ray space [21].

To use the GLCs to locally model reflections and reflec-
tions, we assume all rays reflected and refracted off the sur-
face can be parameterized as:

Σ(x, y) = [σ(x, y), τ (x, y), u(x, y), v(x, y)] (2)

At every point in this ray manifold, we can compute a
ray tangent plane with two spanning vectors �d1 and �d2:

�d1 = [σx, τx, ux, vx], �d2 = [σy, τy, uy, vy] (3)

We can then compute the ray characteristic equation of
the local GLC at Σ(x, y) by choosing three rays Σ(x, y),
Σ(x, y) + �d1, and Σ(x, y) + �d2 as:
∣∣∣∣∣∣

u + λσ v + λτ 1
(u + ux) + λ(σ + σx) (v + vx) + λ(τ + τx) 1
(u + uy) + λ(σ + σy) (v + vy) + λ(τ + τy) 1

∣∣∣∣∣∣
= 0

(4)
yielding to the quadratic equation

Aλ2 + Bλ + C = 0 (5)

where
A = σxτy − σyτx

B = σxvy − σyvx − τxuy + τyux

C = uxvy − uyvx (6)

We call Equation (4) the local GLC characteristic equa-
tion and its coefficients A, B, and C are the camera in-
trinsics to the local GLC. Figure 2 illustrates the general
process for analyzing the reflection and refraction rays.

3. Ray-Curvature Theory

We start by mapping the reflected or refracted rays into
the [σ, τ, u, v] ray space. At each point on the surface, we
compute the reflected or refracted ray using Snell’s Law and
then project it onto the uv and st ray parametrization plane,
as shown in Figure 3. Assume the surface is parameterized
in x and y, all the reflected or refracted rays can be mapped

onto a ray manifold as shown in Equation (2). To analyze
the local ray geometry, we can then use the GLC to model
the local behavior of rays using the ray characteristic equa-
tion (4).

At each point Ȯ on the specular surface, we choose the
uv parametrization plane to be the tangent plane of the sur-
face at Ȯ. Furthermore, we assume Ȯ is the origin of the
uv plane and z-axis coincides with the normal direction at
Ȯ as shown in Figure 3(a).

We assume the surface is locally a Monge function
z(x, y) with respect to the uv plane. Therefore, the sur-
face normal of points in the local neighborhood of Ȯ can be
computed as:

�n = [−zx,−zy, 1] (7)

In this paper, we also assume that for both reflective and
refractive surfaces, the viewing camera is an orthographic
camera that has direction:

�i = [dx, dy,−1] (8)

3.1. Reflection Curvature Analysis

To compute the local reflection ray manifold, we can
compute the reflected direction r as:

�r =�i − 2(n̂ ·�i)n̂ (9)

where n̂ is the normalized �n as

n̂ = [− zx√
β

,− zy√
β

,
1√
β

], β = z2
x + z2

y + 1 (10)

Substituting Equation (8) and (10) into Equation (9), we
have:

rx =
dx(z2

y − z2
x + 1) − 2zx(1 + dyzy)

β

ry =
dy(z2

x − z2
y + 1) − 2zy(1 + dxzx)

β

rz =
z2
x + z2

y − 1 − 2(dxzx + dyzy)
β

(11)

Recall that each reflected ray originates from
Ȯ[x, y, z(x, y)], we can compute the [σ, τ, u, v] ray
coordinate of the ray by intersecting it with the st and uv
planes as:

[σ, τ, u, v] = [
rx

rz
,
ry

rz
, x − z · rx

rz
, y − z · ry

rz
] (12)

Substituting Equation (11) into Equation (12), we have

σ =
dx(z2

y − z2
x + 1) − 2zx(1 + dyzy)

z2
x + z2

y − 1 − 2(dxzx + dyzy)

τ =
dy(z2

x − z2
y + 1) − 2zy(1 + dxzx)

z2
x + z2

y − 1 − 2(dxzx + dyzy)
u = x − zσ, v = y − zτ (13)
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Figure 3. In reflection (a) and refraction (b), the incidence ray�i, the
surface normal �n, and the exitance ray �r are coplanar and satisfy
Snell’s Law. We choose the uv parametrization plane to be the
tangent plane at the point Ȯ we analyze. The st plane is a unit
distance away from the uv plane along �n.

This maps all reflected rays onto a ray manifold parame-
terized in x and y. To analyze the local rays’ behave, we can
compute the local GLC characteristic equation (4). Since
we are analyzing the ray behavior at Ȯ, which is the origin
of the coordinate system whose normal is [0, 0, 1], we have

z = zx = zy = 0 (14)

Substituting Equation (13) and (14) into the ray charac-
teristic equation (4), we have:

A = 4γ(zxxzyy − z2
xy)

B = −2(zxx + zyy)

−4dxdyzxy − 2((dx)2zxx + (dy)2zyy) (15)

where
γ = (dx)2 + (dy)2 + 1 (16)

Recall that the Gaussian Curvature K and the Mean Cur-
vature H of the Monge surface z(x, y) can be computed as:

K =
zxxzyy − z2

xy

(z2
x + z2

y + 1)2

H =
(1 + z2

y)zxx − 2zxzyzxy + (1 + z2
x)zyy

2(1 + z2
x + z2

y)3/2
(17)

At point Ȯ, they can be simplified as:

K = zxxzyy − z2
xy, H =

1
2
(zxx + zyy) (18)

Finally, if we assume the viewing direction is approxi-
mately the surface normal direction at Ȯ, i.e., dx ≈ dy ≈ 0,
we can further simplify the coefficients of the ray character-
istic equation (15) as:

A = 4zxxzyy − 4z2
xy = 4K = 4κ1 · κ2

B = −2(zxx + zyy) = −4H = −2(κ1 + κ2)
C = 1 (19)

where κ1 and κ2 correspond to the min and max curvatures.
Equation (19) indicates that we can directly compute the
Gaussian and the Mean curvature using the ray characteris-
tic equation of the local reflection GLC.

We can further substitute Equation (19) into the ray char-
acteristic equation Aλ2 + Bλ + C = 0 to solve for λ as

λ1 =
1

2κ1
, λ2 =

1
2κ2

(20)

Yu and McMillan have recently shown that λ1 and the λ2

directly compute the caustic surface [17] of the reflected
rays. Our analysis implies that these two caustic sur-
faces are closely related to the curvatures of the surfaces
by a scale. This is mainly because under our approxima-
tion, the reflected direction is approximated [2zx, 2zy,−1],
i.e., the x and y directional components double the normal
[zx, zy,−1].

In addition, the coefficient A in the characteristic equa-
tion reveals the directions of the all rays in the GLC [21].
When A = 0, local rays will all be parallel to certain direc-
tions and they form a pushbroom camera [6]. Our analysis
shows that A = 0 indicates K = 0. Therefore, since K = 0
corresponds to the surfaces points are parabolic,local rays
from an orthographic cameras will be reflected to form a
pushbroom camera near the parabolic curves. This is con-
sistent with Koenderink’s observation [10] that specular re-
flections exhibit “duplications” at the parabolic points as
“duplication” is a common image feature in pushbroom
cameras.

3.2. Refraction Ray Curvature

Next, we apply a similar analysis to refractions. Assume
the rays are refracted from the air into the surface, since the
incident ray�i, the exit ray �r, and the normal �n are coplanar,
and the incident angle φ1 and exit angle φ2 satisfy Snell’s
Law (Figure 3(b)), we have:

sin φ1 = m sin φ2, �r · (�i × �n) = 0 (21)

where m is the refractive index of the refraction surface.
Furthermore, we have

cos φ1 =
�i · �n
|�i| · |�n| , cos φ2 =

�r · �n
|�r| · |�n| (22)

For near-flat surfaces with an orthogonal viewing direc-
tion, the incidence angle φ1 is relatively small. Thus, we
can approximate the refracted direction as:

�r ≈ 1
m

· î +
m − 1

m
· n̂ (23)

where î and n̂ are normalized vectors of�i and �n.
Substituting Equation (7) and (8) into Equation (23), we

obtain the refracted direction �r = [rx, ry,−1] as:

rx =
zx(m − 1)

√
γ + dx

√
β

(m − 1)
√

γ +
√

β

ry =
zy(m − 1)

√
γ + dy

√
β

(m − 1)
√

γ +
√

β
(24)



We then compute the uv coordinates of the ray by inter-
secting it with the uv plane similar to Equation (12), and we
have the [σ, τ, u, v] coordinate of the refracted ray as:

σ = −rx, τ = −ry

u = x + zrx, v = y + zry (25)

Finally, we can compute the ray characteristic equation
of the refraction GLC using Equation (4) by taking partial
derivatives of σ, τ , u, and v with respect to x and y in Equa-
tion (25). Since we choose the surface tangent plane as the
parametrization plane, we can further simplify the A, B,
and C coefficients using Equation (14) as:

A =
γ(m − 1)2(zxxzyy − z2

xy)

(1 + (m − 1)
√

γ)
2

B =
√

γ(m − 1)(zxx + zyy)
1 + (m − 1)

√
γ

(26)

By further assuming the viewing direction is orthogonal
to the surface, i.e., dx = dy = 0, we have:

A = (
m − 1

m
)2(zxxzyy − z2

xy) = (
m − 1

m
)2K

B =
(m − 1)

m
(zxx + zyy) =

2(m − 1)
m

H

C = 1 (27)

Similar to the reflection curvature analysis, Equation
(27) implies that we can compute the Gaussian and the
Mean Curvature directly from the A, B, and C coefficients
of the refraction GLC. Furthermore, we can solve the ray
characteristic equation for λ as:

λ1 =
m

(m − 1)κ1
, λ2 =

m

(m − 1)κ2
(28)

This indicates that the refraction caustic surfaces are related
to the curvature of the near-flat mirror surfaces by a scale
determined by the refractive index.

4. Estimating the Local GLCs

In this section, we show how to estimate the local GLCs
of specular surfaces from their images.

4.1. Pixel-Pattern Correspondences

In order to estimate the local GLC, we first compute the
rays exiting from the surface. To do so, we place a known
pattern (e.g., a checkerboard) in front of the reflective sur-
face or beneath the refractive surface and capture an image
of the surface. We then find the pixel-pattern correspon-
dences from the image.

For reflective surfaces such as mirrors, we use a color-
coded checkerboard pattern to reduce the ambiguities be-
tween neighboring corners. Since the distortion patterns
on the reflective surface may dramatically change, we use

Scale Invariant Feature Transform (SIFT) to detect the fea-
ture points. We then perform global matching using SSD
on all the three color channels to find the potential match-
ing pairs. We also assume the topology of the grid does not
change to remove the outliers.

For refractive surfaces such as water surfaces that evolve
over time, we implement an iterative method similar to the
one used in [12] to update the pixel-to-pattern correspon-
dences over the frames. Specifically, we assume that the
water surface is undisturbed at time t = 0 and we use Harris
corner detector to detect corners for establishing the initial
pixel-to-pattern correspondences. Then we propagate them
through time using optical flow estimation.

4.2. Ray-Pixel Correspondence

Once we compute the pixel-to-pattern correspondence,
we set out to compute the reflection or the refraction rays
at the corresponding pixels. Since our focus is to model
near-flat surfaces, we find, from our experiments, it is usu-
ally sufficient to simply approximate the surface as a plane.
Therefore, for reflection surfaces, we simply calibrate its
attached background surface to determine this plane. For
refractions, we capture a pair of images of the pattern, one
without the fluid surface and one with the fluid surface with
no disturbances. Since the pattern will drift due to refrac-
tions, we then measure the height of the fluid surface in
terms of the amount of drifting.

4.3. Estimating the Local GLC

Notice that since we only estimate the corresponding
rays at the corners, we only obtain a sparse set of rays. To
further improve the quality of the estimation, we first run
Delaunay triangulations on the detected corners. We warp
the corner rays into the ray space and linearly interpolate the
[σ, τ, u, v] coordinates for each pixel by rasterizing the tri-
angles. This provides us with densely sampled rays. To esti-
mate the GLC model at each pixel, we pick the four neigh-
boring rays and find the optimal GLC that best fits these
rays.

Assume the rays are represented as: �rk =
[σk, τk, uk, vk], k = 1...5, we use the canonical form
[21] to specify the target GLC. The canonical GLC uses
the three generator rays that have form: [σ̃1, τ̃1, 0, 0],
[σ̃2, τ̃2, 1, 0], and [σ̃2, τ̃2, 0, 1].

For every ray �rk in a GLC, it can be written as some
affine combination of the three generator rays as:

�rk[σk, τk, uk, vk] = (1 − αk − βk) · [σ̃1, τ̃1, 0, 0]
αk · [σ̃2, τ̃2, 1, 0] + βk · [σ̃3, τ̃3, 0, 1] (29)

It is easy to see that the affine coefficients can be computed
as αk = uk and βk = vk, and we can rewrite Equation (29)
as:
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Figure 4. Capturing Near-flat Refractive Surfaces. (a) show the
setup of our system. (b) shows the distorted checkerboard pattern.
(c) captures the initial fluid surface without disturbance.

σk = (1 − uk − vk)σ̃1 + ukσ̃2 + vkσ̃3

τk = (1 − uk − vk)τ̃1 + uk τ̃2 + vk τ̃3 (30)

Therefore each ray maps to two linear constraints. Recall
that the canonical GLC is specified by six variables. Since
we picked five rays, we form an over-determined system as:

(
S T

)
= M ·

⎛
⎝

σ̃1 τ̃1

σ̃2 τ̃2

σ̃3 τ̃3

⎞
⎠ (31)

where

S =

⎛
⎜⎝

σ1

...
σ5

⎞
⎟⎠ , T =

⎛
⎜⎝

τ1

...
τ5

⎞
⎟⎠

M =

⎛
⎜⎝

1 − u1 − v1 u1 v1

...
...

...
1 − u5 − v5 u5 v5

⎞
⎟⎠ (32)

To find the optical GLC, we simply use the Singular Value
Decomposition (SVD) to solve for Equation (31).

5. Experiments and Results

For synthetic surfaces, we use the PovRay Ray Tracer
to render the image of the surface viewed from an ortho-
graphic camera [14]. For real surfaces, we capture a dis-
torted image on the surface from a camera positioned rela-
tively faraway form the surface to simulate the orthographic
viewing direction.

5.1. Synthetic Surfaces

We first conduct experiments using our method on
known parametric surfaces. In Figure 6, we show two near-
flat parametric surfaces: the top row is a combination of
Gaussians and the bottom row is a scaled dimple surface.
We show the color-coded height fields, the Gaussian curva-
ture fields, and the mean curvature fields. In column 2, we
show the ray-traced images of the surfaces viewed from an
orthographic camera.

We then use the algorithm described in Section 4 to es-
timate the Gaussian and the Mean Curvature. In column
4 and 6, we show the estimated Gaussian and Mean cur-
vature. Our ray-curvature method accurately recovers the

curvatures. In Figure 7, we apply the same method on two
refractive surfaces. We assume the surface has a refractive
index of 1.33 and has a uniform height of 1.5. Despite the
approximation in Equation (23), our method still faithfully
capture the curvature characteristics on these refractive sur-
faces.

5.2. Real Surfaces

Using our method, we have also experimented with cap-
turing high-order differential geometry attributes on real re-
flection and refraction surfaces.

Our first experiment is to recover the geometry of a trans-
parent paper, as shown in Figure 5. We stick the paper
on a black board and the paper becomes highly reflective.
We then place a colored checkerboard in front of the pa-
per. The checkerboard is positioned approximately parallel
to the white board to minimize distortions and the camera
is placed relative far away from the slip. We use a second
camera to calibrate the position of the checkerboard and ap-
ply the method described in Section 4 to compute the pixel-
to-pattern correspondences. We assume the paper lies on a
plane and we use the known checkerboard position and the
correspondences to compute the reflected ray at each corner.

In Figure 5, we show the recovered curvatures of the
transparent paper. Notice that the recovered curvature fields
are closely related to the degree of distortions on the im-
age. Larger Gaussian curvature correspond to stronger dis-
tortions: the aspect ratio of the pattern is severely distorted
at high Gaussian curvature regions. These characteristics
are difficult to model using traditional methods that only re-
cover the vertices and normals.

To capture the curvature on the water’s surfaces, we set
up a single-camera system as shown in Figure 4. We place a
Dragonfly Flea camera high above the water surface to syn-
thesize an orthographic viewing camera. We first calibrate
the camera and the checker pattern without water. We then
take an image of the undisturbed water surface and recali-
brate the pattern. The translation of the pattern provides us
the height of the surface. We then estimate the pixel-to-ray
correspondence at each frame as described in 4, find the op-
timal GLC, and compute the Gaussian and Mean curvature.
In Figure 8, we show the recovered Gaussian and mean cur-
vature fields of the water surface captured at four different
time instance. Notice that the curvature fields identify im-
portant shape characteristics related to the distortions.

In our experiment, we find that it is often difficult to es-
tablish one-to-one correspondences from the checkerboard
corners to the observed pattern, especially for fluid surfaces,
mainly due to the motion blur, image distortions, and illu-
mination inconsistencies. As a result, our method produces
a sparse set of correspondences and we rely on the Delau-
nay Triangulation to interpolate the ray coordinates for each
pixel.
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Figure 5. Capturing Near-flat Reflection Surfaces. (a) shows our
system setup. We mount a transparent paper on the blackboard
and place the colored checkerboard parallel to the blackboard.
(b) shows the captured distortion image. (c) shows the estimated
Gaussian curvature using our method.

6. Conclusions

We have presented a new framework for modeling and
capturing shape characteristics on near-flat specular (refrac-
tive and reflective) surfaces. Unlike traditional methods that
focus on reconstructing the surface positions and normals,
our framework directly recovers the higher-order geometry
attributes such as the curvature on specular surfaces. To do
so, we model the local reflections and refractions in terms
of general linear cameras (GLCs). We have derived a new
theory that correlates the higher-order differential geome-
try attributes with the local GLC intrinsics. Specifically, we
have shown that the Gaussian and Mean Curvature can be
directly computed in terms of the local reflection or refrac-
tion GLC’s characteristic equation.

We have validated our ray-curvature theory on both syn-
thetic and real-world specular surfaces. Our method places
a known pattern in front of the reflective surface or beneath
the refractive surface and captures a distorted image on the
surface. We then compute the optimal GLC using a sparse
set of correspondences and estimate the curvatures from the
GLC. Experiments have demonstrated that our methods are
robust and highly accurate.

In the future, we plan to explore how to extend our ray-
curvature theory to model a broader class of surfaces. The
key difficulty is establishing pixel-ray correspondences. We
resolve this correspondence problem by assuming that the
surface is near-flat and can be approximated by a plane. We
would like to investigate how to directly use the GLC dis-
tortions to model the ray structures without requiring the
pixel-to-ray correspondences.
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Figure 6. The recovered Gaussian and mean curvature using ray-traced reflection images.
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Figure 7. The recovered Gaussian and mean curvature using ray-traced refraction images.
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Figure 8. The recovered Gaussian and mean curvature of the dynamic fluid surface at different time instances.


