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Abstract

Recovering the three-dimensional (3D) object shape re-
mains an unresolved area of research on the cross-section of
computer vision, photogrammetry and bioinformatics. Al-
though various techniques have been developed, the compu-
tational complexity and the constraints introduced to over-
come the problems have limited their applicability in the
real world scenarios. In this paper, we propose a method
that is based on the projective geometry between the object
space and the silhouette-images taken from multiple view-
points. The approach eliminates the problems related to
dense feature point matching and camera calibration that
are generally adopted by many state of the art shape re-
construction methods. The object shape is reconstructed by
establishing a set of hypothetical planes slicing the object
volume and estimating the projective geometric relations
between the images of these planes. The experimental re-
sults show that the 3D object shape can be recovered by
applying minimal constraints.

1. Introduction

The growing demand for using 3D models on visual-
ization, city planning and scene analysis makes the 3D
object shape recovery a prevailing area of research in the
field of Computer Vision. Numerous research efforts have
been extended to recover the 3D object shape from images.
The most common approach requires calibrating the cam-
era prior to the 3D shape recovery. An intuitive approach
to calibrate cameras is to use a set of matching features
across different views of a calibrating box placed in the
object space. Alternatively, the calibration can be accom-
plished by exploiting the projective geometry which relates
different views of a scene to each other [4] [5] [7]. Once
the cameras are calibrated, both approaches reconstruct the
object shape by backprojecting the image points into the
object space by triangulation [1] [11] and the 3D shape is
recovered up to an unknown scale factor.

While calibrating cameras is a desirable procedure, it is
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usually not an intuitive one. Adding the limitation of ob-
serving limited number of features on the objects limits the
applicability of these methods in scenarios when the im-
ages are of poor quality and perspectively distorted, and the
objects are fully or partially occluded. These limitations
suggest the development of methods which eliminate the
requirement of establishing point correspondences and cal-
ibrating cameras.

In the recent years, another line of 3D shape recovery re-
search, which exploits the silhouette images and visual-hull
formation, has emerged. These methods exploit the fact that
the shape information provided by the object silhouettes is
sufficient for reconstructing the object shape without estab-
lishing point matches [3] [13]. However, these methods still
require camera calibration. The camera calibration param-
eters are used for backprojecting each silhouette from the
image space to the object space which forms a volume. The
intersections of these volumes define the convex-hull; hence
the object shape.

In this paper, we leverage the state of the art in shape
reconstruction which adopts the use of silhouettes while
eliminating the requirement of camera calibration. The pro-
posed method utilizes the concept of slicing planes which
is inspired by the 3D affine recovery technique discussed in
[10]. The slicing planes are considered hypothetical planes
which are parallel to each other and to a reference plane in
the object space. The analytic relation between the images
is derived from the homography of the reference planes.

The homography transform provides a strong geometric
constraint and, in contrast to fundamental matrix, provides
direct mapping across images [6]. The implied 3D scene in-
formation through the reference plane and its homography
transform in the images have been used in various applica-
tions, including but not limited to the tracking of people [9],
shadow removal [2], and detection of low-lying objects [8].
Most of these techniques have been conceptually proven to
have robust performance in practical scenarios.

In the proposed approach, the homography transform of
the reference plane across the images is combined with a
minimal number of additional observations related to the



view geometry of the slicing planes for “metric recovery”
of the object shape. The analytical relations of the slicing
planes are derived from the use of several geometric proper-
ties. The intersections of the object silhouettes in different
views and their mapping to a reference view provides the
metric recovery of the object shape.

The merit of the proposed approach can be described in
terms of efficiency, flexibility and practicability:

Efficiency: The proposed method does not require cam-
era calibration and estimation of the fundamental matrix;
hence, the computational complexity related to establishing
abundant number of point correspondences is reduced. The
object shape is reconstructed using the apparent contours of
the projected silhouettes, which provide the surface of the
3D object without the necessity of estimating visual hulls.

Flexibility: The level of detail in the reconstructed ob-
ject is dependent on the number of images used or the dis-
tance between the slicing planes, which provide a balance
between the computation time and the smoothness of the
recovered shape. Furthermore, since no dense point corre-
spondences are required and the missing information can be
recovered from other images from different viewpoints, the
use of object silhouettes automatically eliminates the prob-
lems related to occlusion.

Practicability: The set of simple equations involved in
our approach are computed in real time, providing real time
metric recovery of the complete scene for use in different
problem domains such as scene understanding and object
tracking. By using techniques for finding points on the ref-
erence plane [12], and generating the silhouettes [14], the
proposed approach achieves automated reconstruction. In
addition, the 3D shapes of all the objects in the scene are
recovered simultaneously as the slicing planes cuts all the
object volumes in the object space.

The paper is organized as follows. In order to better man-
ifest the core techniques adopted by the proposed method,
we briefly review two important concepts of projective ge-
ometry in Section 2.1. The proposed approach for estimat-
ing equations of the slicing planes is described in Section
2.2. In Section 2.3 the techniques for recovering the 3D
object shape using the slices are delineated. Four sets of
experiments discussed in Section 3 are conducted to verify
the applicability of the approach in close-range and aerial
images. Finally, we conclude the paper in Section 4.

2. 3D Object Shape Recovery
2.1. Projective Geometry

The projective geometry describes the physical charac-
teristics of the cameras and the relationships between the
images. The projection of a point X,, in the object space to
a point x; in the image space using a projective camera is
expressed in terms of a direct linear mapping in the homo-

geneous coordinates as:

Ax=PX,=[pP1 P2 P3 Pa] ;o (D
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where A is the scale factor due to the projective equivalency
of (kz, ky, k) = (z,y,1), P is a 3 x 4 camera projection
matrix and p, the i*” column of P. Note that, throughout
the paper, we use homogeneous coordinates with the last
component set to be one for points both in the image and
object spaces.

When the point in the object space lies on the ground
plane such that Z = 0, the linear mapping given in (1) will
reduce to the planar homography

) X
sx=HX,=[p1 p2 pa || Y [, 2
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where H is the homography matrix, which is a direct map-
ping of the points lying on a plane in the object space across
different images. This formulation introduces another scal-
ing factor, s, to the mapping equation which stems from
Z = 0. While equation (2) is defined for Z = 0, the same
relation can be derived for any other plane in the object
space. Hence, without the loss of generality, we will use
Z =0 in the remainder of the paper.

In the case when we have multiple images of a scene, an
intuitive consequence of the homography transform from
the ground plane to the image is the existence of a direct
linear mapping between the two images:

x; = HuiX,, = Hyi (H, }x;) = Hjix;, )

where H; is the homography matrix describing the projec-
tive transformation of the pixels lying on image planes ¢ and
J. The estimation of this transformation up to a scale factor
requires a minimum of four points lying on the plane. When
warping one image onto the other, only the pixels in the area
that map the ground plane coincide, while other pixels will
create discrepancies depending on their Euclidean distances
to the plane 7. We should state that it is these discrepancies,
or the so called shadow projections, that let us estimate the
3D shape of the object.

Another important concept in the projective geometry is
the vanishing point. Considering a pair of parallel lines L;
and Ly in the object space, their intersection is defined to
lie at the infinity which is represented by [X, Y, Z,0]T. The
intersection point of these parallel lines visible in the image
plane is referred to as the vanishing point v. The vanishing
point can be computed from the cross product of the corre-
sponding line pair 1;, 15 in the image space (see Figure 1)
as v = 1; X 15. The projections of all parallel lines with the



Figure 1. A parallel line pair which is parallel to the ground plane
as well, when projected to the image plane, intersects at a single
point referred to as the vanishing point. The cross product of two
such points provides the vanishing line 1,,. The vanishing point of
lines in the direction of ground plane normal is denoted as v.. The
3D shape can be recovered by exploiting the information gathered
from 1, and v.

same directions intersect at one single point in the image
plane. A similar observation can also be made for parallel
planes in the object space. Particularly, the parallel planes
intersect at the pencil of planes which resides at infinity.
This pencil can be represented by any two vanishing points
creating a line in the image plane which is referred to as the
vanishing line 1, (see Figure 1). Although the parallelism
of lines or planes is not preserved after the projection, the
information about the orientation of the lines or the planes,
which is implied by the vanishing point and the vanishing
line, plays a key role in the proposed approach.

2.2. Generating the Slicing Planes

In order to derive required equations to recover the 3D
shape, we make extensive use of the concepts discussed in
the previous section. In a nutshell, the basic idea behind the
proposed approach is to create subspaces in the object space
by means of a series of planes parallel to each other and
to a reference plane which physically exists in the scene.
This concept is illustrated in Figure 2. These planes and
the homography transform of each of them onto the images
generate silhouette coherency maps which provide the 3D
shape information when projected onto a reference image.

Let there be a set of points X;, ¢ = 1,2,..., N located
on the reference plane 7 in the object space, where N > 4.
Imagine that these points are elevated by distance Z verti-
cally in the direction of the plane normal generating a new
set of points X;, 1 =1,2,3,...,N. The lines originating
from the reference-plane points X; passing through the new
points X; create a set of parallel lines intersecting at the in-
finity. Additionally, the new point set constitute a new plane
7 , which is parallel to 7. These planes create a pencil at the
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Figure 2. A set of hypothetical planes parallel to a reference plane
intersect the object volume and create slices in the object space.
By finding the successive image points x; and x; along the ref-
erence direction, the homography across images is established for
estimating the object slices.

infinity.

The projections of two point sets X; and X; to an image
plane result in two point sets x; and x;. Hence, the lines
intersecting at the infinity in the object space become a set
of lines passing through x; and x; and intersecting at the
vertical vanishing point v,. In similar vein, the pencil of
planes 7 and 7 becomes a vanishing line 1, in the image
plane.

In the line of these observations, the creation of the im-
age of a non-existing plane parallel to the reference plane
requires estimation of a vanishing line 1, and the vanishing
point v,. The vanishing line 1, can be obtained from the
image of any two parallel line pairs that are also parallel
to plane 7. Similarly, the vanishing point v, is estimated
from the image of a line pair that is in the normal direction
of 7. The relationship between x; and x; is established by
rewriting equation (1) as:

Xi

Ax;=[p1 P2 Pa]| Vi
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The column vector p3 corresponds to the vanishing point in
the direction of the Z axis or the normal of the ground plane.
By substituting ps with v, and combining with equation (2)
provides:

)\ix; =8;X; +V, 7, 5

where \; is simply the sum of s; and Z due to the fact that
the last components of the homogeneous coordinates being
one. Once s; is known, estimation of any image point along
the line X;v, is achieved by setting Z to different set of
values. The derivation of s; for each feature point on 7 is
defined by the following lemmas.

Lemma 1. Scale ratio of two image points. When pro-
Jecting two points Xq, Xg lying on a plane in the object



space onto the corresponding points X1, Xg in the image

space using homography, the ratio of the scale factors s

and so is the inverse proportion of the distances from the
—

image points to the vanishing point of X1 Xg direction.

Proof. Given two points X, X5 on the ground plane 7
and the corresponding points x1, X2 in the image space,
equation (2) provides the following relation:

X1 - Xo
i—=Y, |. (6
0

51X1 — S$2Xo = H(Xl — Xz) =H

The right hand side is equivalent to computing the vanishing
==
point v for the X; X5 direction, which can be expressed as

H(X; — X3) = kv, 7

where k is a scale factor. As stated in the previous section,
the last component of the homogeneous coordinates is set to
be one. By comparing the coefficients of equations (6) and
(7) we observe that £ = s; — s5. Hence, the two equations
can be combined and rearranged as

s1(x1 — V) = sa(x2 — V). ®)
Taking norms to both sides of the equation above gives

s Ixe -]

®
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The relation can be further extended by applying the
property of similar triangles as shown in Figure 3 which
leads to:

Lemma 2. The scale ratio in Lemma 1 equals to the in-
verse proportion of distances from the image points to the
vanishing line of these parallel planes.

The proof of this lemma is evident from Figure 3 and is
not provided here. As long as the vanishing line 1,; is ob-
served or computed from measuring two parallel line pairs
in the image I;, it can be transformed to any other image
I; by the homography as 1,; = Hi_jTlm-, in which Hi_jT is
the transposed inverse of the homography from image /; to
image I;.

The scale ratio provides a way to compute the scale fac-
tors for any number of feature points on a plane. Once the
scale factor of an image point is determined, the others are
computed from (9). The new point set x; is then obtained
from (4) and the homography between the images is esti-
mated accordingly.

Figure 3. The ratio of the distances from x; to v and from x> to
v, which is b/a, equals to d/c according to similarity of triangles.

2.3. Recovering the Object Shape

Assume multiple images of a scene are provided and the
first image is chosen as the reference image, such that the
other images are warped onto the reference image by the
mapping I;; = H;;I;, where the subscript ¢j indicates that
the warping is from ‘" to j*" image. In the sequel of a seg-
mentation method, the object silhouettes extracted in these
images create highlights of the slicing planes when they in-
tersect with the object volume. To illustrate this, let’s con-
sider the object silhouette defined as a mask where the pix-
els inside the object are set to 1. The highlights of the slicing
planes, when they intersect the object volume, is determined
by warping all the silhouettes onto the reference image by:

1 n
Iintersection = E <Il + ZLl) ) (10)
1=2

where n is the number of images. In equation (10), thresh-
olding I;tersection With the number of images n generates
amask image. This mask, also referred to as the slice-image
in this paper, is conjectured to be the image of the inter-
sections between the slicing planes and the object volume.
Hence, using these masks, we generate the outlines of the
object that corresponds to the surface of the object volume.

The mask generated from equation (10) can be back-
projected to the object space in various ways. One approach
is to use a set of feature points with known absolute object
coordinates, such that the relation between the object space
and the image space can be estimated. This can be realized
by setting a specific feature such as a box, using the features
on a building with known dimensions, or using the relative
length ratio between linear features. Using one of these,
one can generate a local Euclidean coordinate frame in the
object space and the metric shape recovery can be achieved
up to a scale. Selection of a local coordinate frame also re-
duces the effect of noisy silhouettes during the shape recov-
ery. Theoretically, one can pick up any measurable feature
on the reference plane even though the axes are not orthog-
onal, but ideally a square is preferred for achieving a robust
metric reconstruction.



In this paper, we rather follow a different approach which
eliminates the use of features that are known or extracted in
the object space. We conjecture that the ground plane in the
object space is identical to the reference image, such that
the reference image is either affine rectified or acquired by
an affine camera. In this setting, the shapes and coordinates
of the objects on the ground plane appear exactly as those in
the reference image; hence, all the slice-images, which are
warped by respective homographies onto the affine rectified
image, provides hypothetical planes at preset Z intervals. In
the case of a perspective image of the ground plane which
is conjectured to be acquired by an affine camera, the re-
covered shape will be projectively distorted. Nevertheless,
the recovered shape provides the object shape. In our ex-
periments, we have used ortho-rectified or affine rectified
reference image where applicable.

3. Experiments

© (d)

Figure 4. Recovering the 3D shape of a toy. (a) shows one of
the eleven original images taken from different viewpoints. The
contour of the darkest region in (b) provides the shape of the 3D
volume sliced by the hypothetical plane at Z = 1.5. Two novel
views of the reconstructed 3D shape are shown in (c) and (d).

In order to verify the proposed method, we have per-
formed three sets of experiments. In the first experiment, as
shown in Figure 4(a), we placed a toy, which contains irreg-
ular shape, on the ground plane. The ground plane contains
squares which provides us with four measures required to
estimate the homography from the images to the reference
image and to the ground plane in the object space. Two
pens oriented in the normal direction of the plane provides
both the vanishing point in the direction of Z axis and the
scale factor s given in equation (2). The dataset of the toy-
experiment contains eleven images of the toy in which the
objects parts are partially or fully occluded. We should note

(b)

(© (d)
Figure 5. Recovering the 3D shape of a human body. (a) shows
one of the original images. The bright region in (b) reveals the
shape of the feet which lie on the ground. Two novel views of the
reconstructed 3D body are shown in (c) and (d).

(b)

Figure 6. Recovering the 3D shapes of multiple objects. (a) is
one of the original images. A novel view of the reconstructed 3D
objects are shown in (b).

that, no length measurements are performed and the lengths
of the vertical features are set to be a unit length. We do
not consider availability of additional measurements in the
object space except for the assumption that all the tiles have
square shapes where the coordinates of four corners define
a unit square. The 3D shape is reconstructed by setting the
distance increments AZ in the vertical direction to 0.5 and
computing corresponding Z values used to generate slicing
planes. In order to generate fine 3D models, one can set AZ
to lower values.



In this and the remaining three experiments, the scales
and lengths of three axes are not measured, which suggests
that the reconstruction is up to a scale factor which is the
same in all dimensions. In order to expedite the reconstruc-
tion procedure, we use only the apparent contour of the in-
tersection mask, such that only the contour generator of the
object volume is recovered (Figure 4(b)). In this experi-
ment, over 24,000 densely distributed 3D surface points are
generated. The high details in the recovered shape suggests
that the effect of occlusion in one view is compensated with
information provided by other views. The shapes of the toes
and hands are clearly visible from the rebuilt model shown
in Figure 4(c) and 4(d).

The same approach is repeated for the second and the
third experiments. In the second experiment five images of
a person are taken. The tiles on the ground provide the fea-
tures to estimate the vanishing line. The vanishing point in
the Z direction is recovered from the features on the box in
the images (Figure 5(a)). The result shows detailed shape
recovery for the limbs and torso (Figure 5(c) and 5(d)). In
order to demonstrate simultaneous recovery of multiple ob-
jects we conducted one last experiment where we placed
three objects in the scene (Figure 6a). As shown without
introducing additional complexity, the shapes of three dif-
ferent object are recovered with high precision.

4. Conclusions

The proposed approach in this paper reconstructs the 3D
object shape by incorporating the silhouette images taken
from uncalibrated cameras. The silhouette images are al-
lowed to contain occlusions and distortions as long as some
other views of the object reveal the occluded regions and
do not observe the same distortion. The reconstruction
achieved is a metric recovery up to a scale factor which can
be determined if object space measurements are provided.
The method provides an easy to implement algorithm while
retaining strong geometric constraints. Compared to other
algorithms, which require the generation of the visual hull
or the estimation of the fundamental matrix, the proposed
approach bears lower computational complexity and com-
bines the merits of both approaches. The requirement of
having abundant feature correspondences in other prevail-
ing techniques is also removed to increase the computa-
tional efficiency. The adjustable balance between running
time and accuracy is determined by the number of images
and number of slicing planes. Additional post processing
which has not been applied in this paper can be used to fur-
ther improve the resulting 3D surfaces.

While eliminating most assumptions suggested by other
algorithms, the proposed approach still requires the exis-
tence of specific features such as parallel lines for estab-
lishing geometric relations across images. However, these
features are commonly observed in the real world scenes,

as we have shown in the experiments. The experimental re-
sults also demonstrate the applicability of our method and
the details of the objects are revealed using only few views.
A variety of applications such as urban and rural surface
modeling and real-time 3D object tracking can be realized
by the proposed method.
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