
3D Surface Models by Geometric Constraints Propagation

M. Farenzena, A. Fusiello

Dip. Informatica, University of Verona

Strada Le Grazie 15, I-37134, Verona, Italy

farenzena@sci.univr.it

Abstract

This paper proposes a technique for estimating piece-

wise planar models of objects from their images and geo-

metric constraints. First, assuming a bounded noise in the

localization of 2D points, the position of the 3D point is

estimated as a polyhedron containing all the possible solu-

tions of the triangulation. Then, given the topological struc-

ture of the 3D points cloud, geometric relationships among

facets, such as coplanarity, parallelism, orthogonality, and

angle equality, are automatically detected. A subset of them

that is sufficient to stabilize the 3D model estimation is se-

lected with a flow-network based algorithm. Finally a fea-

sible instance of the 3D model, i.e. one that satisfies the

selected geometric relationships and whose 3D points lie

within the associated polyhedral bounds, is computed by

solving a Constraint Satisfaction Problem.

1. Introduction

The problem of recovering 3D surface models from im-

ages and geometric clues has been widely studied in liter-

ature. The proposed methods can be mainly classified as

model-based and constraint-based.

In model-based methods [6, 13, 16, 20], the scene is de-

fined as in CAD systems: objects are the assemblage of

known primitive shapes. Reconstruction is carried out by

fitting a 3D model to image data, thus determining its di-

mension, its position and orientation. The fact that the scene

must be decomposable in primitive shapes is the main limi-

tation of such methods.

Constraint-based methods [1, 3, 7, 8, 10, 21] are more

flexible, as they do not rely on a-priori models but use sim-

ple primitives like points and lines. Geometric information,

such as orthogonality, parallelism, or planarity, is given in

the form of constraints on 3D points and reconstruction is

obtained as the solution of an optimization process.

In most of previous works, e.g. [1, 8, 10, 20], the con-

straints detection phase requires the user to provide a geo-

metrical description of the model, which can be very time-

consuming. In other cases [3, 7], geometric constraints are

detected automatically thanks to prior knowledge about the

model to reconstruct.

Besides, the analysis of constraints is usually over-

looked. In fact, datasets with many points and geometric

constraints do not necessarily define a consistent and unique

3D object. Parts of the scene may not be rigidly connected,

so that there exist various shapes that verify the geometric

constraints and project to identical image points. In addi-

tion, constraints may be redundant, making the optimiza-

tion uselessly harder or even unfeasible. [10] proposes an

algebraic method to check whether a configuration of points

and constraints leads to a unique reconstruction, but it does

not deal with redundancies. As far as we know, a principled

analysis of constraints has not been proposed yet.

Geometric constraints may be directly embedded into

the minimization of the reprojection error (or bundle adjust-

ment) [3, 7], but this causes a substantial increase of com-

putational costs and both convergence and exact constraint

satisfaction are not guaranteed. An alternative is to make

the geometric constraints implicit in the parametrization of

3D points [1, 10, 21], so as they are satisfied exactly at every

optimization step.

This paper follows the approach of [8] that avoids alto-

gether the non-linear least-squares problem arising in the

methods above. It casts the problem as a Constraint Sat-

isfaction (CSP), where the 3D point positions are bounded

by 3D boxes and a feasible solution is one that satisfies all

selected geometric relationships and whose 3D points lie

within the associated bounds. These bounds are there ob-

tained by Interval Analysis (IA) applied to triangulation,

which produces axis-aligned boxes that loosely overesti-

mate the result. In this work, instead, the delimitation of the

output of triangulation is tighter: each 3D point is bound by

a polyhedron, that estimates the result exactly.

Moreover, this work is enriched by the automatic detec-

tion of constraints, provided manually in [8], and by the

consequent analysis and pruning of these constraints. That

permits to verify if a unique solution can be obtained, and

at the same time to prune redundancies.

1

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

2. Overview of the approach

The approach, summarized in Fig. 1, consist of two

stages.

The first stage deals with triangulation, i.e., reconstruct-

ing 3D points from their corresponding image points (pro-

vided manually in this paper) and known camera matrices

(from a Structure-and-Motion pipeline). A statistical opti-

mal solution, under the assumption of Gaussian noise, exists

for two [11] and three views [19], but seems to be unfeasi-

ble beyond that. Our noise model, instead, is a uniform dis-

tribution inside a rectangular region centered around each

image point. This enables us to compute the correct solu-

tion as a polyhedron that contains all the possible 3D point

positions, for any number of views. This polyhedron can be

regarded as representing the probability distribution func-

tion over the 3D point positions, which is uniform inside

the polyhedron, and zero outside.

Evaluating uncertainty is crucial when the results are to

be used as input for other processes. Albeit simple in con-

cept, this polyhedral triangulation is a principled and effi-

cient approach for evaluating 3D point positions and the as-

sociated uncertainty, and represents the counterpoise of the

max-likelihood approach using the Gaussian noise model.

The second part of the paper focuses on obtaining a com-

plete surface model. Given a set of reconstructed 3D points,

represented by the polyhedra provided by the above 3D tri-

angulation, and the connectivity of the points into triangular

facets (provided manually), the method consists in a three-

steps automatic process. First the geometric relationships,

such as coplanarity, parallelism, etc. are detected; then a set

of minimal relationships that allow a unique reconstruction

is selected using the structural rigidity analysis; finally, a

feasible instance of the 3D model, i.e. one that satisfies all

selected geometric relationships and whose 3D points lie

within the associated polyhedral bounds, is computed using

a constrained optimization technique.

���������

	
���

���������

������ �������
�

�����
	�������

��	�
�����

��������
���
������

����������

�
���
�

���
������
 ���
������

	������

���

�����
�����

���
������

	��	�������

�� ���������

�
���
 ����

��
������

�����

���
������
 ���

��������������

��
������

�������
�����

�
���

Figure 1. Overview of the proposed method. External inputs are:

camera matrices, 2D point correspondences, 3D points connectiv-

ity.

3. Polyhedral triangulation

Once camera matrices are known, the first and most im-

portant stage of model reconstruction consists in recovering

the coordinates of points in 3D space given their images in

two or more views. It is usually assumed that the camera

matrices are known exactly, or at least with greater accu-

racy than point localization. In the absence of noise, i.e.

when correspondences are perfectly detected, the problem

is trivial, involving only finding the intersection of rays in

the space. If data are perturbed, however, the rays corre-

sponding to back-projections of image points do not inter-

sect, and obtaining the 3D coordinates of the reconstructed

points becomes far from trivial, as witnessed by the renewed

interest aroused by this issue [15, 19].

As in [8], the proposed method refrains from searching

for one optimal solution and computes instead a set of possi-

ble solutions (defined in terms of errors affecting the image

points) that contains the error-free solution. This permits to

bound the exact solution in the 3D space for any number of

views and to estimate, at the same time, the uncertainty of

the result.

Let P i, i = 1, . . . , n be a sequence of n known cameras

and mi be the image of some unknown point M in 3D space,

both expressed in homogeneous coordinates. It is assumed

that the localization error is bounded by a rectangular region

Bi centered around each image point (one can imagine a

uniform distribution inside Bi). Each region Bi bounds the

possible locus of the 3D point inside a semi-infinite pyra-

mid Qi with its apex in the camera center (see Fig. 2). The

solution set is defined as the polyhedron formed by the in-

tersection of the n semi-infinite pyramids generated by the

intervals B1, . . . ,Bn. Analytically, this region is defined as

the following set:

D = Q1 ∩ Q2 · · · ∩ Qn =

={M: ∃mi ∈ Bi, i = 1 . . . n s.t. ∀i : mi ≃ P iM}. (1)

��

��

��

Figure 2. The semi-infinite pyramid Qi is defined from the camera

centre Ci and the bound Bi.

Instead of approximatingD using Interval Analysis as in

[8], it is computed precisely using Computational Geometry

techniques.

The semi-infinite pyramidQi can be written as the inter-

section of the four negative half-spacesHi
1,H

i
2,H

i
3,H

i
4 de-

fined by its supporting planes. Thus, the solution set D can

be expressed as the intersection of 4n negative half-spaces:

D =
⋂

i=1...n
ℓ=1...4

Hi

ℓ (2)

The vertices and the faces of D can be enumerated in

O(n log n) time, being n the number of cameras [18].

As an example, Fig. 3 shows the polyhedral triangu-

lation result obtained from seven calibrated images of a

Lego object. Thirty-eight points are manually matched in

the sequence and a uniform error in the 2D point location

bounded by a 5-pixel wide square is assumed. The mean

volume of the polyhedra is (0.3cm)3, with respect to a vol-

ume of (18.5cm)3 of the object.

Figure 3. One of the seven images of the Lego sequence (left) and

the polyhedral triangulation result (right). The small polyhedra

bound the corners of the object.

4. Constraints detection

From the polyhedral triangulation a bounded estimation

of the position of reconstructed 3D points is obtained. Any

random choice of 3D points inside the bound is an approx-

imation of the exact 3D reconstruction. Considering one

of these approximations, its points are connected (manu-

ally) into a triangular mesh, obtaining a piecewise planar

surface model. This section describes how geometric con-

straints such as coplanarity, parallelism, orthogonality and

angles equality are automatically detected on the approxi-

mate model.

4.1. Planes detection

Planes in the model are extracted using a Mean Shift

clustering procedure [4] on the triangular facets. The pro-

posed technique is composed by a two-step, hierarchical

strategy.

1. First facets are clustered according to their normal,

thereby grouping together (approximately) coplanar

and (approximately) parallel facets.

2. Then, within each group, the clustering is refined by

taking into account also the distance to the origin of the

plane containing the facet. In this way facets belonging

to parallel planes are separated.

We adopted in both cases the uniform kernel, i.e., a mul-

tidimensional unite sphere, with bandwidth automatically

selected as described in [5].

Please note that the process clusters together facets be-

longing to the same plane, regardless of their distance.

4.2. Constraints extraction

Geometric constraints involving planes can now be auto-

matically inferred.

Facets belonging to the same group after the second clus-

tering step are related by coplanarity constraints. Each

plane is identified by one reference facet. As to paral-

lelism constraints, if two different reference facets belong

to the same group after the first clustering step, their re-

spective planes are parallel. Moreover, angular constraints

are deduced from grouping heuristics: if two or more planes

nearly satisfy a constraint then they are forced to satisfy it.

Orthogonality is checked for every pair of reference facets:

whenever two of them are found to be approximately or-

thogonal (within 5 degrees), then they are linked by an

orthogonality constraint. Likewise, equality of angles is

checked for every quartet of reference facets.

The constraints form a hierarchy (Fig. 4): at the bottom

level there are facets, grouped into planes by coplanarity

constraints, then planes, grouped into equivalence classes

modulo parallelism, and, finally, these equivalence classes

related by angular constraints.

������

������� ��

	
������
��

	
�����
���

������

������� ��

��������
��

	
�����
���

	
��
������

������� ������

����������� �������

�� �������

	
�����
���

Figure 4. The hierarchy induced by constraints detection.

At the highest level the position of the planes does not

matter, as only the orientation is considered. This is con-

sistent with the fact that the 3D points position is not deter-

mined by the polyhedral triangulation.

Carrying on with the Lego model, the 38 polyhedra are

manually connected into triangular facets. Then, 15 planes

are automatically extracted by the algorithm, as depicted in

Fig. 5. This clustering process implies 12 parallelism con-

straints after the first clustering step (middle level of the

hierarchy) and 53 coplanarity constraints after the second

step (bottom level of the hierarchy). At the higher level of

the constraints hierarchy three equivalence classes modulo

parallelism are found, related be three orthogonality con-

straints.

Figure 5. Automatic extraction of planes for the Lego model. Each

plane is identified by a different colour.

5. Constraints Analysis

In this section we will discuss how the angular con-

straints, which – in general – are redundant, can be pruned

while maintaining their capacity of stabilizing the estima-

tion of the 3D model.

The concept of rigidity (or constriction) for geometric

systems, has been studied in several scientific fields like

Computational Geometry and Structural Topology, with ap-

plication mainly in Computer-Aided Design (CAD). We are

applying here the notion of structural rigidity to systems

of planes (modulo parallelism) in order to remove redun-

dant constraints while keeping the “rigidity” of the system.

Some definitions, taken from [14], are in order here to in-

troduce notation and concepts.

Definition 1 (Geometric Constraint System) A Geomet-

ric Constraint System (GCS) is a pair S = (O, C), where

O is a set of geometric objects (represented by some vari-

ables), and C is a set of constraints.

Our geometric objects are equivalence classes of planes

modulo parallelism. They are identified by their direction

(the normal vector). The constraints are orthogonality and

angle equality.

Definition 2 Let S = (O, C) be a GCS. A solution to S

is an evaluation θO of the variables in O such that every

predicate in C is true. The set of solutions to S is denoted

by Sol(S).

Definition 3 (Constriction) 1 A GCS S is well-constrained

if Sol(S) is finite, over-constrained if Sol(S) = ∅ and

under-constrained if Sol(S) is infinite.

1In fact, this is the definition of global [2] or generic [12] constriction.

In practice, a GCS can be under-constrained, but its solu-

tions be identical modulo a geometric transformation (e.g.,

translation, rotation). Constriction modulo direct isome-

tries (also called rigidity) is the type of constriction usually

sought in CAD. In our case, translations are factorized out

by the parallelism equivalence, hence only rotations are left.

As a consequence, we consider constriction modulo orthog-

onal transformations.

Constriction depends on the number of solutions, but

computing all of them is intractable. Hence, approximate

characterizations that can be checked in polynomial time

are frequently used. A characterization known as structural

constriction is based on the degrees of freedom abstraction

of the geometric constraints and objects.

Definition 4 The number of degrees of freedom (DOFs) of

a geometric object is the number of independent parameters

used to represent it. The number of DOFs of a geometric

constraint is the number of independent equations needed

to represent it.

In the following, we denote by dof(·) the number of

DOFs of an object or a constraint.

In our case, geometric objects have 2 DOF, because nor-

mals are unit vectors, and angle constraints have 1 DOF.

Definition 5 (Structural G-constriction) Let S = (O, C)
be a GCS. Let G be an invariance group of dimension

D. The system S is structurally G-over-constrained if

there exists a subsystem S′ = (O′, C′) of S such that∑
x∈O′ dof(x) −

∑
c∈C′ dof(c) < D.

The system S is structurally G-well-constrained if it is

not structurally G-over-constrained and
∑

x∈O
dof(x) −∑

c∈C
dof(c) = D.

The system S is structurally G-under-constrained if it

is not structurally G-over-constrained and
∑

x∈O
dof(x)−∑

c∈C′ dof(c) > D.

In our case, structural constriction modulo orthogonal

transformations can be checked using D = 3.

Definition 6 (Constraint graph) Let S = (O, C) be a

GCS. Its constraint graph, denoted by GS = (V, E), is a

bipartite undirected graph where V = O ∪ C (every object

in S and every constraint in C is a vertex in GS) and an

edge connects each constraint to each entity it constrains.

Hoffmann et al. in [12] introduced the DENSE algo-

rithm that checks structural constriction in polynomial time,

considering a flow-network derived from the bipartite con-

straint graph. The source is linked to each constraint, and

each object is linked to the sink. The capacities correspond

to the DOFs of the constraints (edges from the source to

constraints) and to the DOFs of the objects (edges from ob-

jects to the sink). Edges from constraints to objects have

infinite capacity. A maximum flow in this network repre-

sents an optimal distribution of the constraints DOFs onto

the objects DOFs. To identify over-rigid subsystems, the

method adds an additional D capacity to one constraint at

a time. If a maximum flow distribution cannot saturate all

the edges from the sink to the constraints, this means that

some constraints DOFs cannot be absorbed by the objects.

Thus there exists a subsystem with less DOFs than D, and

the GCS is over-constrained (Fig. 6). Please note that, be-

ing structural constriction an abstraction, a GCS is deemed

over-constrained as soon a redundant constraints are de-

tected, regardless of the fact that they are consistent or not.

We exploit over-rigidity in order to detect redundancies.

DENSE returns the over-constrained subsystem S′ if the

system is over-constrained, or an empty set otherwise. This

S′ is the subsystem induced by the objects traversed dur-

ing the last search for an augmenting path, in the max flow

computation. Constraints binding the objects in S′ can be

removed until the system itself becomes structurally well-

constrained. This is implemented in the PRUNE procedure:

Algorithm 1 PRUNE

Input S = (O, C): GCS

Output So = (O, Co): GCS such that Co ⊆ C and

So is structurally well-constrained

S′ = (O′, C′)← DENSE(S)

if isEmpty(S′)

Return S

else

select c ∈ C′

S ← S(O, C\{c})
PRUNE(S)

end

The selection of c is random, provided that its removal

do not leave any object node with less inbounding arcs than

the object’s DOFs in the constraint graph. In that case the

object would become under-constrained.

In the Lego model example, the constraints analysis cor-

rectly reports that the constraint system is already struc-

turally rigid. Consequently, no pruning occurs.

6. Finding a feasible solution

Finally, a feasible instance of the 3D model, i.e. one

that satisfies all selected geometric constraints and whose

3D points lie within the associated polyhedral bounds, is

computed. This is formalized in the following Constraint

Satisfaction Problem (CSP):

find X

subject to XL ≤ X ≤ XU

cL ≤ c(X) ≤ cU (3)

� �

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

� �

�

�

�

�

�

�

��

���

�

�

�

�

�

Figure 6. Example of constraint network (top) and an example of

flow distribution, when the first constraint edge is overloaded (bot-

tom). The GCS is over-constrained, because not all the arcs from

the sink to the constraints are saturated. Removing the first or the

third constraint makes the system structurally rigid. ⊥ indicates

the orthogonality constraint.

where X is the variables vector, i.e. the 3D points of the

model; XL and XU delimit the domain of each variable,

and they derive from polyhedral triangulation; c(X) are al-

gebraic equations containing the non linear constraints on

X, with bounds cL and cU .

The geometric constraints must then be translated into

constraints among points and formalized as algebraic equa-

tions.

For each equivalence class modulo parallelism a plane is

chosen as the reference one. Angular constraints are applied

among the reference planes. These are then linked to each

other plane in the same equivalence class by a parallelism

constraint. Each constraint among planes (i.e. parallelism

and angular constraints) is translated into a constraint on the

normals of the reference facets, as shown in Table 1. The

normal vector, in turn, is a function of the three vertices of

the facet, in Cartesian coordinates. In order to simplify the

complexity of the algebraic equations, in orthogonality and

parallelism constraints the normal vector obtained from the

points is not normalized.

Constraint Algebraic equation

Orthogonal(f1, f2) n1 · n2 = 0
SameAngle(f1, f2, f3, f4) (n1 · n2)− (n3 · n4) = 0
Parallel(f1, f2) (n1 × n2) = 0

Table 1. Translation of constraints among facets {fi}i=1,...,n of

the model into algebraic equations among points.

The reference facets are linked to all the other facets be-

longing to the same plane by coplanarity constraints. Let

C = {M1, M2, . . . ,Mn} be the vertices of a group of copla-

nar facets, then all these points must lie on the same plane.

This can be translated into a set of overlapping coplanarity

constraints among four points at a time:

Coplanar(M1, M2, M3, M4)∧

Coplanar(M2, M3, M4, M5) ∧ . . .

Coplanar(Mn−3, Mn−2, Mn−1, Mn) (4)

where Coplanar(M1, M2, M3, M4) is equivalent to:

[(M1 −M2)× (M1 −M3)]
T · (M1 −M4) = 0. (5)

Once all constraints are translated into algebraic equa-

tions, a solution can be found using a constraint solver.

In our case we use SNOPT [17], a general-purpose sys-

tem for solving optimization problems involving many vari-

ables and constraints. It is suitable for large-scale linear and

quadratic programming and for linearly constrained opti-

mization, as well as for general nonlinear programs.

As to the Lego model, the formalization of the problem

into algebraic equations yields 93 non linear constraints.

The results are summarized in Tab. 2 and Fig. 7. As the

reader can notice, the whole pipeline described throughout

the paper leads to an accurate 3D model. The fact that the

constraints are not exactly satisfied is due to the optimizer,

that stops when it deems the solution cannot improved fur-

ther.

Figure 7. A top view of the Lego model before (left) and after

(right) constraints propagation.

⊥ � ‖

Before [0.81, 2.67]◦ [0, 0.0001]◦ [0.05, 6.60]◦

After [0.61, 2.62]◦ [0, 0]◦ [0.05, 4.13]◦

Table 2. [Min,Max] deviation from the constraints in the Lego

model before and after propagation (in degrees). Legend: ⊥ is

orthogonality, � is coplanarity and ‖ is parallelism.

7. Experimental results

Comparison between IA-based triangulation [8] and

polyhedral triangulation was performed on synthetic data

consisting of 50 points randomly scattered in a sphere of

unit radius, centered at the origin, and generating cameras

placed at random positions, at a mean distance from the

centre of 2.5 units with a standard deviation of 0.25. The

image points were perturbed with a 1-pixel wide uniform

distribution, and the same width was used to bound (with a

square) the perturbed image points. The number of views

was varied, and the corresponding volumes are reported in

Tab. 3. Each entry is the mean of 50 independent trials. It

is clear that the polyhedral triangulation outperforms the IA

approach, both in terms of accuracy and of stability.

views IA-boxes Polyhedral

2 26.35 3.68e-07

3 3.25e-04 1.01e-07

4 7.87e-04 5.76e-08

5 3.17e-05 3.88e-08

Table 3. Synthetic triangulation comparison experiment. Average

volumes of the boxes obtained by IA-based triangulation com-

pared with those of the polyhedra.

Constraints detection and analysis was tested on the syn-

thetic models shown in Fig. 8. The 3D points were replaced

by boxes to simulate the output of polyhedral triangulation.

The size of the box varied from 0.5% to 3.0% of a “size

gauge” computed as the median over the model’s points of

the farthest point distance. For each value, 20 perturbed

models were generated using a uniform random distribution

inside the boxes. Planes and constraints were automatically

detected by our algorithm, the constraints were cut down

using PRUNE, and a feasible solution of the resulting CSP

was found using SNOPT.

Figure 8. The four objects used for the synthetic experiments, here

referred as (from the left) Test, Boxhole, Cutcube and House.

The number of planes correctly extracted is 22 for Test,

10 for Boxhole, 7 for Cutcube, and 11 for House. Tab. 4

shows the constraints extracted, before and after the struc-

tural rigidity analysis. Please note that at each step PRUNE

chooses randomly which constraint to eliminate, so the fi-

nal set of constraints varies from time to time; here, the

most common case is reported. The solution of the CSP

took about 20 s for Cutcube and Boxhole, 50 s for House

and 90 s for Test.

The whole method was tested on real images, the Poz-

zoveggiani and Tribuna datasets. The Pozzoveggiani set is

composed by 16 calibrated images of a church (Fig. 9).

Polyhedral triangulation was performed, assuming a uni-

form error in the 2D point location bounded by a 7-pixel

Automatic constraints Pruning

⊥ ⊲⊳ � ‖ ⊥ ⊲⊳ Total

Test 22 61 60 8 9 16 93

Boxhole 12 1 24 4 9 0 37

Cutcube 0 3 40 5 0 3 48

House 9 6 25 4 7 4 40

Pozzoveggiani 59 2043 100 5 1 58 164

Tribuna 29 799 478 34 2 51 565

Table 4. Number of constraints automatically detected and number

of remaining constraints after the structural rigidity analysis for the

3D models. The rightmost column reports the total number final

of constraints. Legend: ⊥, � and ‖ as defined in Tab. 2, ⊲⊳ is angle

equality.

Figure 9. Three of the 16 images of the Pozzoveggiani set.

wide square (Fig. 10). The mean volume of the result-

ing polyhedra is (13cm)3, with respect to a volume of

(16.88m)3. Then, starting from the approximate solution

obtained by randomly choosing one point inside each poly-

hedron, and connecting them manually, 36 planes were au-

tomatically extracted. Results from constraints detection

and analysis are outlined in Tab. 4. As the reader can no-

tice, in this case constraints pruning is essential to simplify

the problem. The CSP solver (SNOPT) produced, after less

than one minute, the result shown in Fig. 11, with the errors

reported in Tab. 5.

Figure 10. Polyhedral triangulation for Pozzoveggiani (left) and

Tribuna (right). The magnifying glass highlights the polyhedra.

The Tribuna set consists of 10 calibrated images of an

apse (Fig. 12).

Polyhedral triangulation was performed, assuming a uni-

form error in the 2D point location bounded by a 2-pixel

wide square (Fig. 10). The mean volume of the resulting

polyhedra is (2cm)3, with respect to a volume of (4.05m)3.

Then, starting from the approximate solution obtained by

Figure 11. Final geometric reconstruction of Pozzoveggiani after

the constraints propagation. Each plane is identified by a different

colour.

⊥ ⊲⊳ � ‖

Pozzoveggiani
Before [2.05, 2.05]◦ [0, 0.04]◦ [0, 0.19]◦ [1.2, 6.8]◦

After [1.73, 1.73]◦ [0, 0.03]◦ [0, 0.13]◦ [1.2, 4.7]◦

Tribuna
Before [0.03, 3.3]◦ [0, 0.03]◦ [0, 0.15]◦ [0.9, 10.4]◦

After [0.03, 0.3]◦ [0, 0.17]◦ [0, 0]◦ [0.9, 7.9]◦

Table 5. [Min,Max] deviation from the constraints in the initial and

final model (in degrees).

Figure 12. Three of the 10 images of the Tribuna set.

randomly selecting one point inside each polyhedron, and

connecting them manually, 62 planes were automatically

extracted. Constraints detection and analysis results are

summarized in Tab. 4. The CSP solver (SNOPT) produced,

after a few minutes, the result shown in Fig. 13, with the

errors reported in Tab. 5.

8. Conclusions and future work

In this paper we presented a new approach to constrained

surface modeling from many calibrated views. We demon-

strated how polyhedral triangulation and a suitable con-

straint analysis and propagation can be used to obtain an

accurate geometric model of a scene.

Given the 3D points connectivity information, our

method automatically detect planes in the model using

Mean Shift clustering, and geometric angular constraints

among such planes, using grouping techniques. The con-

Figure 13. Final geometric reconstruction of Tribuna after the con-

straints propagation. Each plane is identified by a different colour.

straints are then processed in order to eliminate redundan-

cies using structural rigidity analysis. In the end, the final

3D model is obtained by solving a CSP. Experiments show

the effectiveness and the accuracy of the approach.

Future work will aim at removing the need for manually

entering points and connectivity, thereby making the system

fully automatic. Preliminary results in this direction are re-

ported in [9].

Acknowledgments

We are grateful to P. Sturm for valuable comments and

to L. Corazza for contributing to the implementation of the

software. Some of the 3D models shown in Fig. 4 are cour-

tesy of Mountaz Hascoët2. The SNOPT solver is available

inside TOMLAB.

References

[1] A. Bartoli and P. Sturm. Constrained structure and mo-

tion from multiple uncalibrated views of a piecewise planar

scene. International Journal of Computer Vision, 52(1):45–

64, 2003.

[2] B. N. C. Jermann and G. Trombettoni. A new structural rigid-

ity for geometric constraint systems. In Fifth International

Workshop on Automated Deduction in Geometry, Linz (Ha-

genberg), 2002.

[3] H. Cantzler, R. B. Fisher, and M. Devy. Improving archi-

tectural 3D reconstruction by plane and edge constraining.

In British Machine Vision Conference, pages 43–52, Cardiff

(UK), 2002.

[4] D. Comaniciu and P. Meer. Mean shift: A robust approach

toward feature space analysis. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 24(5):603–619, 2002.

[5] M. Cristani, U. Castellani, and V. Murino. Adaptive feature

integration for segmentation of 3D data by unsupervised den-

sity estimation. In Proceedings of the International Confer-

ence on Pattern Recognition, volume 4, pages 21–24, August

2006.

[6] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and ren-

dering architecture from photographs: A hybrid geometry-

2http://www.lirmm.fr/ mountaz/Ens/DessTni/OpenGL/Exemples/tutors/data/

and image-based approach. In H. Rushmeier, editor, SIG-

GRAPH: International Conference on Computer Graphics

and Interactive Techniques, pages 11–20, New Orleans,

Louisiana, August 1996.

[7] A. R. Dick, P. H. S. Torr, S. J. Ruffle, and R. Cipolla. Com-

bining single view recognition and multiple view stereo for

architectural scenes. In Proceedings of the International

Conference on Computer Vision, volume 1, page 268, 2001.

[8] M. Farenzena, A. Fusiello, and A. Dovier. Reconstruction

with interval constraints propagation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1185–1190, 2006.

[9] M. Farenzena, A. Fusiello, R. Gherardi, and R. Toldo. To-

wards fully automated architectural sketching. Submitted to

3DPVT 2008.

[10] E. Grossman and J. Santos-Victor. Least-square 3D recon-

struction from one or more views and geometric clues. Com-

puter Vision and Image Understanding, 99:151–174, 2005.

[11] R. I. Hartley and P. Sturm. Triangulation. Computer Vision

and Image Understanding, 68(2):146–157, November 1997.

[12] C. M. Hoffmann, A. Lomonosov, and M. Sitharam. Find-

ing solvable subsets of constraint graphs. In Constraint Pro-

gramming, pages 463–477, 1997.

[13] D. Jelinek and C. J. Taylor. Reconstruction of linearly

parametrized models from single images with camera of

known focal length. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 23(7):767–774, 2001.

[14] C. Jermann, G. Trombettoni, B. Neveu, and P. Mathis. De-

composition of geometric constraint systems: a survey. In-

ternation Journal of Computational Geometry and Applica-

tions, 16(5-6):379–414, 2006.

[15] F. Kahl. Multiple view geometry and the l∞-norm. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 510–517, Beijing, China, 2005.

[16] D. Lowe. Fitting parameterized three-dimensional models to

images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 13(5):441–450, May 1991.

[17] W. M. P. E. Gill and M. A. Sauders. SNOPT: An SQP al-

gorithm for large-scale constrained optimization. SIAM J.

Optimization, 12:979–1006, 2002.

[18] F. P. Preparata and M. I. Shamos. Computational Geometry.

An Introduction, chapter 2, pages 72–77. Springer-Verlag,

first edition, 1985.

[19] H. Stewenius, F. Schaffalitzky, and D. Nister. How hard is

3-view triagulation really? In Proceedings of the Interna-

tional Conference on Computer Vision, pages 510–517, Bei-

jing, China, 2005.

[20] M. Wilczkowiak, P. Sturm, and E. Boyer. Using geomet-

ric constraints through parallelepipeds for calibration and 3D

modeling. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 27(2):194–207, 2005.

[21] M. Wilczkowiak, G. Trombettoni, C. Jermann, P. Sturm, and

E. Boyer. Scene modelling based on constraint system de-

composition techniques. In Proceedings of the International

Conference on Computer Vision, volume II, pages 1004–

1010. IEEE, IEEE, October 2003.

