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Abstract

We present a new approach for building reconstruction
from a single Digital Elevation Model (DEM). It treats
buildings as an assemblage of simple urban structures ex-
tracted from a library of 3D parametric blocks (like a
LEGO R©set). This method works on various data resolu-
tions such as 0.7 m satellite and 0.1 m aerial DEMs and
allows us to obtain 3D representations with various levels
of detail. First, the 2D supports of the urban structures are
extracted either interactively or automatically. Then, 3D
blocks are placed on the 2D supports using a Gibbs model.
A Bayesian decision finds the optimal configuration of 3D
blocks using a RJMCMC sampler. Experimental results on
complex buildings and dense urban areas are presented us-
ing data at various resolutions1.

1. Introduction

Three dimensional models of urban areas are very useful
for many applications such as urban planning, radiowave
reachability tests for wireless communications, disaster re-
covery or computer games.

Problem statement Many automatic methods have been
proposed. It is difficult to compare these methods efficiently
since they have been developed in different contexts (kinds
of data, types of reconstructed buildings, level of user inter-
activity, etc) and use different evaluation criteria. Multiple
view images are the most common inputs. Scholze et al. ex-
tracted 3D-lines and grouped them into faces which allow
the building reconstruction through a semantic interpreta-
tion [12]. Rooftop hypotheses were generated from 3D-
lines and junction information by Kim et al.[5]. Baillard
et al. present a method based on planar facet hypothesis

1The first author thanks the French Mapping Agency (IGN) and the
French Space Agency (CNES) for partial financial support during his PhD.
The authors thank the CNES for providing satellite images.

which can be generated from single 3D-lines [1]. Mueller
et al. developed a procedural model based on a shape gram-
mar [9]. One of the most efficient methods uses a hierar-
chical approach which combines three different levels of
detail [8]. Laser scans are also popular inputs due to the
measurement accuracy. Fruech et al.[3] uses laser scans
to model buildings with a detailed reconstruction of the fa-
cades. These methods provide convincing 3D-models using
aerial images, ground views or laser scans. However, most
of them have been developed using a specific kind of data
and cannot easily be adapted if the image characteristics
change (resolution, SNR, etc). We propose a new method
adapted to varying data resolution.

Global strategy There are two main families of ap-
proaches in 3D building reconstruction. Generic represen-
tations are theoretically able to reconstruct any shape of
building through connected planar facets, but they demand
high resolution data. Parametric representations are known
to be robust with respect to data quality [14], but these re-
constructions are limited - most parametric representations
consider a symmetric two-plan roof reconstruction.
In this paper, we use an approach which is halfway between
generic and parametric representations : the structural ap-
proach. It consists in reconstructing buildings by assem-
bling simple urban structures extracted from a library of 3D
parametric blocks, as a LEGO R©game (see Figure 1). This

Figure 1. Principle of the structural approach.

approach is particularly interesting since it combines the ad-
vantages of generic and parametric representations:
1- the robustness of parametric approaches is preserved
since the library objects are defined by parameter sets,
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2- an efficient library permits modeling a large range of
buildings. It is even possible to reconstruct buildings such
as curved roof structures that some generic models cannot
construct,
3- assembly of urban structures is particularly adapted to
multiresolution data and allows us to obtain both basic roof
shapes from 70 cm resolution satellite images or details
including superstructures (chimneys, dormer-windows,etc)
from 10 cm resolution aerial images.
This approach is based on important prior knowledge con-
cerning urban structures and their assembly. It is neces-
sary to define the interactions between blocks correctly to
have a convincing modeling without artefacts. A stochas-
tic framework is especially well adapted to introduce such
knowledge. Lafarge et al. proposed a similar approach [7].
However, that work was limited and suffered from many
drawbacks: 1-generation of many artefacts, 2-lack of 3D-
modeling generality, 3-tuning of many parameters, 4-long
computation times and 5-restriction to satellite data.
The input was a single Digital Elevation Model (DEM)
which is well adapted to global geometric descriptions.
First, the 2D-supports of the urban structures were extracted
either interactively or automatically using Ortner et al.’s
method [10]. Then, 3D blocks are positioned on the 2D
supports using a Gibbs model in Section 3. A Bayesian de-
cision finds the optimal configuration of 3D blocks using a
RJMCMC sampler. Experimental results on complex build-
ings and dense urban areas are shown using data at various
resolutions in Section 4.

2. Building extraction

The first step extracts the 2D-supports of the urban struc-
tures from a DEM. Each 2D-support is represented by an
unspecified quadrilateral (or triangle) and is associated with
a specific part of a building. The 2D-supports of a build-
ing correspond to a set of connected quadrilaterals (i.e.
non-overlapping quadrilaterals with common edges). We
propose two different ways for the user to extract the 2D-
supports: an interactive one and an automatic one.

Interactive extraction An operator controls interactive
extraction: four clicks add a 2D-support (these clicks are
the four points of the quadrilateral). This method allows ac-
curate extraction as we can see on Figure 2, but takes con-
siderable operator time.

Automatic extraction The second method is automatic:
Ortner et al. obtain 2D-supports using an object approach
based on marked point processes [10]. This method gener-
ates a set of rectangles which provide a rough description
of the 2D-supports. Then, the rectangles are transformed
into connected quadrilaterals by fusing neighboring rectan-

gles. This process is automatic but the supports are not as
accurate as those from interactive extraction - see Figure 2.

Figure 2. Extraction of 2D-supports: DEMs (left), interactive (cen-
ter)and automatic extraction (right).

3. 3D reconstruction

Once the 2D-supports have been extracted, the buildings
are automatically reconstructed through a density formula-
tion. The first step specifies the 3D objects.

The content of the library is a key point: if it is too
limited (e.g. Lafarge et al.[7] had only flat and gable roof
forms), the method loses generality. The proposed library,
denoted by M and presented in Figure 3, allows us to re-
construct a large range of buildings through a collection of
blocks. Each block possesses both a roof form and a variant:

• The proposed roof forms (denoted by F and illustrated
in Figure 3(top)) include monoplane (F1x), multi-
plane (F2x) and curved roofs (F3x). Each roof form
has a specific set of parameters F (the number of pa-
rameters varies between 1 and 6).

• The variants (denoted by V and shown in Figure
3(bottom) for a gable roof type) are specific to a roof
form. They correspond to types of structure ends
(hipped or straight ends) or structure junctions (”-
”,”L”,”T” or ”+” junctions). The variants also specify
the orientation of the roof with respect to the quadri-
lateral 2D-support. There are 1 to 3 parameters in the
set of the variant, denoted by V .

To sum-up, each block of the library M is defined by a
tuple (F ,V) and an associated parameter set θ = (F, V ).
Some blocks can topologically be degenerated in some sit-
uations2: these cases are not allowed in the process in prac-
tice. Details concerning this library are available in [6].

2For example, a semi-elliptic roof on a triangular support



Figure 3. Library of 3D-blocks - the roof forms (3D and profile
views) (top) and the variants of a gable roof (bottom)

The notation for the Bayesian formulation is:
• S, a set of sites and Λ = {Λ(s)/s ∈ S}, a given DEM
where Λ(s) represents the intensity of the site, s.
• C, the quadrilateral configuration representing the build-
ing 2D-supports associated with Λ. N is the number of
quadrilaterals (see Figure 2).
• Si, the subset of S whose sites are inside the quadrilateral,
i ∈ C.
• D = {Λ(s)/s ∈ Si , i ∈ C}, the set of data.
• x, an element of the state space, T , which corresponds
to a configuration of 3D-parametric blocks knowing the
2D-supports C. x = (xi)i∈C = (mi, θi)i∈C where each
block, xi, is specified by both a model, mi of the library M
and an associated set of parameters, θi. In the following,
xi = (mi, θi) and mi will be referred to as an object (or
block) and a model, respectively.
• Sxi

, the function from Si to R which associates the roof
altitude of the object, xi, to each site of Si.

We consider the random variable, X , distributed in T ,
which follows an unnormalized density, h. h is the poste-
rior density of a configuration, x, of objects, given D. In a
Bayesian framework, this density can be obtained from:

h(x) = h(x/D) ∝ hp(x)L(D/x) (1)

We must be able to build both a prior density, hp(x), and a
likelihood, L(D/x).

3.2.1 Likelihood

The likelihood represents the probability of observing the
data, D, knowing the configuration, x. By considering the
hypothesis of conditional independence, it can be expressed
in terms the local likelihood of objects, L(Di/xi):

L(D/x) =
∏
i∈C

L(Di/xi) ∝
∏
i∈C

exp−Γα
(i)(Sxi

,Di) (2)

where Γα
(i)(., .) is the distance from R

card(Si) × R
card(Si)

to R defined by :

Γα
(i)(Sxi

,Di) =

(∑
s∈Si

|Sxi
(s) − Λ(s)|α

) 1
α

(3)

To sum-up, the likelihood corresponds to the Z-error of the
Lα norm between the DEM and the objects. In practice,
α = 3

2 is a good compromise between sensitivity and ro-
bustness to DEM errors.

3.2.2 Prior

The prior density introduces interactions between neighbor-
ing objects. It allows us to both assemble objects in order
to propose a realistic building and compensate for the lack
of information contained in the DEM. A neighborhood rela-
tionship on C must be set up to define the interactions: two
distinct quadrilaterals, i and j ∈ C, are said to be neighbors
if they have a common edge. The neighborhood relation-
ship, denoted by �� (i �� j represents the set of neighboring
pairs in C). In previous work, too many interactions were
set up [7]. The number must be minimal to preserve robust-
ness and avoid problems in parameter setting. We propose a
simple and efficient prior which is defined through a single
interaction.
To do so, we define an assembly law which tests whether
two objects can be assembled together. Two objects xi =
(mi, θi) and xj = (mj , θj) are said ”joinable” (denoted by
xi ∼a xj), if:

1 - Fi = Fj and

2 - roof top orientations are compatible and

3 - the common edge of the quadrilateral 2D-supports, i
and j, is not a roof height discontinuity.

The first condition checks that the two blocks have the same
roof form. The second and third conditions test whether the
roof tops of the two objects can be connected.
The prior favors ”joinable” objects, i.e. homogeneous struc-
tures, which means that heterogeneous structures can also
be reconstructed. Moreover, in order to avoid artefacts,
the parameters of two ”joinable” objects are encouraged to



have similar values. To do so, the unnormalized density,
hp, is expressed through a Gibbs energy, Up (i.e. hp(x) =
exp−Up(x)), defined by:

∀x ∈ T , Up(x) = β
∑
i��j

1{xi∼axj}g(xi, xj) (4)

where 1{.} is the characteristic function. The parameter,
β ∈ R

+, weights the importance of the prior density with
respect to the likelihood. The density only depends on this
parameter which is computed using the Maximum Likeli-
hood estimator under regularization constraints detailed in
[6]. The function, g, taking values in [−1, 0], measures the
distance between the parameters of two ”joinable” objects:

g(xi, xj) =
D(xi, xj)

Dmax
− 1 =

∑
k ωk|θ̃i,(k) − θ̃j,(k)|

Dmax
− 1

(5)
θ̃i,(k) and θ̃j,(k) are the kth element of the parameter sets
Fi and Fj of the objects xi and xj , respectively. Dmax =
max
xi,xj

D(xi, xj) is the maximum value of the distance. ωk

are weights which are introduced in this distance in order
to normalize the parameter values according to the metric
system. These weights are computed from the X, Y and Z
resolutions and the configuration of quadrilaterals C.
Figure 4 illustrates this interaction. If the two blocks belong
to different roof types (for example a mansard roof and a
semi-elliptic roof on the top right) or if the two objects do
not have compatible roof orientations (bottom right), they
will not be ”joinable” and the energy will be null. On the
contrary, if the two objects are ”joinable”, the energy will
be negative : these configurations are favored. The nearer
the parameters of the two objects, the lower the energy. The
left configuration is the best one.

Figure 4. Prior energy - local configurations of various energies.

We now find the object configuration which maximizes
the posterior density,h(.), i.e. the Maximum A Posteriori
(MAP) estimator,xMAP . This is a non convex optimization
problem in a high and variable dimension space,T , since

the blocks in library, M, are defined by a different numbers
of parameters.

3.3.1 RJMCMC sampler

The Reversible Jump Markov Chain Monte Carlo (RJM-
CMC) algorithm [4] is well adapted to our problem. Sev-
eral papers have shown the efficiency of the RJMCMC sam-
pler for the problem of multiple parametric object recog-
nition. For example, Dick et al. use such a sampler to
reconstruct architectural buildings from terrestrial images
where the parametric object set includes structures such as
columns, buttresses, entablatures or drainpipes [2].
The RJMCMC sampler simulates a discrete Markov Chain
(Xt)t∈N on T having π as an invariant measure (specified
by the posterior density, h(.)) which makes small jumps
between spaces of variable dimension respecting the re-
versibility assumption of the chain.
The jumps are proposed according to the three kernels spec-
ified in the following and detailed in [6]:

• Kernel Q1: uniform jumps This is the classic kernel
proposing a new state according to uniform distribu-
tions. It is enough to ensure that the Markov chain can
visit any configuration of the state space. However,
using only this kernel requires long computation time
[7]. Thus we propose two efficient additional kernels
Q2 and Q3.

• Kernel Q2: data-driven jumps This kernel cleverly
explores the state space using a data-driven process
[13]. To do so, the state, x, is proposed knowing the
data, i.e. according to a probability, p(x|D). More
precisely, it firstly estimates the gutter roof height Ĥg

and the roof top height Ĥt of the object concerned by
the jump and, secondly, chooses its height values ac-
cording to the Gaussian distributions, N (Ĥg, σ) and
N (Ĥt, σ), respectively (in practice, σ = 1 m).

• Kernel Q3: regularization jumps In our applica-
tion, the visual aspect of the result is very important:
we need a kernel which proposes well-regularized ob-
jects, i.e. objects which are perfectly aligned with
their neighbors. The new object, xi, must be proposed
knowing the neighboring objects {xj/j �� i}, i.e. ac-
cording to p(xi|{xj/j �� i}). The model is uniformly
selected according to the models of the neighboring
objects. The parameter values are chosen according to
Gaussian mixtures depending on the parameter values
of the neighboring objects.

In summary, the RJMCMC sampler is: at iteration t, if
Xt = x:

1- Choose the kernel Qi(x, .) with probability qi.
2- According to Qi, propose a new state y.



Figure 5. Two simple examples of the optimization process - evolution of the configuration as the temperature decreases (d), associated
with the satellite images (a), the ground truths (b) and the final results (c).

3- Take x(t+1) = y with probability:

min
(

π(dy)
π(dx)

Qi(y, dx)
Qi(x, dy)

, 1
)

(6)

and take x(t+1) = x otherwise.

3.3.2 Simulated annealing

Simulated annealing is used to ensure convergence: the den-
sity, h(.), is substituted with h(.)

1
Tt , where Tt is a sequence

of temperatures which tends to zero as t tends to infinity.
Simulated annealing theoretically ensures convergence to
the global optimum for any initial configuration, x0, using
a logarithmic temperature decrease. In practice, we used
a geometric decrease which is faster and gives an approxi-
mate solution close to the optimal one. The initial and final
temperatures are estimated through the variation of the en-
ergy following White [15].
The process has two stages. At the beginning, i.e. when the
temperature is high (see Figure 5-(d) showing two simple
examples of simulations), the process explores the density
modes and favors configurations which have a high den-
sity. In this exploration stage, the data-driven kernel Q2 is
mainly used (q1 = q3 = 1

8q2 = 0.1)3. At low temperature4,
the configuration is close to the optimal solution and does
not evolve very much : it involves a detailed adjustment of
the 3D-block parameters. In this second stage, the regular-
ization kernel Q3 is mainly used (q1 = q2 = 1

8q3 = 0.1).

4. Experiments

The results were obtained from satellite DEMs (0.7 m
resolution) and aerial DEMs (0.1 and 0.25 m resolution).
The results show the reconstruction of complex buildings
and dense urban areas whose level of detail depends on both
the choice of the extraction process (automatic or interac-
tive) and the kind of data. There is no comparison with other
approaches for the reasons underlined in the introduction,
except where the context is similar [7]. DEMs have been
generated from 3-view images using a multi-resolution im-
plementation of a Cox and Roy optimal flow matching im-
age algorithm [11]. The 3D ground truths are raster images.
Generic textures were applied to the objects of Figure 6 for
visualization.
Figures 6 and 7 present various examples of reconstruction
(showing different roof types, roof height discontinuities,
closed structures or complex roof junctions). These results
are convincing. The 3D-blocks are correctly assembled and
few artefacts are generated which means the process adapts
to buildings with complex roof junctions.
Results shown in Figure 6 were obtained from satellite
DEMs with automatic 2D extraction. Even if some details
are omitted, the shapes of buildings compare well to the
ground truth and the generalization level is satisfactory with
respect to the context. The different roof types were cor-
rectly identified and the roof height discontinuities were ac-
curately located. The ground errors for the automatic 2D ex-
traction process were satisfactory. The over-detection rate
(in term of surface) was 9.7%. This rate can be improved by
adding a vegetation mask to prevent the detection of trees.

3The qi correspond to the probability of choosing the kernel Qi in an iteration of the RJMCMC sampler.
4In practice, the second stage is detected when the accepted proposition rate computed on 1000 iterations becomes lower than 0.05.



Figure 6. Reconstructed buildings with automatic 2D extraction from satellite data (4th row), satellite images (1st row), ground truths (2nd

row) and DEMs with 2D-supports (3rd row).

Figure 7. Reconstructed buildings with interactive 2D extraction from satellite data (3 first examples) and 0.25 m resolution aerial data (2
last examples) (2nd row), DEMS with 2D-supports (1st row).

The rate of missed detection was quite high (15%). How-
ever, it was mainly due to low flat buildings in inner court-
yards (one floor height structures) that the 2D extraction
process cannot detect since these buildings have low DEM
discontinuities. Without taking into account these low flat
buildings, this rate falls to 4.5%. The altimetric Root Mean
Square Error (RMSE) in this context (satellite data / fully-
automatic process) is 2.3 m. This is better than the 3.2 m er-
ror obtained earlier [7] in the same context, but still remains

high. It is mainly due to both a non optimal positioning of
2D-supports in the automatic extraction process (which en-
genders important local altimetric errors at some locations)
and inaccuracies in the DEMs (which mainly correspond
to matching problems of non Lambertian surfaces such as
glass rooves). The second example underlines the limits of
the automatic 2D extraction process: some footprints (espe-
cially curved footprints) cannot be modeled accurately by
sets of quadrilaterals. The proposed kernels achieved ac-



Figure 8. Urban area reconstruction without and with textures (3rd/2nd columns) from satellite data (1st row) and aerial data (2nd row),
DEMs (1st column).

ceptable computation times. Less than one minute is neces-
sary to obtain the buildings of Figure 6 using a 3Ghz pro-
cessor (vs 5 minutes [7]).
Figure 7 presents examples of buildings reconstructed by
the interactive 2D extraction process. In the two first exam-
ples, the results are clearly better since the 2D-supports are
accurately located. The reconstruction is more detailed and
the altimetric RMSE is 1.1 m from the satellite data.
Figure 8 shows results on two typical European down town
areas. The computation time for the second example was
35 minutes (0.6km2 - about 700 objects).
The proposed method also allows modeling roof details
such as chimneys or dormer-windows. In fact, the library
of 3D blocks is general enough to reconstruct such roof su-
perstructures. Figure 9 presents accurate results of building
superstructure reconstruction from a 0.1 m resolution aerial
DEM. The altimetric RMSE for these images is 0.6 m - a
very good value.

5. Conclusion

This new method is an interesting alternative to generic
and parametric approaches. It presents several important
characteristics. First, it obtains very good results from
a single DEM. Moreover, contrary to other methods, this
approach works efficiently on various data resolutions: a
global description of the buildings from 0.7 m resolution

satellite data or a detailled building reconstruction includ-
ing roof superstructures from 0.1 m aerial data. The user
can also choose the level of automation of the process since
the 2D-supports can be extracted either interactively or au-
tomatically. To conclude, it is an adaptive method since
other 3D-block types can be added to the library depending
on the context.
In future work, it would be interesting to improve the opti-
mization step to achieve both higher precision and shorter
computing time. Adaptive cooling schedules could be
used in the RJMCMC sampler or the Jump-Diffusion pro-
cesses which are efficient for similar optimization prob-
lems. Moreover, we should evaluate the potential of this
method on other kinds of cities such as typical North Amer-
ican urban areas.
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