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Abstract

In this paper we investigate the challenging problem of
recovering the depth layers in a scene from a single de-
focused observation. The problem is definitely solvable if
there are multiple observations. In this paper we show that
one can perceive the depth in the scene even from a single
observation. We use the inhomogeneous reverse heat equa-
tion to obtain an estimate of the blur, thereby preserving
the depth information characterized by the defocus. How-
ever, the reverse heat equation, due to its parabolic nature,
is divergent. We stabilize the reverse heat equation by con-
sidering the gradient degeneration as an effective stopping
criterion. The amount of (inverse) diffusion is actually a
measure of relative depth. Because of ill-posedness we pro-
pose a graph-cuts based method for inferring the depth in
the scene using the amount of diffusion as a data likeli-
hood and a smoothness condition on the depth in the scene.
The method is verified experimentally on a varied set of test
cases.

1. Introduction

Shape from a single image is a task which has pre-
dominantly continued to elude computer vision researchers.
While the community has gained considerable expertise to
attack this problem when provided with multiple images,
the same cannot be said when just a single image from an
uncalibrated camera is provided. The task is quite daunting
computationally, inspite of the ease with which the human
system is able to achieve the same.

In this paper we present a method to perceive the depth
layers from a single defocused image. The limited depth
of field introduces a defocus blur in images captured with
conventional lenses based on the range of depth variation
in a scene. This artifact has been used in computer vision
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Figure 1. A sample image of a scene captured with a low depth
of field and the resultant depth map estimated using the proposed
method without any additional information. Note that darker re-
gions correspond to focused regions and lighter regions corre-
spond to defocused regions.

for estimating depth in the scene when multiple defocused
images are provided. Here we show that using this low-level
cue it is still possible to perceive the scene structure using a
single image to a fairly good extent of accuracy.

The method proposed in this paper uses a single defo-
cused image of a scene taken with an uncalibrated real aper-
ture camera having a low depth of field. We show that a
surprisingly large amount of information of the 3D scene
can be inferred based on just the defocus cue in a single
image. In order to extract this information we face several
challenges. The conventional methods for estimating depth
from defocus ([4],[9]) have relied on multiple observations.
The differences in blur among various observations are used
as a cue for estimating the depth. However, it is more nat-
ural for a photographer to take a single image. There are
in general a lot of beautiful images taken of natural scenes
with a shallow depth of field, such as the image shown in
fig.1(a). In this paper we explore for the first time as to
what extent the blur can be estimated even with a single im-
age. From fig.1(a), any human observer can infer that the
flowering plant and the adjoining grass is closer to the cam-
era than the waterfall. Can we teach a computer to infer the
same? The depth map of the 3D scene shown in fig.1(b)
demonstrates that it is indeed now possible to a certain ex-
tent using the method proposed in this paper.

The idea of using low-level cues for extracting a 2 1
2D
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sketch was proposed by Marr [17]. This forms a philosoph-
ical basis for our work. A successful approach for single
image based structure recovery has been that by Criminisi
et al. [5]. Here the authors have used projective geometry
based techniques for computing the scene structure based
on the prior knowledge of the vanishing line of a refer-
ence plane and a vanishing point. An interesting work has
been that of obtaining 3D pop-up kind of structure from a
single image based on learning appearance based models
of geometric classes and using this information for obtain-
ing cutouts ([12]). Another approach [20] based on simi-
lar lines uses images of scenes and their associated ground-
truth depth maps. It discriminatively trains an MRF using
multiscale local and global image features and uses it to
predict the depth map as a function of the image. In our
method we do not need such explicit prior knowledge or
learning. There is a related work [22], where the authors do
segmentation of images based on defocus cue by using the
statistics of the wavelet coefficients, but it is highly feature
dependent.

1.1. Related Work
The basic problem that has been addressed in the depth

from defocus methodology (DFD) has been the measure-
ment of the relative defocus between observations. Pent-
land [18] identified the problem of DFD as an estimation
of linear space variant blur. The defocus parameter was re-
covered using the deconvolution in the frequency domain.
However, the method depended on the availability of a per-
fectly focused image of the scene as one of the observations.
Subbarao [21] proposed a more general method in which
he removed the constraint of one image being formed with
the pinhole aperture. Subsequently there have been several
approaches in the frequency domain and in the spatial do-
main. An example of frequency based approach is [23]. In
[23], the authors suggest the use of broadband rational fil-
ters. There has also been a substantial amount of work done
to estimate depth from defocus where the image analysis
is done in the spatial domain itself. One such approach has
been that of modeling the problem in a statistical framework
([4], [19]). Extensive work has been done by the authors us-
ing this technique by modeling the depth and the image as
separate Markov random fields (MRF). Further recent work
in the spatial domain includes [6],[7], [8], [9], [16]. In [7],
the authors pose the problem as one of reconstructing the
shape and the radiance that minimize a measure of informa-
tion divergence between blurred images. In [8], the authors
have used the idea of diffusion for estimating the depth from
defocus which is to some extent similar to our work. Here,
however, we consider the reverse diffusion instead of us-
ing only the forward diffusion as done by the authors. In
[16], the authors consider the issue of calibration for esti-
mation of depth from defocus. In [6], the problem is ex-
plored by taking into account issues related to convexity,

Figure 2. Illustration of image formation in a real aperture lens.

and using Bregman distances the authors provide means for
estimating depth from defocus. However, while all the work
done using defocus cue have been based on multiple obser-
vations, our work differs in the fact that we use a single
observation with an uncalibrated camera for estimating the
relative blur and thereby the relative depth in the scene.

2. Diffusion Based Modeling of Defocus
Consider the image formation process in a real aperture

camera employing a thin lens [4]. When a point light source
is in focus, all light rays that are radiated from the object
point and intercepted by the lens converge at a point on
the image plane. When the point is not in focus, its im-
age on the image plane is no longer a point but a circular
patch, as shown in fig.2. The point spread function (PSF)
of the camera describes the image intensity caused by a sin-
gle point light source. Geometric optics approximates the
PSF to a circular disk. However, as discussed in the liter-
ature ([4],[18]), due to diffraction it will be approximately
a circular blob with the brightness falling off gradually at
the border rather than sharply. The resultant PSF has the
general shape of a 2-D Gaussian function ([4],[18]). For an
equifocal plane the resultant image formed is then given by

I(x) =
∫
f(y)h(x, y)dy, (1)

where we adopt x ∈ <2 to denote the 2D space co-ordinates
in an image, f(x) is the focused image (pin-hole) of the
scene and h is the space-varying PSF. Here h(x) is given by
a circularly symmetric 2-D Gaussian function

h(x) =
1

2πσ2
exp

(
−|x|2

2σ2

)
, (2)

where σ is a blurring parameter that is a function of depth
at a given point.

It is known that, for a scene with constant depth the
imaging model in eqn.(1) can be formulated in terms of the
isotropic heat equation [13] given by

∂u(x, t)
∂t

= c

(
∂2u(x, t)
∂x2

)
u(x, 0) = f(x). (3)



Here the solution u(x, t) taken at a specific time t = τ
plays the role of an image I(x) = u(x, τ) and f(x) corre-
sponds to the initial condition, i.e. the pin-hole equivalent
observation of the scene. Note that we have used u(x, t) to
represent the evolution of heat everywhere in the paper. The
Gaussian PSF evidently can be formulated in terms of the
heat equation, since the Gaussian function is a fundamen-
tal solution of the heat equation. It is pertinent to note that
even the cylindrical PSF can be modeled using heat equa-
tion. This has been shown by Guichard and Morel [11].
Thus, modeling the defocus process by the heat equation
is indeed physically valid when we consider both Gaussian
and cylindrical shapes for modeling the defocus PSF. The
blurring parameter σ is related to the diffusion coefficient
by the following relation [8]

σ2 =
tc

γ
(4)

where t is the time variable in the diffusion equation, c is
the diffusion coefficient, and γ relates to the size of the blur
radius in terms of pixel units which depends on the spa-
tial resolution of the CCD array. In the depth from defocus
problem, the depth in the scene varies over the image and
hence the coefficient c and the time t together will be a func-
tion of relative depth at location x, i.e., it will vary over the
image. This corresponds to a heat equation in a inhomoge-
neous medium.

3. Reverse Heat Equation
Given a defocused observation of a scene we would like

to restore it using the reverse heat equation. The reverse
heat equation is given as

∂u

∂t
= c

(
∂2u(x, t)
∂x2

)
u(x, τ) = I(x), (5)

where I(x) is the blurred observation and c is the diffusion
coefficient. This is identical to the heat equation given in
eqn.(3), except for the initial condition given. Here we are
given the blurred observation and we have to find the pin-
hole equivalent image. That is we have to find the solution
such that it satisfies the original image u(x, 0) = f(x). This
is achieved by reversing time in the heat equation and the
resultant is

∂u

∂t
= −c

(
∂2u(x, t)
∂x2

)
, u(x, 0) = I(x). (6)

The idea of using the reverse heat equation for restoring im-
ages was first proposed by Gabor in 1965 [15]. Recently
the use of the reverse heat equation has been advocated by
Buades et al. [3]. They propose the use of the reverse heat
equation regularized by using the “non-local means” con-
straint. In this paper we use the reverse heat equation as

given in eqn.(6). The reason for not modifying the reverse
heat equation as done by Buades et al. is that the relation
between depth and diffusion coefficient and time, given by
eqn.(4) is valid only for the heat equation. Hence, for an
accurate depth estimation, the reverse heat equation should
be used directly. The main problem faced while using the
reverse heat equation is its divergent nature. Due to this the
reverse heat equation remains stable for a short while and
then degenerates very rapidly. The key to using the reverse
heat equation is to have an effective stopping criterion that
stops the reverse heat equation in its stable region.

Koenderink [13] had referred to the use of heat equation
in the reverse direction indirectly in his work. He had ob-
served that the notion of scale space in the reverse direction
would be stable up to the initial condition and beyond that it
would result in impulses being generated. Taking this into
account we have devised a stopping criterion that would ef-
fectively stop the reverse heat equation at an appropriate
time.

Consider the eqn.(5) where we are given a blurred obser-
vation I(x) and we have to estimate the observation without
blur i.e. f(x) that was the initial condition. However, we do
not know the value of the time either, i.e. we do not know
how far in time should the reverse heat equation be carried
out. An observation that can be used is that the eqn.(5) is
valid only till time t = 0 and it breaks down if we go beyond
this time. The breakdown of the heat equation is indicated
by the degeneration of the gradient. Hence, the resultant
formulation for reverse heat equation is

∂u

∂t
= −β(x)c

(
∂2u(x, t)
∂x2

)
, (7)

where β(x) is given by

β(x) =

{
1 if |∇u−∇u| < θ

0 else
(8)

Here ∇u is the gradient of u and ∇u is the average gradient
in the neighborhood. The function β(x) detects the degen-
eration of the gradient since the divergence of the gradient
from the average gradient is an indicator of the degeneration
of the gradient. The stopping time t of the reverse diffusion
is then determined by the value of the constant θ. In our
experiments we have used a small value of θ ranging from
0.2 to 0.4. The use of eqn.(7) results in an inhomogeneous
stopping of the reverse heat equation based on the amount
of defocus at a location. The relative depth in the scene is
then given by

d̂(x) =
∫ t(x)

0

c(x, t′)dt′. (9)

Here, d̂(x) is the approximate estimate of the depth at the
location x and t(x) is the reverse diffusion time at a location
x. An estimate of d̂(x) for the scene in fig. 1 is shown in



Figure 3. The integrated diffusion coefficient of the reverse heat
equation for the scene shown in fig.1. The convention darker is
the focused region (closer) is used throughout this paper.

fig. 3. It was demonstrated in [4] that the DFD method does
not perform well in the absence of any regularization of the
estimate. Hence, the depth estimate is further refined by
modeling the depth as a Markov random field.

4. DFD Using Graph Cuts
Using the reverse heat equation coefficient we can ob-

tain an approximate estimate of the depth in the scene using
eqn.(9). However, in the regions which do not have texture,
this depth estimate is not valid. Hence, we define a Markov
random field (MRF) modeled on the relative depth (or blur)
in the scene and solve it using the MAP-MRF framework
[10].

The depth estimate obtained using the reverse heat equa-
tion is a measure of the disparity between the observed im-
age and the restored image. Hence the depth estimate d̂(x)
obtained in eqn.(9) is taken as an estimate of the observed
blur D, corresponding to the depth in the scene, i.e. D is
now the data term defined for a location x. We define a set
of n discrete labels corresponding to different depths in the
scene. L = {l1, · · · , ln}. These labels are assigned over
the image for the relative depth in the scene given by r, one
label rx at each pixel x, that maximizes the posterior prob-
ability given by the Gibbs distribution

p(r|D) =
p(D|r)p(r)
p(D)

=
1
Zr

exp(−E(r)), (10)

where Zr is the normalizing constant (or partition function).
The energy corresponding to a configuration r consists of a
likelihood and a smoothness term as

E(r) =
∑
x

φ(D|rx ) +
∑

y∈Nx

ψ(rx , ry).

 (11)

The likelihood term φ(D|rx) is derived from the initial
depth estimate d̂ and the smoothness termψ(rx, ry) is based
on the prior on the depth in the scene. The neighborhood
Nx around x considered is the eight neighborhood around a
pixel.

The prior in the scene ψ(rx, ry) chosen to have the form

ψ(rx, ry) = ||(rx − ry)||2 (12)

We do not explore the choice of the optimal energy function
that can yield the best results in this paper.

An important issue here has been modeling the data like-
lihood term. Here we consider the depth term from the re-
verse heat equation around the edges and consider an equal
likelihood for the data term where the edge is absent. Ac-
cordingly the data likelihood is given by

φ(D|rx) =


(
(rx − d̂(x)

)2

if M(x) = 1

η if M(x) = 0
(13)

Here η is the default data value which is uniform for all
labels and is used in case the edge indicator function M(x)
indicates the absence of an edge. We use a binary valued
Canny edge detector for the indicator functionM(x). Since
the nearly homogeneous regions do not offer any informa-
tion about the depth or the associated diffusion, we give
more weight to the edge pixels. Accordingly the value of
η is appropriately chosen.

We minimize eqn.(11), thereby maximizing the posterior
probability using graph cuts ([1],[2]). The graph cut finds
the cut with the minimum cost separating terminal vertices,
called the source and sink. Here, the terminal vertices are
assigned the presence and absence of a discrete label from
L. The graph cut is solved using alpha expansion [2] which
allows us to consider this method of using binary labels to
minimize the cost over the entire setL. The resulting energy
function is

E(p1, · · · , pn) =
∑
i<j

Ei,j(pi, pj). (14)

Here p1, p2, · · · , pn, correspond to vertices in the graph and
each represents a binary variable where they are either con-
nected to the sink or to the source. These labels provide
a discrete approximation of r and the corresponding mini-
mization is same as minimization of E(r) in eqn. 11. For
an energy function of this form it has been proved by Kol-
mogorov and Zabih [14] that the function can be minimized
provided that it is regular, i.e. minimization is possible if
and only if each term of the energy function satisfies the
following condition:

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0) (15)
which implies that the energy for two labels taking similar
values should be less than the energy for the two labels tak-
ing different values. Since this is the case for the energies
defined by us, we can find the desired configuration r̂ by
minimizing eqn.(11).

5. Results
We now describe the experiments that we have per-

formed using a variety of images. The first experiment was
performed on a synthetic texture data set. Here we provide



(a) (b) (c)

Figure 4. A texture map is modified with three blurred regions as
shown in (a) and the resultant depth map estimated using the pro-
posed method is shown in (b). The ground truth for this synthetic
data set is shown in (c). Here we obtain accurate labels for 94% of
the pixels.

a defocused input image fig. 4(a). This shows a texture im-
age from the Brodatz texture database which is blurred with
3 different blur regions. The corresponding depth map es-
timated is shown in fig. 4(b) and the ground truth for the
data is shown in fig. 4(c). The quantitative comparison of
the estimated depth map with the ground truth showed that
94% of the pixels are labeled accurately.

We then tested our method on a general outdoor image
in fig.1(a). This image is captured with a moderately low
depth of field with the focus on the flowers in the fore-
ground. The grass near the flowers is also in the foreground,
whereas the waterfall is further back and the sloping hills to-
wards the left are furthest away from the camera. All these
details are captured appropriately in the depth map shown in
fig.1(b). The result is obtained using 16 labels of depth with
a gradient degeneration threshold θ in eqn.(8) of 0.2. The
corresponding data likelihood term from the reverse heat
equation is shown in fig.3. As can be seen from the recov-
ered depth map, we are able to obtain a very good estimate
of the relative structure in the scene just from the single im-
age in fig.1(a).

We next consider an image taken from a sports scene
shown in fig.5(a). As can be seen, here the player is in fo-
cus and the spectators are out of focus. This image is inter-
esting due to the very low amount of texture present in the
scene. The scene structure is estimated using the proposed
technique and the result is shown in fig.5(b). The player
is clearly seen in front and the spectators are seen in the
background. Further details like the right arm of the player
being in front, the face being a bit behind the body can also
be perceived.

We next consider a data set with complex lighting condi-
tions. The input image fig.6(a) shows a room with various
artefacts. The figurines of puma are shows specular effects
and there are also other diffuse reflectors in the scene. The
relative depth map obtained using the proposed technique is
shown in fig.6(b). This shows that the algorithm is able to
estimate the relative layers of depth even in such challeng-
ing situations.

(a) (b)

Figure 5. A sports scene shown in (a) with low texture is consid-
ered. Even in this challenging data set an appropriate depth map
is obtained using the proposed method as seen in (b).

(a) (b)

Figure 6. A scene with complex lighting conditions is shown in (a)
and the resultant depth map is shown in (b).

5.1. Ambiguity in Depth Estimation Using Defocus
When we try to perceive the depth in the scene based

on the defocus cue, there is an underlying assumption that
all the objects are to one side of the defocus cone shown in
fig. 2. A similar amount of defocus blur is generated on
both sides of the defocus cone as is illustrated in fig.2. The
same amount of blur is generated at the planes which are
equidistant from the focus point F. Hence, it cannot be dis-
cerned whether the objects that are defocused are towards
the front or back. This ambiguity is evident from our next
experiment.

We consider two images of dolls (courtesy [8]) where the
focus is interchanged between background and foreground
objects. In the first case as seen in fig.7(a), the foreground
is out of focus and the background is in focus. The cor-
responding recovered depth map obtained using the image
is shown in fig.7(b). Note, that the depth map shown also
captures the details like the right most doll has its front
portion more in focus than the back and the depth vari-
ation around the hands is also reflected properly. Favaro
et al. [8] have used the two images given in figures 7(a)
and 8(a) to compute the depth. The result obtained by the
method proposed by Favaro et al. is shown in fig.7(c) and
those obtained by the proposed method (for the foreground
defocused case for uniformity in comparison) is shown in
fig.7(b). As can be seen in fig.7, the results obtained by
the proposed method are definitely comparable and in some
cases, as in around the right most doll, the depth map from
the proposed method shows more detail. Note that, strictly
speaking the depth maps cannot be compared as the pro-
posed method uses just a single image.

When we consider the other image of the dolls where
the foreground is in focus and the background is out of fo-



(a) (b) (c)

Figure 7. The dolls scene (courtesy [8]) with the foreground defo-
cused as shown in (a). The depth map from the proposed method
is shown in (b). The depth map obtained for the method proposed
by Favaro et al. [8] using two images is shown in (c).

(a) (b)

Figure 8. The dolls scene (courtesy [8]) with the background de-
focused as shown in (a).The depth map from the proposed method
is shown in (b).

cus as seen in fig.8(a), then the resulting depth map shown
in fig.8(b) will also be in the opposite direction. Here, the
depth map shows the foreground portion in darker shade in-
dicating that this region is in focus. Notwithstanding the
above difference, a comparison of figs.7(b) and 8(b) shows
that the recovered depth maps are mutually very consistent.

6. Conclusion
In this paper we demonstrate that it is indeed possible to

recover the relative depth layers from a single image using
the defocus cue. The reverse heat equation can be used for
restoring the image in an inhomogeneous way based on the
amount of defocus blur. The amount of reverse heat dif-
fusion serves as a data likelihood and using this likelihood
around the edges, a graph cuts based method is proposed
to estimate the depth in the scene thereby enforcing regu-
larization. We have demonstrated by experimentation on
a variety of test cases of real data that the method consis-
tently provides a correct perception of the scene structure.
We would like to further explore the use of additional pri-
ors to improve the results further by considering the natural
image statistics of the gradient in an image.
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