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Abstract

Camera calibration, as a fundamental issue in computer
vision, is indispensable in many visual surveillance appli-
cations. Firstly, calibrated camera can help to deal with
perspective distortion of object appearance on image plane.
Secondly, calibrated camera makes it possible to recover
metrics from images which are robust to scene or view an-
gle changes. In addition, with calibrated cameras, we can
make use of prior information of 3D models to estimate 3D
pose of objects and make object detection or tracking more
robust to noise and occlusions.

In this paper, we propose an automatic method to recover
camera models from traffic scene surveillance videos. With
only the camera height H measured, we can completely re-
cover both intrinsic and extrinsic parameters of cameras
based on appearance and motion of objects in videos. Ex-
periments are conducted in different scenes and experimen-
tal results demonstrate the effectiveness and practicability
of our approach, which can be adopted in many traffic scene
surveillance applications.

1. Introduction

Camera calibration, as a fundamental topic in com-
puter vision, is not only essential for many computer vi-
sion problems like stereo, metrology and reconstruction, but
also benefits many application tasks like intelligent visual
surveillance. Firstly, camera calibration can help to deal
with perspective distortion of object appearance on 2D im-
age plane which is a very difficult problem to solve for most
2D image feature based methods. Secondly, calibrated cam-
eras make it possible to recover discriminant metrics robust
to scene or view angle changes, which is greatly helpful
for some applications like classification or tracking among
multi-cameras. Thirdly, with cameras calibrated, we can
make use of prior information of 3D models to estimate real
3D pose of objects in videos and make object detection or

tracking more robust to noise and occlusions.
Due to its importance, much work has been done in the

field of camera calibration with all kinds of approaches pro-
posed. The common practice for camera calibration is to
collect a set of correspondences between 3D points and
their projections on image plane [4, 5]. However, a time-
consuming wide site survey is required and it is difficult to
measure 3D points which are not laid on the ground plane
in wide surveillance scenes. Alternative strategies are pro-
posed by Tsai [9] with a 3D known metric structure and
Zhang [10] with a known planar template of unknown mo-
tion. However, requirement of calibrated templates lim-
its the practicability of surveillance algorithms to different
scenes. In addition, calibrated templates are not available in
wide-field surveillance scenes because their projections are
of very small size on image plane to supply poor accuracy
for calibration.

Auto-calibration methods seem to be a more suitable
way to recover camera parameters for surveillance appli-
cations. Since most surveillance applications make use of
only one static camera, auto-calibartion cannot be achieved
from camera motion but from inherent structure of monoc-
ular scenes. Caprile and Torre [2] described methods to
use vanishing points to recover intrinsic parameters from a
single camera but extrinsic parameters from multi-cameras.
Liebowitz and etc. [6] developed a method to estimate in-
trinsic parameters by Cholesky decomposition and applied
it to a scene reconstruction problem. Deutscher and etc.
[3] made use of vanishing points in a Manhattan world to
recover camera parameters for visual tracking. These meth-
ods are based on extraction of vanishing points from static
scene structures such as buildings and landmarks.

In the absence of inherent scene structures, methods de-
scribed above are not available. Researchers make use of
object motion in videos to take the place of scene structure.
Lv and etc. [8] obtained 3 orthogonal vanishing points by
extracting head and feet positions of humans in videos on
the assumptions of constant human height and planar hu-
man motion. As we know, precise pedestrian detection is
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very difficult in surveillance videos due to noise and shad-
ows. Further more, the approach requires accurate localiza-
tion of head and feet positions of humans, which is more
challenging in low resolution surveillance videos. Bose and
etc. [1] tracked vehicles and detected constant velocity lin-
ear paths to realize ground plane rectification instead of re-
covering intrinsic and extrinsic camera parameters.

In this paper, we propose a novel automatic camera cali-
bration method from traffic scene surveillance videos. With
moving objects extracted from videos using motion infor-
mation, three vanishing points corresponding to three or-
thogonal directions in real 3D world are estimated based
on motion and appearance of moving objects. With only
the camera height H measured, we can recover both in-
trinsic and extrinsic camera parameters, which is of great
help for all kinds of surveillance applications. Experiments
are conducted to evaluate the performance of this calibra-
tion algorithm in different traffic scenes. Experimental re-
sults demonstrate the accuracy and practicability of our ap-
proach.

The remainder of the paper is organized as follows. In
Section 2, we introduce our method to extract accurate fore-
ground areas with shadows removed. The strategy to esti-
mate 3 orthogonal vanishing points from motion and ap-
pearance of video objects is described in Section 3. In Sec-
tion 4, we introduce our method to realize calibration only
from 3 orthogonal vanishing points and camera height H .
Experimental results and analysis are given in Section 5.
Finally, we draw our conclusions in Section 6.

2. Motion Detection
Motion and appearance of moving objects in surveil-

lance videos supply plentiful information for calibration. In
this section, we introduce our method for extraction of accu-
rate foreground areas with shadows removed. As we know,
Gaussian Mixture Model (GMM) is a popular method in
the field of motion detection due to its outstanding ability to
deal with slow lighting changes, periodical motions in clut-
ter background, slow moving objects and long term scene
changes. However, this method still has disadvantages that
it cannot deal with fast illumination changes and shadows
very well, which are very common in traffic scene surveil-
lance. In our work, we adopt the method described in [11]
to deal with disadvantages mentioned above and the method
can be summarized as follows:
(1) The intensity of each pixel is modeled as the product of
irradiance component and reflectance component.
(2) The reflectance value of each pixel is modeled as a mix-
ture of Gaussian.
(3) Every new pixel is matched against each of the existing
Gaussian distributions. A match is defined as a pixel value
within 2.5 standard deviations of a distribution.
(4) Sort the Gaussians and determine whether it is back-

ground.
(5) Adjust the Gaussians and their prior weights.
(6) If there is no match, replace the least probable Gaussian
and set mask pixel to background.

Experimental results of background maintenance and
motion detection are shown in Figure 1. As we see, fore-
ground objects are detected accurately with cast shadows
removed.

(a) One frame of videos (b) Background recov-
ered

(c) Detected moving
objects

Figure 1. Motion detection results with shadows removed (cited
from [11])

3. Vanishing Points Estimation
A vanishing point is defined as the intersection of a series

of projected parallel lines, which is very useful for auto-
calibration. In this section, we propose our method to es-
timate three orthogonal vanishing points from appearance
and motion of moving objects in videos.

In fact, conventional traffic surveillance scenes have a
series of helpful general properties for vanishing points es-
timation which are summarized as follows:

• Almost all moving objects including vehicles and
pedestrians are moving on the ground plane.

• Vehicles always run along the roadway which can be
seen to be straight or contain one or more approxi-
mately straight segments in the field of camera view.

• Image projection of vehicles are rich in line segments
along two orientations which correspond to the sym-
metrical axis direction and its perpendicular direction
in most view angles.

• In most cases, pedestrians are walking with their trunks
perpendicular to the ground plane.

These four properties are found in most traffic surveil-
lance scenes and they can be used to estimate three orthog-
onal vanishing points, which are described in detail as fol-
lows.

3.1. Coarse moving object classification

We extract two kinds of directions for every moving ob-
jects detected from videos. The first one is the velocity di-
rection in images, which can be calculated due to its posi-
tion change of unit time. The second one is the main axis



direction θ, which can be estimated from moment analysis
of silhouette as:

θ = arctan(
2µ11

µ20 − µ02
) (1)

Here, µpq is the central moment of order (p, q). The differ-
ence between these two directions supplies coarse category
information. As we know, the direction difference is quite
significant for pedestrians moving in videos while the two
directions are very close for vehicles in most cases of cam-
era view as shown in Figure 2. As a result, we take the
difference of these two directions as discriminant feature
for coarse classification. K-Mean clustering seems to be a
good method for classification. However, due to large view
angle variance in the camera view field, we should adopt
more reliable strategy to avoid serious misclassification. In
practice, we set two threshold values θ1 = 5◦ and θ2 = 20◦.
The object is labeled as a vehicle if its direction difference
is less than θ1 and as a pedestrian if its direction difference
is larger than θ2. Those objects whose direction difference
is between θ1 and θ2 are discarded. The latter estimation of
vanishing points benefits from this strict classification strat-
egy.

(a) Illustration of vehicles (b) Illustration of pedestrians

Figure 2. Illustrations in different view angles (Red arrowhead
stands for velocity direction; blue arrowhead stands for main axis
direction)

It is evident that this classification is not very accurate
but enough for us to extract three orthogonal vanishing
points as described in the following.

3.2. Line Equations Estimation

The four general properties in traffic surveillance scenes
we summarized before supply important information for re-
covery of camera models.

Here, we assume that the roadway is straight in the field
of view. Special cases of non-straight roadways will be dis-
cussed in Section 5. In this case, most vehicles are run-
ning in the same or inverse direction of the 3D world so that
the symmetrical axes of most vehicles should be parallel to
each other, which are also parallel to the ground plane. This
supplies important information for us to extract horizonal
vanishing points. As we have described before, image pro-
jection of vehicles are rich in line segments along two orien-
tations which correspond to the symmetrical axis direction
and its perpendicular direction. With these two orientations
extracted for each vehicle detected from videos, we can esti-
mate their intersections corresponding to the two horizonal
vanishing points, respectively.

Due to perspective distortion, projected orientation of 3D
direction is not unique and related to its position in images.
For accuracy, we try to extract two accurate line equations
corresponding to the two perpendicular directions for ev-
ery vehicle detected from videos. Instead of sensitive edge
point detection and combination to edge lines, these two ori-
entations are extracted by Histogram of Orientated Gradient
(HOG) in two stages. For every moving region labeled as
vehicle detected from videos, the gradient magnitude and
orientation are computed at every pixel within it. The ori-
entation is divided into N bins and the histogram is formed
by accumulating orientations within the region, weighted by
the gradient magnitude. Those two bins with the largest val-
ues are chosen as coarse line orientations and a N bin HOG
is calculated in each bin again to extract accurate line ori-
entation, respectively. For every orientation estimated accu-
rately, the line with this orientation slides from top to bot-
tom of the region to determine its position in which the line
most fits image data by correlation. An example is illus-
trated with line equations determined as shown in Figure 3.

HOG

HOG HOG

Figure 3. Flowchart for estimation of line equations for vehicles

For every vehicle, we can extract two line equations cor-
responding to two 3D directions. Motion direction is ap-
plied to distinguish these two directions. The line with
its orientation close to motion direction corresponds to the
symmetric axis direction of the vehicle while the other one
corresponds to the perpendicular direction.

Pedestrians do not have so significant gradient orienta-
tions. However, as we know, most pedestrians are walking
with their trunk perpendicular to the ground plane in most
situations. Instead of localizing head and feet position in
a small region, we take the line with main axis orientation
passing by its centroid to describe trunk pose, which is more
robust to be used for estimation of vertical vanishing points.



3.3. Intersection Estimation

There are three kinds of lines estimated from detected
objects in videos. The first kind corresponds to the symmet-
ric axis direction in reality. The second kind corresponds to
perpendicular direction of symmetric axis. The third kind
corresponds to the perpendicular direction of the ground
plane.

With abundant objects detected from videos, we can col-
lect large sets of lines for each kind and make use of them
to estimate vanishing points. Due to large portion of out-
liers and noise in videos, lines are in fact not intersected at
the same point. Various approaches can be adopted for ro-
bust estimation of the intersection point from redundant line
equations. The simplest way is to solve simultaneous line
equations based on least square strategy. Also, the problem
can be transformed to estimate a point the sum of whose dis-
tance to all lines is minimal. This is an optimization prob-
lem which can be solved by Levenberg-Marquardt method.
In addition, RANSAC is another strategy to solve this prob-
lem which has been used in [8].

In spite of the accuracy and robustness supplied by the
above methods, they are not suitable to our case. In traf-
fic scene surveillance, with videos processed and the frame
number increases, more and more moving objects are de-
tected from videos and the set of extracted lines become
larger and larger. The intersections should be estimated
from large sets of lines every moment without repeated cal-
culation.

An improved voting strategy is adopted here for incre-
mental estimation of intersections. It is based on the thought
that every point on the line is the possible candidate as the
intersection. The possibility satisfies a Gaussian distribu-
tion on the neighborhood due to the distance to the point.
As a result, for every line l extracted from objects in videos,
each point s(x, y) lying on l generates a Gaussian impulse
in the voting space with (x, y) as its center. With time ac-
cumulated, a voting surface can be generated and the posi-
tion of its global extreme corresponds to the estimated in-
tersection of lines. Compared to other estimation method,
this strategy can estimate the positions of vanishing points
every moment without repeated calculation. Compared to
traditional voting method, this strategy supplies more spic-
ulate global extreme, smoother surface, and is more ro-
bust to noise and outliers. One example of estimation of
the vanishing point from voting surface is shown in Fig-
ure 4. Line equations from vehicles are taken to estimate 2
horizonal vanishing points while those from pedestrians are
taken to estimate 1 vertical vanishing points. In this way, we
can extract 3 orthogonal vanishing points (u1, v1), (u2, v2),
(u3, v3) from appearance and motion information of mov-
ing objects in traffic scene surveillance videos.

(a) Illustration of a traffic scene (b) Voting surface

Figure 4. Illustration of estimating vanishing points from traffic
scenes

4. Camera Calibration
In this section, we introduce our approach to recover

camera models from vanishing points.
For a pin-hole camera, perspective projection from the

3D world to an image can be conveniently represented in
homogeneous coordinates by the projection matrix P:
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As we know, the P can be further decomposed into the 3×3
rotation matrix R, the 3 × 1 translation vector T and the
intrinsic parameter matrix K which has the form as

K =

αu s u0

0 αv v0

0 0 1

 (3)

With the assumption of zero skew (s = 0) and unit aspect
ratio (αu = αv = f) for surveillance cameras, the K is
simplified to have only 3 degrees of freedom.

4.1. Recovery of K and R

The 3 vanishing points correspond to the 3 orthogonal
directions in the 3D space, which are chosen to set up the
world coordinate system. Due to the fact that points in infin-
ity correspond to the 3 orthogonal directions, we can derive
the constraints as: λ1u1 λ2u2 λ3u3

λ1v1 λ2v2 λ3v3

λ1 λ2 λ3

 = P


1 0 0
0 1 0
0 0 1
0 0 0

 = KR (4)

Since the rotation matrix R satisfies R · RT = I, (4) can
be rearranged to derive constraints on K as: u1 u2 u3

v1 v2 v3

1 1 1

 λ2
1 0 0
0 λ2

2 0
0 0 λ2

3

  u1 u2 u3

v1 v2 v3

1 1 1

T

= KKT (5)



Under the assumption of unit aspect ratio and zero skew,
(5) can be solved to recover 3 intrinsic camera parameters
and the 3 unknown factors, λ2

i . A more robust strategy is to
assume the main point (u0, v0) lying on the middle of image
plane so that we only need to solve f from (5).

With K and λi solved, they can be substituted into (4) to
solve the rotation matrix R.

4.2. Recovery of T

Traditionally, the translation matrix T is recovered from
correspondence between two or more views. However, only
one static camera is usually used in surveillance applica-
tions. In this case, we can choose one arbitrary reference
point (u4, v4) from image plane to correspond to the origin
of the world coordinate system so that:

λ4

 u4

v4

1

 = K [R T]


0
0
0
1

 = KT (6)

This supplies two constraints about T, which leaves the
scale factor λ4 and is not sufficient to completely solve T.

As we know, surveillance cameras are always mounted
quite high from the ground plane so that the Z coordinate of
the optical center can be simply estimated as the distance H
between the camera and the ground plane. We will derive
two other constraints from this metric.

The first property we can use is that the image projected
point (u, v) of every point in z = H plane are on the
line across the two horizonal vanishing points (u1, v1) and
(u2, v2). This lead to a linear equation about T as:

(u − u1)(v1 − v2) − (v − v1)(u1 − u2) = 0 (7)

The other property is that the optical center of the camera
lies on the z = H plane so that

−R−1T =

 xc

yc

H

 (8)

where (xc, yc) is the coordinate of optical center on the
world coordinate system. So another linear equation about
T can be derived from (8). The above derived simultaneous
equations are sufficient to recover the translation matrix T.

In this section, we propose our method of complete cali-
bration of surveillance scenes with three estimated orthogo-
nal vanishing points and the measured camera height H . In
the next section, experiments are conducted to evaluate the
performance of our auto-calibration method.

5. Experimental Results and Analysis
Experiments are conducted in different scenes and exper-

imental results are presented in this section to demonstrate
the performance of the proposed approach.

5.1. Illustration of the Procedure

One frame of a 720 × 576 traffic scene video captured
by a Panasonic NV-MX500 digital video is shown in Fig-
ure 5(a). The three orthogonal vanishing points are esti-
mated as (u1, v1) = (−217, 70), (u2, v2) = (1806, 31)
and (u3, v3) = (427, 4906) as shown in Figure 5(b). Using

(a) Illustration of a traffic scene

(u1, v1)

(u2, v2) (u3, v3)

(b) Triangle of vanishing points

Figure 5. Illustration of estimating camera parameters

the methods described in Section 4, we can recover the in-
trinsic camera parameters: αu = αv = 884, (u0, v0) =
(336, 226). With the camera height measured as 7420mm
and the center of the image taken as the reference point, the
rotation matrix R and the translation matrix T can be recov-
ered as:

R =

−0.5244 0.8512 0.0190
−0.1484 −0.1134 0.9824
0.8384 0.5124 0.1858

 (9)

T =

 781mm
2020mm
29180mm

 (10)

To test the effectiveness of our approach, we capture two
other videos in different view angles without changing the
intrinsic parameters of the camera. The frames of the two
videos are illustrated in Figure 6.

(a) Frame of video1 (b) Frame of video2

Figure 6. Illustration of two videos from different view angles

In addition, we take the digital camera to capture two
images from different view angles with overlap. The intrin-
sic parameters are recovered from interest point correspon-
dence by SIFT [7]. The recovered camera intrinsic parame-
ters including the original one are shown in Table 2.

As we can see, the intrinsic parameters recovered respec-
tively from three videos vary in a small range less than 2%.



Table 1. Recovered intrinsic parameters of the digital camera

parameter f u0 v0

original video 884 336 226
video1 872 325 234
video2 893 342 238
SIFT 880 332 231

Further more, it is comparable to the method based on in-
terest point correspondence. It is shown that our calibration
method is accurate to be adaptive to different view angles.
Many vanishing points based auto-calibration methods are
not applicable because they cannot estimate the position of
vanishing points accurately. In our approach, we make use
of motion and appearance information of moving objects,
which is very redundant for recovery of vanishing points. In
addition, voting strategy is applied to get rid of outliers. In
this case, our approach can estimate vanishing points quite
accurately so that we can recover accurate camera parame-
ters.

5.2. Comparison to Point Set Correspondence
Based Method

For traffic scene surveillance, the most conventional
method for camera calibration is based on point correspon-
dence between 3D real scenes and 2D images [4]. In or-
der to estimate accurate projection matrix, we need to sur-
vey the whole scene and label points distributed averagely
within the whole scene. To compare with our approach, we
manually labeled more than 60 points and mark the corre-
sponding point in the image plane as shown in Figure 7. 20

Figure 7. Correspondence of labeled points on image plane

points of them are selected and Direct linear transformation
(DLT) method is applied to recover the projection matrix P

based on the least square strategy as:

P =

−195.67 912.46 83.77 9429158
50.74 17.79 897.79 9270693
0.68 0.70 0.15 32739

 (11)

In comparison, the projection matrix recovered by our ap-
proach is:

P =

−181.94 925.3 79.3 10504946
58.87 15.8835 911.18 8403957
0.84 0.51 0.19 29180

 (12)

Experiments are conducted to compare the projection
matrix calculated by DLT and our method using the other 40
corresponding pairs. We find that our approach gives more
than 3% higher accuracy. The possible reason is that label-
ing of points in surveillance scenes are focus on the ground
plane. It is difficult to collect abundant points which are
not lied on the ground plane. In addition, manually labeled
points cannot cover the whole scene averagely. In contrast,
our approach makes use of motion and appearance infor-
mation of moving objects, which supplies very redundant
direction information to achieve accurate calibration.

5.3. Testing with Real Scene Measurement from Im-
ages

The performance of camera calibration can be evaluated
by measurement of real length ratio from images. As shown
in Figure 8, we take one length as unit length and 27 length
ratio are measured from images. The measured value and
the ground truth of every value are listed in Table 2.
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l

1

Figure 8. Scene measurement from images

As we can see, the average error of measurement is
less than 10% which demonstrate the effectiveness of our
approach. Two phenomena from the experimental results
show some disadvantages of our approach. The first one
is that those lines near the camera are measured more ac-
curately than those far away. This is related to the mea-
sured pixel error on the image plane. The second one



Table 2. Measurement from images of the digital camera

Label l1 l2 l3 l4 l5 l6 l7
Test 0.94 1.01 1.03 1.05 0.96 1.02 0.40
Real 1.00 1.00 1.00 1.00 1.00 1.00 0.46
Label l8 l9 l10 l11 l12 l13 l14
Test 0.40 0.48 0.46 0.52 0.48 0.50 1.94
Real 0.46 0.46 0.46 0.46 0.46 0.46 2.11
Label l15 l16 l17 l18 l19 l20 l21
Test 1.92 2.04 0.91 0.99 2.23 2.25 2.07
Real 2.11 2.11 1.13 1.13 2.11 2.11 2.11
Label l22 l23 l24 l25 l26 l27 l28
Test 1.10 1.12 0.49 1.39 0.51 0.48 1.42
Real 1.13 1.13 0.52 1.50 0.52 0.52 1.50

is that those lines which are parallel to the ground plane
are measured more accurately than those perpendicular to
the ground plane. That is because the horizonal vanishing
points estimated from vehicles are more accurate than the
vertical one from pedestrians. More accurate estimation of
vertical vanishing points can boost performance of our ap-
proach.

5.4. Degenerate Cases

Some degenerate cases may lead to invalidation of our
approach. As we know, if the camera plane is parallel or
perpendicular to the ground plane, we cannot recover the
whole 3 orthogonal vanishing points from videos. In these
cases, we should have more information like more vertical
or horizonal lines to realize complete camera calibration.
Fortunately, surveillance applications always like to mount
the camera with a titled angle to the ground plane to cover
a wider view field. As a result, these extreme cases are not
common at all in surveillance applications.

5.5. Discussion

In the above, we assume that the roadway is straight
in the field of view, which is not always true in real ap-
plications. Even though the roadway is not straight, there
must be one or more approximately straight segments in the
field of view. The longest straight segment will generate
the global conspicuous peak in voting space to estimate the
two orthogonal horizonal vanishing points. As a result, our
approach still works in this case.

Another special case is that there are more than one road-
way in the field of view. For example, the surveillance scene
contains a crossroad as shown in Figure 9. This will lead to
two evident peaks in the voting surface for horizonal van-
ishing points estimation. In most cases, the two roads have
not the same traffic flow in a period of time. As a result, the
two peaks are of different height so that they can be distin-

guished from each other. Two groups of three orthogonal
vanishing points can be estimated and the camera param-
eters can be recovered from these two groups with a least
square strategy.

Figure 9. Illustration of scene containing crossroad

In our framework, we design a very simple strategy for
object classification in videos. Two thresholds are adopted
and a part of samples are discarded. There are two reasons
for us to use this strategy. The first is that voting based
estimation need not very accurate classification. The second
is that our calibration result is useful for classification so
that it can even be feed back to the classification step to
output more accurate result.

In addition, due to the unknown intrinsic structure of
cameras, the camera optical center height H cannot be mea-
sured accurately. In our work, we use the distance between
camera and the ground plane to approximate this value. As
we know, cameras are mounted very high in surveillance
applications so that the measure error of H is less than 2%.
Even more, the error of H only effect the translation matrix
T. It can be validated that the estimation error of T is less
than 2% in existing of 2% measure error of H .

5.6. Applications

Accurate automatic calibration from videos has great po-
tential to be applied to all kinds of traffic scene surveil-
lance applications. In recent years, appearance based object
recognition is more popular than 3D model based method.
The reason is that the 3D model based method needs prior
camera calibration step which limits its applications. With
our approach applied, the 3D model based method can be
automatically applied to all kinds of traffic surveillance
scenes without manual calibration. Also, classification of
objects in surveillance video is difficult due to the perspec-
tive distortion of objects. The most common phenomenon
is that close objects seems to be larger and move faster than
those far away. With our approach applied to object classi-
fication, 2D motion and shape features like speed and size



can be normalized to be invariant to view angle changes. In
this case, motion and shape features can greatly contribute
to the classification accuracy.

6. Conclusions

In this paper, we have proposed a practical camera auto-
calibration method for traffic scene surveillance. With only
the camera height H measured, we can completely recover
both intrinsic and extrinsic parameters of cameras based on
appearance and motion of moving objects in videos. Ex-
perimental results have demonstrated accuracy and practi-
cability of our approach, which can be used in all kinds of
surveillance applications like model based object recogni-
tion, coarse object classification and metric measurement
from images.
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