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Abstract

We present a novel structure learning method, Max Mar-
gin AND/OR Graph (MM-AOG), for parsing the human
body into parts and recovering their poses. Our method rep-
resents the human body and its parts by an AND/OR graph,
which is a multi-level mixture of Markov Random Fields
(MRFs). Max-margin learning, which is a generalization of
the training algorithm for support vector machines (SVMs),
is used to learn the parameters of the AND/OR graph
model discriminatively. There are four advantages from this
combination of AND/OR graphs and max-margin learning.
Firstly, the AND/OR graph allows us to handle enormous
articulated poses with a compact graphical model. Sec-
ondly, max-margin learning has more discriminative power
than the traditional maximum likelihood approach. Thirdly,
the parameters of the AND/OR graph model are optimized
globally. In particular, the weights of the appearance model
for individual nodes and the relative importance of spatial
relationships between nodes are learnt simultaneously. Fi-
nally, the kernel trick can be used to handle high dimen-
sional features and to enable complex similarity measure of
shapes. We perform comparison experiments on the base-
ball datasets, showing significant improvements over state
of the art methods.

1. Introduction

Parsing the human body (i.e. pose estimation of body
parts) in static image has received a lot of attention. Such

problems arise in many applications including human ac-
tion analysis, human body tracking, and video analysis. But
the major difficulties of parsing the human body, which
come from the large appearance variations (e.g. differ-
ent clothes) and enormous number of poses, are not fully
solved. There are three aspects to addressing these prob-
lems. Firstly, what representation is capable of modeling
the large variation of both shape and appearance? Secondly,
how can we learn a probabilistic model defined on this rep-
resentation? Thirdly, if we have a probabilistic model, how
can we perform inference efficiently? (in order to estimate
poses for novel images). These three aspects are clearly
related to each other. Intuitively, the greater the represen-
tational power, the bigger the computational complexity of
learning and inference. Most works in the literature, e.g.
[18, 9, 3], focus on only one or two aspects, and not on
all of them (see section (2.1) for a review of the literature).
In particular, the representations used have been compara-
tively simple. Moreover, attempts to use complex represen-
tations tend to specify their parameters by hand and do not
learn them from training data.

In this paper, we represent the different poses of the hu-
man body by the AND/OR graph proposed by Chen et al
for modeling deformable articulated objects [3]. The ad-
vantages of this AND/OR graph (see figure 1) is that it can
represent an enormous number of different poses (98 in this
paper), enforce (probabilistic) spatial relations on the con-
figuration, and use many image features as input (to address
the large appearance variations). Moreover, we learn the
parameters of this model, which specify the geometry and
the appearance, by a novel extension of the max-margin al-
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Figure 1. The AND/OR representation allows us to model enormous poses of the
object. A parse tree which is a portion of the AND/OR graph represent a specific pose
of human body. The nodes and edges with red boundary indicate one parse tree. In
this paper, there are 98 poses which can be modeled by the parse trees of the whole
AND/OR graph.

gorithm for structure learning [1, 20, 21]. This learning
is global in the sense that we learn all the parameters si-
multaneously (by an algorithm that is guaranteed to find the
global minimum) rather than learning subsets of the param-
eters locally. Max-margin learning has been shown to be
more effective than standard maximum likelihood estima-
tion when the overall goal is classification (i.e. into differ-
ent poses). It also has some technical advantages such as:
(i) avoiding the computation of the partition function of the
distribution, and (ii) the use of the kernel trick to extend the
class of features. To perform inference, we use the compo-
sitional algorithm described in [3].

Our paper makes contributions to both machine learning
and computer vision. The contribution to machine learn-
ing is to extend max-margin learning to AND/OR graphs
(max-margin has previously been applied to simpler mod-
els, see section (2)). The contribution to computer vision is
the combination of the AND/OR representation, the max-
margin learning, and compositional inference [3] to model
human parsing. Moreover, our results, see section (6), show
that our approach significantly outperforms the state of the
art.

2. Background

2.1. Human Body Parsing

There has been considerable recent interest in human
body parsing. Sigal and Black [17] address the occlu-
sion problem by enhancing the ability of appearance mod-
eling. Triggs and his colleagues [15] learn more complex
models for individual parts by SVM and combine them by
an extra classifier. Mori [9] use super-pixels to reduce
the search space and thus speed up the inference. Ren et
al. [14] present a framework to integrate multiple pairwise
constraints between parts. The models of body parts are in-
dependently trained. Ramanan [13] propose tree structured
CRF to learn a model for parsing human body. Lee and Co-

hen [8] and Zhang et al. [24] used MCMC for inference. In
summary, these methods involve representations of limited
complexity (i.e. with less varieties of pose than AND/OR
graphs). If learning is involved, it is local but not global (i.e.
the parameters are not learnt simulateously) [14, 17, 15, 9].
Moreover, the performance evaluation is performed by out-
putting a list of poses and takes credit if the groundtruth
result is in this list [9, 24, 18].

The most related work is by Srinivasan and Shi [18] who
introduced a grammar for dealing with the large number of
different poses. Their model was manually defined, but they
also introduced some learning in a more recent paper [19].
Their results are the state of the art, so we make compar-
isons to them in section (6).

By contrast, our model uses the AND/OR graph in the
form of Chen et al. [3] which combines a grammatical com-
ponent (for generating multiple poses) with a markov ran-
dom field (MRF) component which represents spatial re-
lationships between components of the model (see [6, 2]
for different types of AND/OR graph models). We perform
global learning of the model parameters (both geometry and
appearance) by max-margin learning. Finally, our inference
algorithm outputs a single pose estimate only which, as we
show in section (6), is better than any of the results in the
list output by Srinivasan and Shi [18] (and their output list
is better than that provided by other algorithms [9]).

2.2. Max Margin Structure Learning

The first example of max-margin structure learning was
proposed by Altun et al. [1] to learn Hidden Markov Models
(HMMs) discriminatively. This extended the max margin
criterion, used in binary classification [23] and multi-class
classification [4], to learning structures where the output
can be a sequence of binary vectors (hence an extension
of multi-class classification to cases where the number of
classes is 2n, where n is the length of the sequence). We
note that there have been highly successful examples in
computer vision of max-margin applied to binary classifi-
cation, see SVM-based face detection [11].

Taskar et al. [20] generalized max margin structure
learning to general markov random fields (MRF’s), referred
to an max margin markov networks(M3). Taskar et al. [21]
also extended this approach to probabilistic context-free
grammar (PCFG) for language parsing. But max-margin
learning has not yet been extended to learning AND/OR
graph models that can be thought of as combining PCFG’s
with MRF’s.

This literature on max-margin structure learning shows
that it is highly competitive with conventional maximum
likelihood learning methods as used, for example, to learn
conditional random fields (CRF’s) [7]. In particular, max-
margin structure learning avoids the need to estimate the
partition function of the probability distribution (which is



major technical difficulty of maximum likelihood estima-
tion). Max-margin structure learning essentially learns the
parameters of the model so that the groundtruth states are
those with least energy (or highest probability) and states
which are close to groundtruth also have low energy (or high
probability). See section (5) for details.

3. The AND/OR Graph Representation

3.1. The AND/OR model

The structure of the AND/OR graph is represented by
a graph G = (V, E) where V and E denote the set of
vertices and edges respectively. The vertex set V con-
tains three types of nodes,“OR” nodes,“AND” nodes and
“LEAF” nodes which are depicted in figure (1) by circles,
rectangles and triangles respectively. These nodes have
attributes including position, scale, and orientation. The
edge set E contains vertical edges defining the topological
structure and horizontal edges defining spatial constraints
on the node attributes. For each node ν ∈ V , the set of
its child nodes is defined by Tν . Hence {Tν} denotes all
possible vertical edges of the AND/OR graph (the pres-
ence of OR nodes means that not all child nodes will ap-
pear in a parse, see next subsection). The horizontal edges
are defined on triplets (µ, ρ, τ) of the children of AND
nodes. The structure of the AND/OR graph is represented
by {(ν, Tν , (µ, ρ, τ))}.

The AND/OR graph we use in this paper to represent
human pose is shown in figure (2). The top node shows all
the 98 possible configurations (i.e. parse trees of the hu-
man body). These configurations are obtained by AND-ing
sub-configurations such as the torso, the left leg, and the
right leg of the body (see circular nodes in the second row).
Each of these sub-configurations has different aspects as il-
lustrated by the AND nodes (rectangles in the third row).
These sub-configurations, in turn, are composed by AND-
ing more elementary configurations (see fourth row) which
can have different aspects (see fifth row).

3.2. The representational power of the AND/OR
Graph Representation

The representational power of AND/OR graph is given
by the number of topological configurations of the graph
which we call parse trees and which correspond to differ-
ent poses. Each parse tree corresponds to a specification of
which AND nodes are selected by the OR nodes (i.e. each
OR node is required to select a unique child). Hence the
number of different parse trees is bounded above by WKh

,
where K is the maximum number of children of AND nodes
(in this paper we restrict K ≤ 4), W denotes the maximum
number of possible children of OR nodes, and h is the num-
ber of levels containing OR nodes with more than one child
node. The total number of parameters associated with the

potential functions, which are defined on the edges of an
AND/OR graph, is bounded above by MWK where M is
the number of AND nodes connecting to OR nodes. Hence
the AND/OR graph can represent an exponentially large
number of articulated poses but with a compact form. This
property of the AND/OR graph representation is very desir-
able for learning because it requires few training images to
achieve good generalization. In the experiments reported in
this paper we have M = 35, K = 4, W = 3, h = 4. There
are 98 poses modeled by AND/OR graph.

3.3. The state variables

A configuration (parse tree) of the AND/OR graph is
an assignment of state variables y = {zν , tν} with zν =
(zx

ν , zy
ν , zθ

ν , zs
ν) to each node ν, where (zx, zy), zθ and zs

denote image position, orientation, and scale respectively.
The t = {tν} variable defines the specific topology of the
parse tree, where tν denotes the children of node ν. For
AND nodes, the set of children is fixed (i.e. not dynamic)
and so tν = Tν . But each OR node must select a unique
child node tν ∈ Tν (to enable sub-configurations to switch
their appearance, see figure (2)). The input to the graph is
the image x = {xν} defined on the image lattice (at the
lowest level of the graph).

We define V LEAF (t), V AND(t),V OR(t) to be the set of
LEAF, AND, and OR nodes which are active for a specific
choice of the topology t of a parse tree. These sets can
be computed recursively from the root node, see figure (2).
The AND nodes in the second row (i.e. the second highest
level of the graph) are always activated and so are the OR
nodes in the third row. The AND nodes activated in the
fourth row, and their OR node children in the fifth row, are
determined by the t variables assigned to their parent OR
nodes. This process repeats till we reach the lowest level of
the graph.

3.4. The potential functions for the AND/OR graph

The conditional distribution on the states and the data is
given by:

P (y|x;w) =
1

Z(x;w)
exp 〈w, Ψ(x, y)〉 . (1)

where x is the input image, y is the parse tree, and Z(x,w) is
the partition function. P (y|x;w) is a (conditional) exponen-
tial model which is defined by an inner product 〈w, Ψ(x, y)〉
between features Ψ(x, y) and model parameters w (to be
learnt). The features Ψ(x, y) are of three types: (i) ap-
pearance features ΨD(x, y), (ii) horizontal spatial relation-
ship features ΨH(y), and (iii) vertical relationship features
ΨV (y). Note that only the appearance features depend on
the data x (the other features are like prior distributions).



Figure 2. The AND/OR graph is an efficient way to represent different appearances of an object. The graph is built up manually. The bottom level of the graph indicates points
along the boundary of human body. The higher levels indicat combinations of elementary configurations. The graph that we used contains eight levels (three lower levels are not
depicted here due to lack of space). Color points distinguish different body parts. The arms are not modeled in this paper.

The first type of features ΨD
ν (x, y), ∀ν ∈ V LEAF (t)

are data dependent and model the appearance of the ob-
ject. They relate the appearance of the active leaf nodes
to properties of the local image. More formally, y in
ΨD

ν (x, y) refers to zν = (zx, zy, zs, zθ) for the active nodes
ν ∈ V LEAF . ΨD

ν (x, zν) represent the local image features
including the grey intensity, gradient, canny edge map, the
responses of Gabor filters at different scales and orienta-
tions, and related features. We use a total of 101 features of
this type (i.e. the vector ΨD(x, y) has 101 dimensions). But
not all these features will be used (the max-margin learning
will typically set some of the parameters wD to be zero).

The second type of features ΨH(y) specify the hori-
zontal relationships (which correspond to geometric con-
straints at a range of scales). They are defined by ΨH

ν (y) =
g(zµ, zρ, zτ ), ∀ν ∈ V AND(t) where g(., ., .) is a logarithm
of Gaussian distribution defined on the invariant shape vec-
tor l(zµ, zρ, zτ ) [25] constructed from triple child nodes
(zµ, zρ, zτ ) of node ν. This shape vector depends only on
variables of the triple, such as the internal angles, that are in-
variant to the translation, rotation, and scaling of the triple.
This type of feature is defined over all triples formed by
the child nodes of each parent, see figures (2). The parame-
ters of the Gaussians are estimated from the labeled training
data (this is local learning, but max-margin will learn their
parameters wH globally).

The third type of features ΨV (y) are the vertical compo-
nents which hold the structure together by relating the state
of the parent nodes to the state of its children. ΨV (y) is di-
vided into three vertical energy terms denoted by ΨV,A(y),
ΨV,B(y) and ΨV,C(y) which refer to type(A), type(B) and
type(C) vertical connections respectively.

ΨV,A(y) specifies the coupling from the AND node
to the OR node. This coupling is deterministic – the
state of the parent node is determined precisely by the

states of the child nodes. This is defined by ΨV,A(y) =
h(zν , {zµ s.t.µ ∈ tν}), ∀ν ∈ V AND(t), where h(., .) = 0
if the average orientations and positions of the child nodes
are equal to the orientation and position of the parent node
(i.e. the vertical constraints are “hard”). If they are not con-
sistent, then h(., .) = κ, where κ is a small negative number.

ΨV,B(y) accounts for the probability of the assignments
of the connections from OR nodes to AND nodes. We de-
fine ΨV,B(y) = λν(tν), ∀ν ∈ V OR(t), where λν() is the
potential function which encodes the weights of the assign-
ments determined by tν .

The potential function ΨV,C(y) defines the connection
from the lowest AND nodes to the LEAF nodes. This is
similar to the definition of ΨV,A(y), and ΨV,C(y) is given
by ΨV,C(y) = h(zν ; ztν ) where h(., .) = 0 if the orienta-
tion and position of the child (LEAF) node is equal to the
orientation and position of the parent (AND) node. If they
are not consistent, then h(., .) = κ.

4. The Inference/Parsing Algorithm

We use the inference algorithm described in [3] to ob-
tain the best parse tree y∗ of an image x by computing
y∗ = argmaxy 〈w, Ψ(x, y)〉. This algorithm runs (empiri-
cally) in polynomial time in terms of the number of levels
of the AND/OR graph (no other algorithm has this level of
inference performance on AND/OR graphs). This rapid in-
ference is necessary to make max margin learning practical.

The algorithm has a bottom-up stage which makes pro-
posals for the configuration of the AND/OR graph. This
proceeds by combining proposals for sub-configurations to
build proposals for larger configuration. For AND nodes,
we combine proposals for the child nodes to form a pro-
posal for the parent node. For OR nodes, we enumerate all
proposals from all branches without composition. To pre-
vent a combinatorial explosion we prune out weak propos-



Input: {MP 1
ν1}. Output:{MP L

νL}. ⊕ denotes the operation of combining
two proposals.
Loop : l = 1 to L, for each node ν at level l

• IF ν is an OR node

1. Union: {MP l
ν,b} =

⋃
ρ∈Tν ,a=1,...,M

l−1
ρ

MP l−1
ρ,a

• IF ν is an AND node

1. Composition: {P l
ν,b} = ⊕

ρ∈Tν ,a=1,...,M
l−1
ρ

MP l−1
ρ,a

2. Pruning: {P l
ν,a} = {P l

ν,a|
〈
w, Ψν(P l

ν,a)
〉

> Thresl}

3. Local Maximum: {(MP l
ν,a, CLl

ν,a)} =

LocalMaximum({P l
ν,a}, εW ) where εW is the

size of the window W l
ν defined in space, orientation, and

scale.
Figure 3. The inference algorithm.

als which have low fitness score (〈w, Ψ(x, y)〉 evaluated for
the configuration) and use clustering which selects a small
set of max-proposals (each representing a cluster).

The pseudo-code for the algorithm is shown in figure 3.
The input to a level l is a set of max-proposals {MP l−1

ν,a } for
each node ν at level l − 1 (each max-proposal, or proposal,
is a configuration {Zl−1

ν,a } of the subtree with root node ν
and is indexed by a or b). The max-proposals generate pro-
posals {P l

µ,b} for nodes at level l by composition, if level l
consists of AND nodes, or by union if l contains OR nodes.
We prune out this set of proposals by rejecting those with
low fitness scores (i.e. 〈w, Ψ(x, y)〉 evaluated for the config-
uration) and by clustering using local maximum to group the
proposals into a set of clusters {CLl

µ,a}, each represented
by a max-proposal {MP l

µ,a} (the local maximum is taken
with respect to spatial position, scale, and orientation). The
output {MP l

µ,a} is used as input to the next level l +1. See
[3] for full details.

5. Max Margin AND/OR Graph Learning

5.1. Primal and Dual Problems

The task of AND/OR graph learning is to esti-
mate the parameters w from a set of training samples
(x1, y1), ..., (xn, yn) ∈ X × Y drawn from some fixed, but
unknown probability distribution. In this paper, x is image,
y is the configurations of an AND/OR graph.

We formulate this learning task in terms of the max-
margin criterion which is designed to learn the parame-
ters which are best for classification (i.e. to estimate y)
rather than use the standard maximum likelihood criterion
(see [23] for a justification for this strategy). But observe
that the classification is over the set of values Y , which
is exponentially large, and hence differs greatly from sim-
ple binary classification. Effectively max-margin learning
seeks to find values of the parameters w which ensure that
the energies 〈Ψ(x, y),w〉 are smallest for the ground-truth
states y and for states close to the ground-truth. A practical

advantages of max-margin learning is that it gives a com-
putationally tractable learning algorithm (which avoids the
need to compute the partition function of the distribution).

The main idea of the max margin approach is to forego
the probabilistic interpretation of equation 1. Instead we
concentrate on the discriminative function F (x, y,w) =
〈Ψ(x, y),w〉. We define the margin γ of the parameter w
on example i as the difference between the true parse yi and
the best parse y∗:

γi = F (xi, yi,w)−max
y �=yi

F (xi, y,w) (2)

= 〈w, Ψi,yi −Ψi,y∗〉 (3)

where Ψi,yi = Ψ(xi, yi) and Ψi,y = Ψ(xi, y).
Intuitively, the size of margin quantifies the confidence in

rejecting the incorrect parse y using the function F (x, y,w).
Larger margins [23] leads to better generalization and pre-
vents over-fitting.

The goal of max margin AND/OR graph learning is to
maximize the minimum margin:

max
γ

γ (4)

s.t. 〈w, Ψi,yi −Ψi,y〉 ≥ γLi,y, ∀y; ‖w‖2 ≤ 1; (5)

where Li,y = L(yi, y) is a loss function (note there are an
exponential number |Y| of constraints in equation 5). The
purpose of the loss function is to give partial credit to states
which differ from the groundtruth by only small amounts
(i.e. it will encourage the energy to be small for states near
the groundtruth).

The loss function is defined as follows:

L(yi, y) =
∑

ν∈V AND

�(zi
ν , zν) +

∑
ν∈V LEAF

�(zi
ν , zν) (6)

where �(zi
ν , zν) = 1 if dist(zi

ν , zν) ≥ δ. Otherwise,
�(zi

ν , zν) = 0. dist(., .) is a measure of the distance be-
tween two points and δ is a threshold. Note that the summa-
tions are defined over the active nodes. This loss function
which measures the distance/cost between two parse trees
is calculated by summing over individual parts. This en-
sures that the computational complexity of the loss function
is linear in the size of the LEAF and AND nodes of the hi-
erarchy.

By standard manipulation, the optimization can be refor-
mulated as minimizing the constrained quadratic cost func-
tion of the weights:

min
w

1
2
‖w‖2 + C

∑
i

ξi (7)

s.t. 〈w, Ψi,yi −Ψi,y〉 ≥ Li,y − ξi, ∀y; (8)

where C is a fixed penalty parameter which balances the
trade-off between margin size and outliers. Outliers are



training samples which are only corrected classified after
using a slack variable ξi to ”move them” to the correct side
of the margin. The constraints are imposed by introducing
Lagrange parameters αi,y (one α for each constraint).

The form of the solution to this minimization can be ex-
pressed in form:

w∗ = C
∑
i,y

α∗
i,y (Ψi,yi −Ψi,y) , (9)

where the α∗ are obtained by maximizing the dual function:

max
α

∑
i,y

αi,yLi,y−

1
2
C

∑
i,j

∑
y,z

αi,yαj,z

〈
Ψi,yi −Ψi,y, Ψj,yj −Ψj,z

〉
(10)

s.t.
∑

y

αi,y = 1, ∀i; αi,y ≥ 0, ∀i, y; (11)

Observe that the solution will only depend on the training
samples (xi, yi) for which αi,yi 	= 0. These are the so-
called support vectors. They correspond to training samples
that either lie directly on the margin or are outliers (that
need to use slack variables). The concept of support vectors
is important for the optimization algorithm that we will use
to estimate the α∗ (see next subsection).

It follows from equations (9,11), that the solution only
depends on the data by means of the inner product Ψ · Ψ′

of the potentials. This enables us to use the kernel trick [5]
which replaces the inner product by a kernel K(, ., ) (in-
terpreted as using features in higher dimensional spaces).
In this paper, the kernels K(, ) take two forms, the lin-
ear kernel, K(Ψ, Ψ′) = Ψ · Ψ′ for image features ΨD

and the radial basis function (RBF) kernel, K(Ψ, Ψ′) =
exp

(−r‖Ψ−Ψ′‖2) for shape features ΨH where r is a
parameter of RBF.

5.2. Optimization of the Dual

The main problem with optimizing the dual, see equa-
tion 10, is the exponential number of constraints (and hence
the exponential number of {αi,x} to solve for). We risk
having to enumerate all the parse trees y ∈ Y which is
almost impractical for an AND/OR graph. Fortunately, in
practice only a small number of support vectors will be
needed (equivalently, only a small number of the {αi,y}
will be non-zero). This motivates the working set algorithm
[1, 22] to optimize the objective function in equation 10.
The algorithm aims at finding a small set of active con-
straints that ensure a sufficiently accurate solution. More
precisely, it sequentially creates a nested working set of suc-
cessively tighter relaxations using a cutting plane method.
They [1, 22] show that the remaining (exponentially many)
constraints are guaranteed to be violated by no more than ε,

Loop over k

• y∗ = argmaxy H(xk, y) where H(xk, y) =
〈w, Ψi,y〉+ L(yk, y).

• if H(xk, y∗; α)−maxy∈Sk
H(xk, y; α) > ε

Sk ← Sk

⋃
y∗

αs ←optimize dual over S, S = S
⋃

Sk
Figure 4. Working Set Optimization

Given a training set S and parameter α
Repeat

• select a pair of data points (yj , yk) not satisfying
KKT conditions.

• solve optimization problem on (yj , yk)

Until all pairs satisfy KKT conditions.
Figure 5. Sequential Minimal Optimization

without needing to explicitly add them to the optimization
problem. The pseudocode of the algorithm is given in fig-
ure 4. Note that the inference algorithm is performed at the
first step of each loop. Therefore, the efficiency of training
algorithm highly depends on the computational complexity
of an inference algorithm (recall that we show in section 4
that the complexity of the inference algorithm is polynomial
in the size of the AND/OR graph). Thus, the efficiency of
inference makes the learning practical. The second step is
to create the working set sequentially and then estimate the
parameter α on the working set. The optimization over the
working set is performed by Sequential Minimal Optimiza-
tion (SMO) [12]. This involves incrementally satisfying
the Karush-Kuhn-Tucker (KKT) conditions which are used
to enforce the constraints. The pseudo-code is depicted in
figure 5. The details of SMO is beyond the scope of this
paper. See [12] for the detailed implementation.

6. Experiments

6.1. Dataset and Implementation Details

We performed the experimental evaluations using 48 hu-
man baseball images in Mori’s dataset [9] as the testing set.
This testing set has several advantages: (i) the ground truth
of segmentation of human body and positions of key points
are provided , and (ii) many results [18, 10, 9] are reported
for comparisons. Some examples of the dataset are shown
in figure 7 (The parsing and segmentations results are ob-
tained by our method). Observe that the dataset contains a
large variance of poses of human body and the appearance
of clothes changes a lot from image to image. We created a
training dataset by collecting 156 images from the internet
and got students to manually label the parse tree for each
image.

The AND/OR graph learnt by max-margin was used to



obtain the parse y (i.e. to locate the body parts). We used
max-margin on the training dataset to learn the parameters
of the max-margin model. During learning, we set C = 0.1
in equation 10, used the radial basis function kernel with
r = 0.1, set the parameter in the loss function (equation 6)
to be δ = 12, and set ε = 0.01 in figure 4. Our strat-
egy to obtain segmentation, which is inspired by Grab-Cut
[16], is to obtain the parse by the inference algorithm on
the AND/OR graph and then segment object by graph-cut
using the feature statistics inside the boundary as initializa-
tions (note that, unlike us, Grab-Cut requires initialization
by a human).

6.2. Performance Comparisons

Two evaluation criterions are used to measure the perfor-
mances of parsing and segmentation. The average position
error [18] is used as the measure of the quality of parsing.
The position error means the distance at pixel level between
the positions of groundtruth and the parsing result. The
smaller the position error, the better the quality of the pars-
ing. Srinivasan and Shi [18] only used 5 joint nodes (head-
torso, torso-left thigh, torso-right thigh, left thigh-left lower
leg, right thigh-right lower leg) per image. In our case, there
are 27 nodes along the boundary of human body per image
used to give more detailed parsing. We use the segmenta-
tion measure, ’overlap score’ named by [18], to quantify the
performance of segmentation. The overlap score is defined
by area(P∩G)

area(P∪G) , where P is the area which the algorithm out-
puts as the segmentation and G is the area of ground-truth.
The bigger the overlap score, the better the segmentation.

We compare the performances obtained by our approach
to those reported by Srinivasan and Shi [18], which are the
best results achieved so far on this dataset (e.g. better than
Mori et al. ’s [9]). Firstly, we compare the average position
errors in figures 6. Observe that our best parse gives perfor-
mance slightly better than the best (manually selected) of
the top 10 parses output by [18] and significantly better than
the best (manually selected) of their top three parses. Sec-
ondly, we compare the average overlap scores in figure 6.
The difference of performance measured by overlap score is
more significant. Observe that our result is significantly bet-
ter than the best (manually selected) of their top 10 parses.

We illustrate our parsing and segmentation results in fig-
ure 7. The dotted points indicate the positions of the leaf
nodes of parse tree which lie along the boundary of human
body. The same parts in different images share the same
color. For example, yellow and red points correspond to
the left and right shoulder respectively. Light blue and dark
blue points correspond to the left and right legs respectively.
One can observe that the variation of poses are extremely
large. Our AND/OR graph is capable of covering the artic-
ulated poses of body parts and segmenting the body nicely.
However, the inference takes 3 minutes for image with size

640× 480.

Figure 6. We compare our results with that of Srinivasan and Shi [18]. The perfor-
mance of parsing (position error) and segmentation (overlap score) are shown in the
top and bottom figures respectively. Note that [18] select the best one (manually)of
the top parses.

7. Discussion

We presented an AND/OR graph for representing objects
whose parameters can be learnt in a globally optimal way by
extending max-margin learning technique developed in ma-
chine learning. Advantages of our approach include (i) the
ability to model the enormous number of poses that occur
for articulated objects such as humans, (ii) the discrimina-
tive power provided by max-margin learning (by contrast to
MLE), and (iii) the use of the kernel trick to make use of
high-dimensional features. We gave detailed experiments
on the baseball datasets, showing significant improvements
over the state-of-the-art method. In particular, our method
outputs a single parse and not a list of possible parses. We
are currently working on improving the inference speed of
our algorithm by using a cascade strategy. We are also ex-
tending the model to represent humans in more detail.
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