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Abstract

Medial descriptions, such as shock graphs, have gained
significant momentum in the shape-based object recogni-
tion community due to their invariance to translation, ro-
tation, scale and articulation and their ability to cope with
moderate amounts of within-class deformation. While they
attempt to decompose a shape into a set of parts, this de-
composition can suffer from ligature-induced instability. In
particular, the addition of even a small part can have a
dramatic impact on the representation in the vicinity of its
attachment. We present an algorithm for identifying and
representing the ligature structure, and restoring the non-
ligature structures that remain. This leads to a bone graph,
a new medial shape abstraction that captures a more intu-
itive notion of an object’s parts than a skeleton or a shock
graph, and offers improved stability and within-class de-
formation invariance. We demonstrate these advantages by
comparing the use of bone graphs to shock graphs in a set
of view-based object recognition and pose estimation trials.

1. Introduction

The recognition of shape categories requires a parts-
based representation which is invariant to image transla-
tion, rotation, and scale, as well as part articulation and
within-class shape deformation. In 3-D, Binford’s general-
ized cylinders [4] decomposed an object into a set of elon-
gated parts defined by sweeping a 2-D cross section through
a 3-D space curve. The concept of an axial description of
shape was proposed even earlier in 2-D through Blum’s me-
dial axis transform, or skeleton [5]. Although skeletal de-
scriptions have been a mainstay in the pattern recognition
community for many years, the computer vision community
has focused largely on appearance-based representations
for recognition. However, as the community evolves from
appearance-based exemplar recognition to shape-based cat-
egory recognition, skeleton-based descriptions have again
emerged as a powerful representation [15, 13].

Skeletonization algorithms map a closed 2-D shape into
a set of medial branches that terminate at endpoints or

branch junctions. An important criterion for any effective
shape representation is locality of representation, i.e., the
impact of a local boundary perturbation should be local.
Unfortunately, shape skeletons can fail to meet this crite-
rion. A key issue is that skeletal branches do not always
map, in a one-to-one fashion, to intuitive shape parts. As
one example, the shorter rear leg of the dog in Fig. 1(a)
results in an incident branch that oversegments the repre-
sentation of the dog’s body into two skeletal branches. A
zoom-in on the junction also reveals a local cusp on the
body branch, which arises due to the attachment. A similar
situation arises near the two front legs. The representation
of each of the four legs, as well as the tail, is also under-
segmented in the sense that the associated skeletal branches
extend well past the locations of the part attachments with
the body. It is important to emphasize that these problems
of branch over- and undersegmentation are orthogonal to
the problem of handling “noise” due to boundary perturba-
tions. Whereas a number of effective pruning techniques
have been proposed for the latter [14, 17, 2], they do not
address the issue that the topology of the skeleton can do a
poor job of reflecting the salient part structure of the shape.

One alternative to mitigating the sensitivity of the topo-
logical structure of the skeleton is to pass this instability
to the matching algorithm. The fact that two very simi-
lar shapes may yield skeletons which are topologically dis-
similar means that the matching algorithm must be able to
somehow search for correspondences at higher levels of ab-
straction, i.e., levels above the structural instability. A num-
ber of elegant graph matching frameworks have evolved to
address this very challenging problem [15, 13]. In fact, in
[13] the transitions of the medial axis [10] are themselves
incorporated in edit-distance operations which allow topo-
logically distinct skeletal structures due to similar shapes to
be matched.

In the current paper we argue for a novel representation
which can improve the performance of all skeletal matching
algorithms. We use ligature analysis [5] to devise a more
stable skeletal representation, where skeletal segments map
in a one-to-one fashion to intuitive shape parts. Intuitively,
ligature regions (shown as green curves in Fig. 1) are seg-
ments of the skeleton that contribute little to the reconstruc-
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Figure 1. Intuitive Part Decomposition: (a) skeletal instability arises from part oversegmentation and undersegmentation. For example, the
skeletal branch associated with the dog’s body is oversegmented by the skeletal segment extending from the shorter rear leg. A similar
situation occurs near the front legs. The vicinity of the oversegmentation is enlarged in each case, showing the resulting perturbation of
the skeleton. Those skeletal segments shown in green are ligature regions, and they contribute little to the shape of the object. A purely
local analysis of ligature is problematic in the presence of such oversegmentation, as illustrated by the non-intuitive labeling of the body
part in the vicinity of the oversegmentation as ligature. (b) Our algorithm for detecting and removing ligature-induced skeletal instability
uses a novel local ligature analysis to first identify and rectify skeletal branch oversegmentation. (c) A second ligature analysis then yields
a set of salient parts, called bones (shown in black). The bones capture the coarse part structure of the object, as indicated by the colored
parts reconstructed from the bones. (d) The bones give rise to a bone graph, an intuitive and stable representation whose nodes represent
the salient parts and whose edges, derived from the final ligature analysis, capture part attachment.

tion and representation of the boundary. One could simply
remove these portions of the skeleton, as suggested in [1].
However, not every ligature point is a good candidate for
removal, as illustrated in Fig. 1(a), where much of the dog’s
body skeleton (toward its back legs) is labeled as ligature.
Clearly, the oversegmentation problem cannot be separated
from the ligature analysis.

In a first stage of ligature analysis we identify the cases
of branch oversegmentation, and proceed to rectify the over-
segmentation through a branch fusion and restoration pro-
cess. This yields a set of branches that adhere to the geomet-
ric properties of the medial axis. Once the oversegmentation
is corrected, a second ligature analysis yields a new set of
ligature segments arising from branch undersegmentation.
Fig. 1(b) shows the final ligature analysis, following the cor-
rection of branch oversegmentation. As can be seen in the
zoom-ins on the junctions, the two cases of branch overseg-
mentation have been identified and corrected. Moreover,
the second ligature analysis has effectively extended the
(non-ligature, shown in black) representation of the dog’s
body.

The final set of non-ligature branches captures the salient
medial parts of the object. In fact, they yield a reconstructed
shape that is very similar to that of the original object, as
shown in Fig. 1 (c) by the union of the colored regions, each
of which is the reconstruction of one non-ligature (black)
branch. We assemble the restored non-ligature segments in
a novel, parts-based shape representation called the bone
graph, whose nodes represent stable, intuitive skeletal parts
(bones), and whose attachment edges are derived from the
ligature segments. To demonstrate the improved stability of
the bone graph, we compare it head-to-head with the ubiqui-
tous shock graph [15, 13] in a set of view-based 3-D object

recognition and pose estimation trials. Experimental evi-
dence demonstrates that the bone graph is far more invari-
ant to viewpoint change-induced perturbations to a silhou-
ette than the shock graph, leading to significantly improved
performance.

2. Ligature and its Geometry

The notion of ligature as a type of “glue” between parts
was first proposed by Blum and Nagel [6]. Much later, it
was revisited in [1] with several qualitative examples pro-
vided to demonstrate that with ligature regions labeled, the
remaining portions of the skeleton appeared to be stable. In
fact, the development in [1] was guided by a principle of
ligature removal: reconstructions without ligature appeared
to lose little in terms of boundary detail. It was also shown
that certain deformations of the boundary, such as those re-
sulting from evolution by curvature [11] could swiftly lead
to topological changes in ligature regions, a further moti-
vation for removal. However, these developments fell short
of a precise computational method by which ligature anal-
ysis could lead to a higher level of abstraction. Further-
more, no direct attempt was made to apply these ideas to
the then emerging techniques for skeletal graph matching,
apart from the notion that ligature regions should be viewed
as less salient.

Let Ω be the set of all points (x, y) within the interior of
a 2-D object, with S(Ω) its medial axis [5]. Each skeletal
point in S is characterized by a position p and a radius r.
The relationship between the object angle θ, the spoke vec-
tors b±1, and the direction of the unit tangent vector T (see



Figure 2. Local geometry of a skeletal curve. The maximum in-
scribed disc at a regular skeletal point p with radius r, touches
the boundary at two bitangents points b+1 and b−1, defining two
spokes emanating from p. The angle between the unit tangent T
(to the medial curve) and either spoke is θ, the object angle.

Fig. 2) is given by

θ = arccos
(
−dr

ds̃

)
, (1)

where s̃ is the arc length along the medial curve. The object
angle is expressed with respect to the unit tangent in the di-
rection of decreasing radius along the curve. A full-ligature
segment is the set of connected points of a skeletal branch
associated with a pair of opposing concave corners on the
shape’s boundary. Similarly, a semi-ligature segment is the
set of connected points of a skeletal branch associated with
a single concave corner on the shape’s boundary (to one side
of the segment).

The taxonomy of generic full- and semi-ligature cases is
shown in Fig. 3, with full-ligature segments shown in red
and semi-ligature segments shown in blue (note that both
full- and semi-ligature segments were colored green in Fig.
1). We make a distinction between the ligature segments
that connect two shape parts in an “end to side” configu-
ration (Fig. 3 (a) and (d)), and the ligature segments that
connect two shape parts in an “end to end” configuration
(Fig. 3 (b) and (c)). For the end-to-side attachment case in
Fig. 3 (a), the blue cusp actually represents two small semi-
ligature segments which meet at the apex of the cusp. Liga-
ture configurations can be quite complex, particularly when
they are nested. The cases of full-on-full, full-on-semi and
full-on-full (branch-crossing) configurations are illustrated
in Figs. 3 (d), (e) and (f), respectively.

3. Detecting Ligature

The algorithm for ligature detection developed in [1]
works by first identifying strong negative curvature min-
ima on the boundary (by using a curvature measure) and
then labeling those skeletal points whose bitangent points
b+1, b−1 fall within an ε-ball of the same negative curva-
ture minima. In this approach the negative curvature min-
ima are computed at a fixed (boundary length) scale. We
seek a more robust approach in which local shape proper-
ties dictate the scale of negative curvature minima detection.

Figure 3. Types of ligature segment configurations (the basic cases
a, b, and c are adapted from [1]): (a) Full ligature (red) and semi-
ligature (blue) segments (induced by a pair of concave corners)
representing an “end to side” part attachment – the blue cusp ac-
tually represents two adjacent semi-ligature segments that meet at
the apex of the cusp; (b) Full ligature (red) segment (induced by
a pair of concave corners) representing an “end to end” part at-
tachment; (c) Semi-ligature (blue) segment (induced by a single
concave corner) representing an “end to end” part attachment; (d)
and (e) Examples of complex configurations of full-on-full and
full-on-semi nested ligature. (f) Example of a complex full-on-full
configuration, representing a potential “crossing” of branches.

To this end, we combine a stable measure of boundary-to-
axis ratio (BAR) [6] with the detection of negative curvature
minima at the appropriate scale (Fig. 4). In particular, we
detect high curvature points by following the method pre-
sented in [7].

Definition 1. For any regular skeletal segment, there are
two boundary-to-axis ratios, each obtained by dividing the
length of the associated boundary on each side by the length
of the segment. The boundary segment is defined by the
spoke endpoints corresponding to the first and last point of
the skeletal segment.

Definition 2. A ligature segment has at least one side
whose boundary-to-axis ratio is smaller than one, and which
defines a boundary interval of negative curvature points that
corresponds to a curvature minimum at a scale in which the
length of the boundary interval is zero.

We use the above definition to find all maximal ligature
segments with monotonically varying radii. The radii at the
endpoints of these segments are used in Section 4 to de-
termine the oversegmented branches that must be fused to-
gether. Ligature detection is initially applied to all branches
in the input skeleton, and subsequently to every restored
branch produced by the fusion operation described in the
next section.



Figure 4. Ligature from concave corners detected at different
scales. A sharp concave corner (left) has the property that the
spoke vectors associated with the ligature segment coincide at it.
In contrast, a smooth concave corner (right) is traced out by the
endpoints of non-coincidental spoke vectors. In both situations
the boundary-to-axis ratio is less than one.

4. Restoring Over- and Undersegmented Parts

In order to address the problem that more than one skele-
tal segment can represent the same shape part we propose
to merge the appropriate branch pieces. Intuitively, we shall
analyze ligature properties around every branch junction in
the medial axis and associate locations of oversegmentation
with end-to-side (ES) attachments between branches. The
remaining branch junctions will correspond to end-to-end
(EE) attachments, i.e., branches that are connected at their
endpoints. For an ES attachment the identification of the
pair of branches that should be grouped requires the use
of appropriate criteria, such as the relative thickness of at-
tached parts and/or the continuity of skeletal branches.

Definition 3. For any end-to-side attachment, there is a
junction point with three or more branches incident on it,
two of which map to the same shape part. This pair of
branches is said to be broken, while the other incident
branches are said to be attached.

Without loss of generality, we focus our analysis on
generic junction points. A junction is said to be generic if
the degree of incident branches under arbitrarily small per-
turbations of the boundary curve is maintained [10]. In this
case, there are two types of ES attachments, which we re-
fer to as simple and complex. A simple attachment has its
ligature segments induced by one or two concave corners,
while a complex attachment is related to three or more con-
cave corners.

It can be shown that simple attachments with one con-
cave corner induce two semi-ligature segments (Fig. 5 (a)),
while those with two corners induce one full-ligature seg-
ment and two semi-ligature segments (Fig. 4). Unfor-
tunately, this ligature information alone is generally not
enough to distinguish between ES and EE attachments. We
resolve this ambiguity by interpreting protrusions that are
smaller than the object width at the junction point as ES
attachments. Specifically, a junction with simple ligature
properties is classified as an ES attachment if it defines ex-
actly one boundary gap, with the distance between the end-

Figure 5. Example of ES and EE attachments with similar ligature
properties. In each example there is a junction point associated
with one concave corner, b−1

0 , which induces two semi-ligature
segments (blue points). In order to classify the junction, the length
of the boundary gap defined by the spoke endpoints b+1

0 and b−1
0 is

compared against the radius of the junction, r0. The condition that
||b+1

0 − b−1
0 ||2 < r0 is only met by case (a), which is classified as

an ES attachment. The junctions in (b) and (c) are classified as EE
attachments.

Figure 6. (a) A crossing is formed by two junctions connected by
ligature segments. The labeling of broken and attached branches
in this configuration defines different part decompositions. (b) An
interpretation of the crossing as a vertical part with two horizontal
end-to-side parts attached to it.

points of the spokes b+1
0 and b−1

0 (see Fig. 5) being smaller
than the radius r0 at the junction point, and as an EE attach-
ment otherwise.

Complex attachments correspond to cases of either
nested ligature or branch crossings. A nested-ligature con-
figuration arises when there are at least two attachment
points and one branch that is both broken and attached. This
defines a parent-child relationship between junction points
in which the boundary gap defined by the spokes of the child
junction is included within that defined by the parent junc-
tion (e.g., Fig. 3 (d) and Fig. 8).

The set of complex ES attachments that are not cases
of nested ligature correspond to branch crossings (Fig. 6)
where two ES attachments are connected by ligature points,
with their attached branches on opposing sides of the broken
branches. We take the approach of interpreting each such
crossing as one broken branch with two ES attachments, as
shown in Fig. 6 (b). We compare the radii of all the liga-
ture segments incident to each junction and label as broken
the pairs of branches with the largest radius values. There
are other possible interpretations of a crossing, the consid-
eration of which depends on perceptual preferences which
may be domain dependent. This is left for future work.

With the above classification based on a ligature analy-



Figure 7. The branch fusion operation. LEFT: A simple ES attach-
ment with two semi-ligature “arms”. The positions and radii of
the semi-ligature points are “corrupted” by the opening along the
boundary formed by the protrusion. MIDDLE: The positions and
radii of the skeletal gap endpoints (blue circles) are interpolated
in order to recreate the medial axis of the shape part without the
protrusion; RIGHT: The skeletal gap is now interpolated with the
spokes computed using the relation between the object angle and
radius value given by Eq. 1.

sis at junction points, we now complete the restoration of
oversegmented parts. We begin by evaluating the cases of
complex, nested attachments which involve pairs of junc-
tions connected by ligature segments. In the case of nested
attachments, we fuse the broken branches of the child at-
tachment before that of the parent attachment, such that the
nestedness is reduced to two simpler cases. This step is ap-
plied recursively until the basic case of a simple attachment
is reached. A junction point that is not a complex or simple
ES attachment is classified as an EE attachment.

The process of fusing the two broken branches of a ES
attachment is an attempt to recreate the medial axis that a
shape part would have if the protruding part were removed,
and the boundary opening formed by it were filled with a
smooth curve (see Fig. 7). The skeletal gap is replaced by
a smooth interpolation of the positions and radius values
of its endpoints while respecting tangent continuity. The
boundary gap is then filled by calculating the spokes of the
interpolated points [9], as specified by Eq. 1 (Fig. 7 (right)).
In our implementation, we perform a cubic spline interpo-
lation of the gap’s medial curve, and a linear interpolation
of the gap’s radius function.

The fusion of branches, together with the restoration of
medial axis properties, plays a significant role. The restora-
tion of the boundary gap is necessary to compute the BAR
of the parent branch in nested ligature cases (Fig. 8) and the
restoration of skeletal information simplifies the compari-
son between similar shapes with missing parts (the individ-
ual parts now encode a similar boundary contour). How-
ever, the skeleton can become disconnected as a result of
each fusion operation, since the original branch junction
points are not necessarily interpolated (e.g., see the red and
black points in Fig. 7 (right)). While it is relatively simple
to reconnect the skeleton by extending the endpoint of the
disconnected branch until it intercepts the fused medial axis,
we choose instead to preserve the original branch connectiv-
ity by maintaining a set of adjacency relations produced by
branch fusions. In particular, we assume that the connection

Figure 8. Example of branch fusions helping in the restoration of
nested ligature. LEFT: Nested boundary gaps form nested ligature;
MIDDLE: The child ES attachment was restored first, the inner
boundary gap is now filled, and the ligature points are recomputed;
RIGHT: The parent ES attachment becomes a simple case (Sec. 4)
and is restored accordingly.

point on the fused branch corresponds to the skeletal point
closest to the original junction point.

The final stage of the ligature-based restoration pro-
cess involves the decomposition of undersegmented skeletal
branches. Specifically, we partition each branch into liga-
ture and non-ligature segments. The resulting non-ligature
segments play the role of salient parts or bones and the lig-
ature segments act as the “glue” to hold them together.

5. Constructing The Bone Graph

The second major component of our framework takes
a restored skeleton and constructs its bone graph. In this
representation, the salient parts (the bones) are mapped to
nodes, while the identified ligature segments and the re-
maining branch junctions are mapped to edges in the graph.
The attributes of nodes and edges are the same, i.e., both
contain a sequence of skeletal points. In the construction of
the graph, we seek an encoding of the attachment types, and
the elimination of the uninformative complexity of ligature-
on-ligature attachments. Furthermore, inspired by the shock
graph, we also seek a (partial) hierarchical relation between
nodes.

We eliminate the uninformative ligature-on-ligature
structures by transforming them into bone attachments.
These structures correspond to tertiary or higher order re-
lations between bones, but can be transformed into a set of
binary bone relations by selecting one of the bones as the
parent of the others. To this end, we define the parent bone
as the bone connected to the ligature point with largest ra-
dius value (Fig. 9). The attributes of each parent-child edge
are given by the skeletal points of the ligature segment that
is immediately adjacent to each child bone. As a result, ev-
ery ligature point is uniquely associated with one edge, and
every edge connects two bones.

Like the shock graph, we direct the edges of the bone
graph according to a local estimate of relative part size.
In addition, we allow for undirected edges that represent
the uncertainty in the part hierarchy that arises at a “neck”
shape (Fig. 9, �3 and �4). Let A be the set of directed edges,
and E be the set of undirected edges. A directed bone rela-



Figure 9. Example of a bone graph. (a) The ligature-on-ligature
structures of the restored skeleton, such as that formed by the liga-
ture segments �1 and �2, are expressed in (b) as edges between the
parent node 1 and the two child nodes 8 and 10. The shape areas
associated with each bone are colored differently for each level
of the graph, and drawn following the edge directions in bottom-
up order. The undirected edges correspond to ligature points with
non-decreasing radius functions formed by neck shapes, such as
�3 and �4. See text for explanation of edge labels.

tion (i, j) ∈ A, directed from bone i to bone j, reflects one
of the following conditions:

• bones i and j are incident to a junction point, and the
radius function of bone i is constant or increases away
from the junction. This is the case where a larger bone
branches out to form a series of smaller bones. The
attribute of such an edge is the empty sequence.

• bones i and j share a junction point at which the radius
function is a local maximum. In this case, bone i in
fact has the junction point as its only skeletal point.
The attribute of such an edge is the empty sequence.

• bones i and j are connected by ligature points whose
radius function decreases monotonically from i to j.
This is the case where there is an end-to-side attach-
ment between bones j and i, or where the bones are
connected end-to-end by one single ligature segment
or by nested ligature.

An undirected bone relation (i, j) ∈ E indicates that bone
i is connected end-to-end by a ligature segment that has a
non-decreasing radius function to bone j.

For ES attachments, we encode the position, pi,j , along
the side of parent bone i of the attachment, of the end of
the child bone j. For convenience, we normalize the length
of each bone’s medial curve to the interval [0, 1], with the
“0” end chosen arbitrarily. Assuming a clockwise traversal
of the branch from the “0” end, attachments on the left side
are specified as positive values in the open interval (0, 1) (a

value of 0 or 1 would imply an EE attachment), while at-
tachments on the right side are specified as negative values
in the open interval (0,−1).1 Such an attachment specifi-
cation allows us to qualitatively distinguish whether ES at-
tachments are near the ends or the middle of a bone, whether
multiple attachments are on the same or opposite sides of a
bone, or whether the attachments on the same side of a bone
are near or far apart.

For directed EE attachments, we encode the position,
pi,j , at the end of parent bone i of the attachment of the
end of child bone j as 0 or 1. While this is again ambiguous
due to choice of endpoint, it does allow us to quickly dis-
tinguish whether bones are attached to the same or opposite
ends. Finally, since the undirected EE attachments occur
only at necks, their attachment structure is fixed and an ad-
ditional attachment specification would be extraneous. The
ability to facilitate such qualitative attachment judgements
is inspired by Biederman’s RBC theory [3]. We can now
formally define the bone graph:

Definition 4. The Bone Graph of a 2-D shape, BG(Ω), is
an edge labeled mixed graph G = (V,E,A, γ) with

• vertices (bones) V = {1, . . . , n}, representing the
non-ligature segments of the restored skeleton;

• undirected edges (i, j) ∈ E ⊆ V × V iff (i, j) ∈ E ;

• directed edges (i, j) ∈ A ⊆ V × V directed from
vertex i to vertex j iff (i, j) ∈ A; and

• directed edge labels γ : A �→ [−1, 1], with γ(i, j) =
pi,j .

Note that node and edge attributes also encode the position,
radius, tangent, and object angle of each skeletal point asso-
ciated with them. This information is used at matching time
to compare the geometrical properties of nodes and edges,
and can also be used to reconstruct the original shape.

6. Experiments

We evaluate the structural stability of the bone graph by
comparing it against the shock graph in a set of view-based
object recognition experiments. We provide a meaningful
comparison by evaluating both types of graphs under the
same graph matching framework and by using the same
node similarity function. We follow the matching frame-
work of [15], and construct a node similarity function for
bone graphs by sub-partitioning each bone into shock parts.
While this matching framework ignores the edge attributes
and labels of the bone graph, as well as the undirected
edges, it does allow us to directly compare the stability of

1In fact, there are two possible attachment specifications, depending on
the choice of endpoint, and both have to be considered if edge label signs
are used in matching or other tasks.



these two medial descriptions by ensuring that nodes and
edges are interpreted identically.

We begin with a database of 1664 silhouette views of
13 3-D models (128 uniformly sampled views per object),
yielding a database of shock graphs and a database of bone
graphs2. Each view is successively removed and compared
to each remaining view. If the 3-D model from which the
closest matching view was generated is the same as that of
the query, then recognition (identification) is said to be suc-
cessful. If recognition is successful and the closest match-
ing view is an immediate neighbor (on the viewsphere) of
the removed view, then pose estimation is said to be suc-
cessful. The fact that the silhouettes represent views of 13
objects means that many of the silhouettes are very sim-
ilar, thereby dramatically increasing the ambiguity in the
database for the pose estimation trials (compared to 1664
silhouettes of 1664 distinct objects).

In the next set of trials, each of the 1664 views is again
used as a query. However, the database of views is sub-
sampled by randomly removing 25% of the views, leading
to subsampled databases of shock graphs and bone graphs.
The same experiment is repeated, measuring correct recog-
nition rates for shock graphs and bone graphs. This sub-
sampling/evaluation process is repeated down to, and in-
cluding, databases containing only 32 views of each object
(75% model view removal). At each iteration, we compute
three separate random viewsphere subsamplings and aggre-
gate the results. In this fashion 16,640 recognition trials are
conducted in total.

Figure 10 plots both the recognition and pose estima-
tion success rates for both shock graphs and bone graphs
as a function of decreasing viewsphere sampling resolution.
For the more tolerant recognition task, the improved stabil-
ity of the bone graph over the shock graph is clearly vis-
ible. The results show an improvement of approximately
3% with no model views removed, and this improvement
increases steadily to approximately 7% with 75% of the
model views removed. The pose estimation results, reflect-
ing a far more stringent recognition task, show a dramatic
(13%) improvement in stability over the shock graph at all
sampling resolutions. We remind the reader that these ex-
periments do not exploit the full power of the bone graph
in that the relative location of attachments (bone graph di-
rected edge labels) are ignored so as to put the bone graph
on the same footing as the shock graph for each trial. Ex-
ploiting such constraints in the matcher would undoubtedly
lead to further improvement in the results.

Figure 11 illustrates a number of successful matches
drawn from the experiment. In each pair, the shape on top
represents the query while the shape underneath represents
the closest matching database view. For both shapes, the

2We use the publicly available shape database and shock graph soft-
ware from (www.cs.toronto.edu/˜dmac/ShapeMatcher/).
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Figure 10. Correct recognition (dashed curves) and pose estima-
tion (solid curves) rates for bone graphs (blue, labeled BG) and
shock graphs (black, labeled SG) as a function of decreasing view-
sphere sampling resolution. The bone graph clearly exhibits supe-
rior stability for both tasks, with dramatic improvement for the
more stringent pose estimation task.

recovered bones are displayed (shaded) over the restored
skeletons, with the final ligature/non-ligature analysis re-
flected in the coloring of the skeletons. In addition, cor-
responding bones between query and model, as computed
by the matcher, are colored the same. These examples il-
lustrate the fact that while viewpoint changes may induce
significant structural variation in the skeleton, due to skele-
ton over- and under-segmentation, the final bone decompo-
sition is far more stable and viewpoint invariant. Whereas
the shock graph is forced to explicitly encode this structural
instability, the bone graph captures the salient shape at a
higher and far more stable level of abstraction.

7. Conclusions

The instability of the skeleton due to part attachment
has long been acknowledged by the shape representation
community. While analysis of this instability has yielded
stability measures ranging from very local (skeleton point)
[12] to semi-local (skeleton branches) [17], most efforts can
be viewed as skeleton processing, mapping input skeletons
to output skeletons rather than mapping input skeletons to
higher level shape abstractions. Moreover, evaluation is
typically anecdotal (visual), lacking the context of a par-
ticular (e.g., recognition) task. The one exception is the
shock graph [15, 13], whose one-to-many mapping of skele-
tal segments to abstract parts unfortunately carries forward
this skeletal instability.

In this article we introduce a novel abstraction based on
the skeleton where the goal is to map skeletal segments to
intuitive shape parts. We do so by first extending the def-



Figure 11. Matching Bone Graphs. In each pair of shapes, the top shape represents the query while the bottom shape represents the
closest matching database view. Each shape includes its final restored skeleton, along with the shaded bones defined by the non-ligature
segments. Corresponding bones between query and model, as computed by the matcher (which ignores part order), are colored the same.
Close examination reveals that while skeleton topology (encoded explicitly in a shock graph) may change significantly due to changes in
viewpoint, bone graph topology is far more stable.

inition of ligature [1] to account for smooth concave cor-
ners while incorporating the appropriate scale information
for their detection along the shape boundary. This improved
ligature analysis is then used to restore over- and underseg-
mented parts, leading to a new skeleton. Whereas related
skeletal segmentation methods stop at this stage, including
[17, 16, 12, 8], we go one step further by introducing a novel
graph abstraction of medial structure that partitions the re-
stored skeletal branches into intuitive parts. In this fashion
a set of meaningful parts and their attachment relations are
recovered from ligature structure. The resulting bone graph
offers a powerful parts-based shape abstraction whose sta-
bility is demonstrably better than the shock graph in a view
based object recognition and pose estimation task. In future
work we plan to develop a matcher that exploits the edge at-
tribute labels in this representation (reflecting “where” parts
are attached) and further to explore the bone graph as a tool
for viewsphere partitioning.
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