
Automatic Non-rigid Registration of 3D Dynamic Data for Facial Expression
Synthesis and Transfer

Sen Wang, Xianfeng David Gu, Hong Qin
Computer Science Department, Stony Brook University (SUNY), Stony Brook, NY 11794

{swang, gu, qin}@cs.sunysb.edu

Abstract

Automatic non-rigid registration of 3D time-varying
data is fundamental in many vision and graphics appli-
cations such as facial expression analysis, synthesis, and
recognition. Despite many research advances in recent
years, it still remains to be technically challenging, espe-
cially for 3D dynamic, densely-sampled facial data with a
large number of degrees of freedom (necessarily used to
represent rich and subtle facial expressions). In this pa-
per, we present a new method for automatic non-rigid reg-
istration of 3D dynamic facial data using least-squares con-
formal maps, and based on this registration method, we
also develop a new framework of facial expression synthe-
sis and transfer. Nowadays more and more 3D dynamic,
densely-sampled data become prevalent with the advance-
ment of novel 3D scanning techniques. To analyze and uti-
lize such huge 3D data, an efficient non-rigid registration
algorithm is needed to establish one-to-one inter-frame cor-
respondences. Towards this goal, a non-rigid registration
algorithm of 3D dynamic facial data is developed by us-
ing least-squares conformal maps with additional feature
correspondences detected by employing active appearance
models (AAM). The proposed method with additional, inte-
rior feature constraints guarantees that the non-rigid data
will be accurately registered. The least-squares conformal
maps between two 3D surfaces are globally optimized with
the least angle distortion and the resulting 2D maps are sta-
ble and one-to-one. Furthermore, by using this non-rigid
registration method, we develop a new system of facial ex-
pression synthesis and transfer. Finally, we perform a se-
ries of experiments to evaluate our non-rigid registration
method and demonstrate its efficacy and efficiency in the
applications of facial expression synthesis and transfer.

1. Introduction and Previous Work
Automatic non-rigid registration of 3D time-varying data

is a fundamental and enabling technique in 3D vision
and graphics which has widespread applications. As 3D

scanning technologies continue to improve, 3D dynamic
densely-sampled data is becoming more and more preva-
lent for analysis, synthesis, and recognition purposes. To
study and analyze such huge data, an efficient non-rigid reg-
istration algorithm is necessary to establish dense one-to-
one inter-frame correspondences automatically. However,
automatic 3D non-rigid registration still remains a chal-
lenging task, especially for dynamic densely-sampled fa-
cial expression data with many degrees of freedom. There
has been much research on registration of 3D facial data in
recent decades. Existing approaches to solving this prob-
lem typically involve three key techniques: one is to select
feature correspondences manually or use markers attached
to human faces [16, 21, 10]. The second one is to estab-
lish inter-frame correspondences hierarchically using multi-
resolution facial data [28, 15]. The third kind of techniques
computes correspondences using a low-resolution 3D de-
formable model [1, 17, 22]. However, most of these existing
3D non-rigid registration methods rely on recovering low
dimensional parameters of face model or register 3D faces
with local optimization that may not establish accurate one-
to-one inter-frame correspondences successfully. In this pa-
per, an automatic non-rigid registration algorithm of 3D dy-
namic densely-sampled facial data is developed using least-
squares conformal maps with additional interior feature cor-
respondences detected by active appearance model (AAM)
[3, 8, 7]. The least-squares conformal maps between two 3D
surfaces are globally optimized with less angle distortion
and the resulting 2D map is stable, one-to-one, insensitive
to resolution changes and robust in the existence of noise.
Through the way of mapping 3D surfaces to a 2D common
domain, it simplifies the original 3D surface-registration
problem to a 2D registration problem. Thus, more accu-
rate and efficient non-rigid registration algorithms could be
achieved by using least-squares conformal maps. In sharp
contrast to previous work on 3D non-rigid registration, es-
pecially the methods using attached markers, which un-
avoidably require much laborious human intervention and
also are more invasive to human subjects, our new method
can register non-rigid 3D dynamic data automatically and
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efficiently with minimum manual work.

Conformal maps have already been employed in many
vision and graphics applications most recently. A surface
matching method based on harmonic maps was proposed in
[30]. Sharon et al. [20] use conformal maps to analyze sim-
ilarities of 2D shapes. Moreover, conformal maps are used
for 3D face and brain surface matching in [9, 26]. Least-
squares conformal maps are introduced by Levy et al. [14]
for texture atlas generation and used by Wang et al. [24, 25]
to conduct 3D surface matching with feature detection us-
ing the technique of spin-image. Because spin-image can
only detect features on surfaces with rigid transformation,
their method can not guarantee to successfully match sur-
faces with non-rigid deformation. For non-rigid 3D surface
registration, Wang et al. [27] use a modified harmonic map
to track 3D high resolution facial motion data. In order to
calculate these harmonic maps, the surface boundary must
be identified and a boundary mapping from 3D surfaces to
the 2D domain must be properly created, which can be a dif-
ficult task especially when parts of the surface are occluded.
In contrast, conformal maps and least-squares conformal
maps do not necessarily require boundary information to be
aligned and so give rise to a natural choice to combat this
difficulty. Moreover, least-squares conformal maps enable
users to enforce more interior feature constraints which will
guarantee to achieve more accurate registration results in an
automatic way.

Realistic facial animation and expression analysis re-
mains a central challenge in vision and graphics. Earlier
approaches explicitly model the facial anatomy, deriving fa-
cial animations from the physical behaviors of the bone,
joint, and muscle structures [13, 29]. Others focus only
on the surface of the face, using smooth surface deforma-
tion mechanisms to create facial expressions [10, 16, 28].
These approaches make use of existing data for animat-
ing a new model. Previous works also use techniques for
tracking head motions and facial expression in video [4, 17]
and copy deformations from one subject onto the geom-
etry of other faces [1]. Expression cloning [16, 21, 18]
improves upon this deformation transfer process with both
3D source and target face data. Recently, facial animation
and expression analysis using 3D motion capture becomes
available with the advancement of new 3D scan techniques
[31, 28]. However, these 3D motion data is not registered in
the space-time domain. For this purpose, a number of reg-
istration methods have been proposed for 3D dynamic fa-
cial data. Zhang et al. [31] propose a new tracking method
based on optic flow estimation which can be sensitive to
noise. Wang et al. [28] use a hierarchical method to track
3D motion facial data with expression transfer at the cost of
making the estimation of model parameters more difficult.
Moreover, their method requires a lot of manual work by
dividing the face model into several deformable regions.

Facial expression undergos complicated global and local
nonlinear deformation between frames and is represented
by a high dimensional vector (a collection of 3D vertices).
It is impossible to analyze and synthesize facial expression
in high dimensional space. In this paper, we describe a dy-
namic facial expression synthesis system using isomap[23]
which can embed facial expression manifolds in high di-
mension into low dimensional space. Finally, we present a
facial expression transfer framework based on our non-rigid
registration method using least-squares conformal maps and
our approaches lead to more accurate results with minimum
human intervention.

The rest of the paper is organized as follows: The the-
oretical background of least-squares conformal map is in-
troduced in Section 2. A non-rigid registration method of
3D dynamic facial data using least-squares conformal maps
is documented in Section 3. A system of facial expression
synthesis and transfer is presented in Section 4. Experimen-
tal results are discussed in Section 5, and we conclude our
paper and point out future work in Section 6.

2. Theoretical Background of Least-Squares
Conformal Map

From Riemann theory, all 3D surfaces are Riemann sur-
faces and have unique conformal structures. Conformal
structure is more flexible than Riemannian metric structure
and more rigid than topological structure. By applying con-
formal structure to surface analysis, any 3D surface can be
mapped onto a 2D domain through a global optimization
with angle-preserving and the mappings are easy to con-
trol by specifying a few number of landmarks. Because
of this important property of conformal geometric maps, it
can simplify all 3D problems to 2D ones. Moreover, it can
be proven that there exists a conformal map from any sur-
face with a disk topology to a 2D planar domain, which is a
diffeomorphism, namely, one-to-one, and onto. Conformal
parameterization depends on the geometry itself, not the tri-
angulation of the surfaces. In this section, we introduce the
notion of conformal map and least-squares conformal map
with relationship between them.

2.1. Conformal Map
Conformal map has deep relations with complex geom-

etry. In planar case, it becomes complex analysis [6, 14].
Suppose we map a planar region S to the plane, the map is
denoted as U : (x, y) → (u, v). For convenience, we use
complex coordinates z = x+ iy, U = u+ iv. Then U(z) is
a complex function. According to complex function theo-
rem, a conformal map is equivalent to an analytic function,
which satisfies the Riemann-Cauchy equation

∂U
∂z̄

= 0, (1)

where the complex differential operator ∂
∂z̄ = 1

2 ( ∂
∂x + i ∂

∂y ).



Suppose both the domain and the target are the unit disk,
then all conformal maps form a three dimensional group,
each of them is called a Möbius transformation. A Möbius
transformation has the form: U = z−z0

1−z̄0z eiθ, where z0 is
the pre-image of the center of the disk, θ is an angle in
[0, 2π]. For general surfaces which are homeomorphic to
a disc, Riemann’s theorem states that the conformal maps
satisfying Eq. (1) exists and if the target planar domain is
fixed, all such mappings form a 3-dimensional group. Fur-
thermore, by specifying one interior point and one boundary
point, the conformal map is uniquely determined [9].

However, in practice, since our goal is to use the result-
ing conformal parameterization for registration, we need
to introduce additional feature constraints, indicating that
the corresponding features on two 3D surfaces should be
mapped onto the same locations in the 2D domain. How-
ever, with these additional constraints, it is not always pos-
sible to satisfy the conformality condition. For this reason,
we seek to minimize the violation of Riemann’s condition
in the least-squares sense.

2.2. Least-Squares Conformal Map
The Least-Squares Conformal Map (LSCM) parameter-

ization algorithm generates a discrete approximation of a
conformal map by adding more constraints[14, 24, 25].
Given a discrete 3D surface mesh S and a piecewise lin-
ear map U : S → R

2, as described in Section 2.1, U is
conformal on S if and only if the Cauchy-Riemann equa-
tion (Eq. (1)) holds true on the entire surface S. However,
by adding additional constraints, this conformal condition
cannot be strictly satisfied on the entire triangulated surface
S, so the conformal map is constructed in the least-squares
sense. First, we measure the conformality of this planar lin-
ear map U on each triangle d using |∂U∂z̄ |2A(d), where A(d)
is the area of the face d. The conformality energy of the en-
tire map U : S → R

2 is just the total energy on all triangles
of the surface and the LSCM can be achieved by

MinC(S) = Min
∑

d∈S

|∂U
∂z̄

|2A(d). (2)

Let αj = uj + ivj and βj = xj + iyj , so α = U(β).
Because U is piecewise linear, therefore, U can be repre-
sented as a matrix. Then, we rearrange the vector α such
that α = (αf , αp) where αf consists of n − p free coor-
dinates and αp consists of p constraint point coordinates.
Therefore, Eq. (2) can be rewritten as

C(S) = ‖Mfαf + Mpαp‖2, (3)

where M = (Mf ,Mp), a sparse m × n complex ma-
trix (m is the number of triangles and n is the number of
vertices). The least-squares minimization problem in Eq.
(3) can be efficiently solved using the Conjugate Gradient

Method. Thus we can map a 3D surface to a 2D domain
with multiple correspondences as constraints by using the
LSCM technique.

As described above, LSCMs are generated by minimiz-
ing the violation of Riemann’s condition in the least-squares
sense. This optimization-based parameterization method
has the same properties as conformal maps, e.g., existence
and uniqueness and also can map a 3D shape to a 2D do-
main in a continuous manner with minimized local angle
distortion. Moreover, LSCMs are independent of mesh
resolution and can handle missing boundaries and also al-
low multiple constraints to be enforced. Finally, the least-
squares minimization problem in calculating LSCMs has
the advantage of being linear. With such good properties,
we expect them to be very valuable in 3D surface registra-
tion.

3. Non-rigid Registration Algorithm for 3D
Dynamic Facial Data

We now introduce an automatic non-rigid registration al-
gorithm by using least-squares conformal maps which can
map 3D surfaces to a 2D common domain with global op-
timization. Therefore, they can simplify the original 3D
surface-registration problem to a 2D registration problem.
In particular, our registration algorithm includes two steps:
First, interior feature correspondences are detected by using
Active Appearance Model (AAM); After that, by generat-
ing and registering the 2D least-squares conformal maps of
3D faces in two frames, we compute their dense one-to-one
correspondences to register these two frames.

3.1. Feature Tracking
There are many features in the human face such as cor-

ners of eyes, nose and mouth. Detecting and tracking these
features accurately and efficiently in 3D dynamic facial
data still presents difficulties. Active Appearance Model
(AAM)[3, 8, 7] is successfully used to track facial features
in video sequences. AAM is a face detection technique
that combines shape and texture information into one PCA
space. The model iteratively searches a new image by us-
ing the texture residual to update the model parameters. To
use AAM to detect features in 3D dynamic facial data, we
first use a projection matrix P to project the 3D faces onto
a 2D image plane. Then we use AAM to detect the fea-
tures in each 2D video frame. After that, with the known
projection and depth information of these 3D data, we can
project the features detected by AAM back to 3D face sur-
faces. Finally, we can automatically get the initial inter-
frame feature correspondences in these 3D dynamic data.
In experiments, we select 200 frames in training data con-
taining different facial expressions to build the AAM and
the facial feature template contains 50 vertices, as shown in
Fig. 1.



(a) (b) (c)
Figure 1. AAM feature detection. (a) The feature template of
AAM. (b) A 3D face projected onto an image plane. (c) The de-
tected features on the face.

(a) (b) (c)

(d) (e) (f)
Figure 2. Registration using least-squares conformal maps
(LSCMs). (a) and (d) are two original inter-frame 3D face sur-
faces with texture information. (b) and (e) are these faces without
texture. (c) and (f) are their registered LSCMs.

3.2. Dynamic Registration Using Least-Squares
Conformal Maps

After detecting the initial corresponding features in two
frames Si and Si+1, we can compute their least-squares
conformal maps (LSCMs) using the method described in
Section 2.2. As the LSCMs are driven by representative
motion features between the two frames, they capture the
inter-frame non-rigid deformation. Furthermore, because
this mapping is one-to-one and onto, by registering their
2D LSCMs, we can recover the inter-frame registration on
these 3D face surfaces.

As an example, Fig. 2(c,f) show the LSCMs of the inter-
frame 3D faces in Fig. 2(a,d). Fig. 2(a,d) are the origi-
nal faces with texture information and Fig. 2(c,f) are their
registered 2D LSCMs. The similarity of these two LSCMs
in Fig. 2(c,f) shows that we can successfully register two
inter-frame non-rigid 3D faces by just registering their 2D
LSCMs.

4. A Framework of Facial Expression Synthe-
sis and Transfer

We now present the new framework of dynamic facial
expression synthesis and transfer based on our non-rigid
registration method.

Figure 3. Facial expression manifold. The curve is Isomap for 3D
registered facial expression sequence (some frames are shown in
first row).

4.1. Dynamic Facial Expression Synthesis

Expression synthesis generates new facial animations
using existing expression data. Our expression synthe-
sis framework includes two steps: The first step analyzes
existing expression data by embedding them into a low-
dimensional manifold using Isomap [23] after registering
these data using our 3D non-rigid registration method de-
scribed in section 3. The second step synthesizes new ex-
pressions by selecting parameters of these expression data
analyzed in the first step.

4.1.1 Facial Expression Manifold Embedding

Facial expression undergos complicated global and local
nonlinear deformation between frames. In order to analyze
expression data easily and efficiently, we need to embed
facial expression manifolds non-linearly into a low dimen-
sional space. We adapt Isomap framework [23] to achieve
a low dimensional manifold embedding for individual fa-
cial expressions that provides a good representation of facial
motion. Isomap finds the best embedding manifold with
nonlinear dimensionality reduction by preserving the pro-
portion of distance in the embedding space and the original
facial motion space. Fig. 3 shows the embedding of smile
motion to a 3D space. It is an elliptical one dimensional
manifold in 3-dimensional space. In embedding space, the
expression manifolds are elliptical curves with distortions
according to face geometry and expression types. To an-
alyze these expression manifolds, we need to align these
one dimensional manifolds in embedding space. For each
manifold, correspondences are initially established using
the points with high curvatures. Then, multiple manifolds
are aligned using an approach similar to [2]. Thus, we can
align the original expression sequences in temporal space
by aligning expression manifolds in the embedding space.



4.1.2 Expression Synthesis

After we align N expression styles s1, s2, ..., sn of the same
person using the method described above, we then generate
a new style vector snew by linear interpolation of these N
styles using control parameters w1, w2, ..., wn as follows:

snew = w1s1 + w2s2 + ... + wnsn, (4)

where
∑N

i=1 wi = 1. For example, if we want to gener-
ate new expression as style with 50% of the first style and
30% of the second style and 20% of the third style, then we
generate new style as snew = 0.5s1 + 0.3s2 + 0.2s3.

4.2. Facial Expression Transfer
Expression transfer directly maps expressions of the

source model to the target model. In particular, our ex-
pression transfer framework includes two steps: The first
step determines temporal correspondences between every
two adjacent frames of the source model and spatial corre-
spondences between the source and target models; The sec-
ond step transfers the adjusted motion vectors from source
model vertices to target model vertices.

4.2.1 Dense Surface Correspondences

Source models at each frame do not have temporal inter-
frame correspondences. In addition, source model and tar-
get model do not have spatial correspondences as they may
have different structures. However, we can establish both
temporal and spatial correspondences by using parameteri-
zation methods [5, 6, 11, 14] to map 3D source and target
models to a 2D domain. Therefore, we can compute 3D
dense surface correspondences by just detecting correspon-
dences in their 2D maps.

Temporal Correspondences: In our experiments, we
use fine facial motion data which are captured by a struc-
tured lighting method [32] with 30 frame per second. A 3D
face in each frame has approximately 70K points with both
shape and texture information. To utilize this 3D dynamic
data, we use our 3D non-rigid registration method described
in Section 3 to obtain the one-to-one inter-frame correspon-
dences, as shown in Fig. 2.

Spatial Correspondences: For expression transfer, it is
crucial to find spatial correspondences between the source
and target models. Harmonic mapping is a popular ap-
proach for recovering dense surface correspondences [5,
12]. However, difficulties arise when specific points need to
be matched exactly between models. Our approach to find-
ing spatial correspondences starts with initial correspond-
ing feature points which the user specifies [12] between the
source and target models. After that, we simplify the source
and target models and map them to a 2D plane by mini-
mizing the harmonic energy [5, 9, 30] with user-specified
corresponding feature points as interior constraints. By de-
tecting and interpolating the one-to-one correspondences in

(a) (b) (c) (d)
Figure 4. Spatial feature correspondence detection using harmonic
maps. (a) and (c) are source and target faces. (b) and (d) are their
harmonic maps computed by our method. After detecting the one-
to-one correspondences in their 2D harmonic maps, we can obtain
the spatial feature correspondences between 3D source and target
faces.

(a) (b) (c)

(d) (e) (f)
Figure 5. An example of motion vector transfer. (a) and (b) are
source faces with different expressions. (c) is the color-coded
magnitude of motion vectors in the source model. (d) is the tar-
get face model. (e) is transferred expression on the target face. (f)
is the color-coded magnitude of motion vectors to be transferred
to the target face model (d).

the 2D harmonic maps, we can obtain the spatial correspon-
dences between the source and target models, as shown in
Fig. 4.

4.2.2 Expression Transfer with Motion Vectors

A transferred expression animation displaces each target
vertex to match the motion of a corresponding surface point
in source model. Since facial geometry and aspect ratios
are different between the scans of source models and the
target face, source displacement vectors can not be simply
transferred without adjusting the direction and magnitude
of each motion vector. In our experiments, we adjust both
the scale and orientation of motion vectors before transfer-
ring the source motion to target model by using the method
described in [16]. An example of motion vector transfer is
shown in Fig. 5.

5. Experimental Results
The performances of our approaches on non-rigid regis-

tration of 3D time-varying data and facial expression syn-



thesis and transfer are evaluated in a number of experi-
ments. First, we analyze the accuracy of our 3D non-rigid
registration method and compare results with two previous
methods. Second, we evaluate the performance of facial ex-
pression synthesis and transfer based on our non-rigid reg-
istration method.

5.1. Evaluation of 3D Non-rigid Registration
We apply our non-rigid registration method on 3D dy-

namic facial data and compare results with the tracking
method based on modified harmonic maps [27] and Iterative
Closest Point (ICP) method [19] which have been widely
used for 3D registration. In order to evaluate their accuracy,
we compute the registration error by approximately using
the difference in the intensity values of vertices of regis-
tered 3D face surfaces between two frames as:

RegistrationError =

∑N
i=1 ‖tij − tij+1‖∑N

i=1 tij
, (5)

where tij is intensity value of the ith vertex of 3D face sur-
face in the jth frame and N is the number of registered ver-
tices. If the registration is perfect, the only difference in the
intensity values of vertices of registered two 3D faces will
result from the change of shadowing and shading effects
due to geometric deformation.

We present the comparison of these three techniques
in Fig. 6 by plotting the registration errors according to
different frames. From the results, we can see that our
method performs considerably better than the other two
methods. The ICP method can not achieve good results in
3D non-rigid shape registration. The modified harmonic
map method uses optical flow to track very few feature
points which are very sensitive to noise. Moreover, their
method will have larger registration errors in the 3D face
data with varying boundary, because of the limitation of har-
monic maps.

5.2. Evaluation of Facial Expression Synthesis and
Transfer

First, We apply our facial expression synthesis frame-
work on 3D dynamic facial data to synthesize new facial
expressions. Actors perform four different type of expres-
sions: smile, surprise, sadness, and anger. The expressions
were captured using our structured lighting range scanner.
We then registered and analyzed the captured range data us-
ing our facial expression synthesis framework described in
Section 4.1. Fig. 7 shows the generation of two expressions:
smile and surprise and the synthesis of a new in-between ex-
pression by changing the weight of these two original input
expressions. With our method we can generate a convinc-
ing combination of two different expressions without loss
of details. The generated in-between expressions are shown
in the second and third rows.
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Figure 6. Comparison of the three registration methods.

Figure 7. Synthesis of new facial expression by weighting two
different expression types: smile in the first row and surprise in
fourth row. Second row: 70%smile + 30%surprise. Third row:
30%smile + 70%surprise.

Next, we apply our facial expression transfer framework
on facial data with different expressions and transfer these
expression styles and details to target face models. We per-
form two group experiments to evaluate the accuracy and
robustness of our facial expression transfer method both
qualitatively and quantitatively. Our first group experiments
are intended to qualitatively show the effectiveness of our
expression transfer approach. Fig. 8 shows the expression
transfer results with various exaggerated expressions and
Fig. 9 shows the results with different kinds of expressions
which are neutral, smile, surprise, sadness, and anger. We
also perform expression transfer from the source model to
a topologically different target face model caused by miss-



Figure 8. Exaggerated expression transfer. Source face model with
exaggerated expressions are shown in the first row. Transferred
expressions on two target faces are showed in the second and
third row, respectively. The target faces have different shapes and
textures but the expressions are proportionally scaled to fit each
model well.

Figure 9. Expression transfer. Source face model with different
expressions are shown in the first row. Transferred expressions on
the target face are shown in the second row. From left to right,
emotional expressions are neutral, happy, surprised, sad, and an-
gry, respectively.

ing data in eye regions during data acquisition under dif-
ferent resolutions and the results are shown in Fig. 10. As
shown in these results, the expressions of the source model
are reproduced in the target model with convincingly better
effects.

The second group experiments are intended to quantita-
tively measure the effectiveness of our expression transfer
approach. In the third experiment, we use two different 3D
scans of the male subject in Fig. 9 as source and target mod-
els, respectively, that is, transferring expressions from a per-
son to himself. In the last experiment, we transfer expres-
sions of the male subject to the female subject in Fig. 9 and
then transfer intermediate results back to another 3D scan
of the male subject. By using Eq. (5), the average errors of
intensities are measured between the original and final face
models in all frames as shown in Table 1. Fig. 11 exhibits
some of these expression transfer results in different frames.
From the results, we can see that in each frame, the final

Figure 10. Expression transfer from a male subject to a topologi-
cally different face model under different resolutions. Source face
model with different expressions are shown in the first row. Trans-
ferred expressions on the target face which has different topology
due to missing data (missing in eye region during data acquisition)
are shown in the second row. Expression transfer results of the tar-
get face with only 1/4 of the original resolution are shown in the
third row.

50th 100th 150th 200th 250th frame

Figure 11. Expression Transfer results (Man ⇒ Man and Man
⇒ Woman ⇒ Man). Source face models in different frames are
shown in the first row. Expression transfer results (Man ⇒ Man)
are shown in the second row. Expression transfer results (Man ⇒
Woman ⇒ Man) are shown in the third row.

faces after expression transfer are very similar to the origi-
nal source face data and the only difference results from the
change of the shadowing and shading effects due to face ge-
ometry deformation. The overall processing time including
3D non-rigid registration and expression transfer is approx-
imately 1 minute per frame on a Pentium4 2.4 GHz PC.
From all of these results, comparing with the previous re-
search on expression transfer which typically require many
manual labors, our method can transfer expression from one
person to another both efficiently and automatically.



Table 1. Average errors of expression transfer.

Man ⇒ Man Man ⇒ Woman ⇒ Man
Average RegistrationError 2.312% 2.379%

6. Conclusion and Future Work

We have developed a novel method for non-rigid regis-
tration using least-squares conformal maps to automatically
compute dense one-to-one inter-frame correspondences for
3D time-varying facial data. Moreover, based on this reg-
istration method, we have also implemented a new visual
modeling framework of dynamic facial expression synthesis
and transfer. Our experimental results demonstrate that our
novel facial modeling framework leads to better registra-
tion for 3D dynamic facial data and subsequent applications
such as facial expression analysis, synthesis, and transfer.

Regarding on-going and near-future work, we shall fur-
ther validate our methods and our framework on a much
wider range of 3D dynamic facial data through more exten-
sive testings. We also plan to use our facial expression syn-
thesis and transfer framework for other vision applications
such as facial expression classification and recognition.
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