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Abstract

In this paper, we propose a particle filtering approach
for the problem of registering two point sets that differ by
a rigid body transformation. Typically, registration algo-
rithms compute the transformation parameters by maximiz-
ing a metric given an estimate of the correspondence be-
tween points across the two sets of interest. This can be
viewed as a posterior estimation problem, in which the cor-
responding distribution can naturally be estimated using a
particle filter. In this work, we treat motion as a local vari-
ation in pose parameters obtained from running a few it-
erations of the standard Iterative Closest Point (ICP) algo-
rithm. Employing this idea, we introduce stochastic motion
dynamics to widen the narrow band of convergence often
found in local optimizer functions used to tackle the regis-
tration task. Thus, the novelty of our method is twofold:
Firstly, we employ a particle filtering scheme to drive the
point set registration process. Secondly, we increase the
robustness of the registration performance by introducing
a dynamic model of uncertainty for the transformation pa-
rameters. In contrast with other techniques, our approach
requires no annealing schedule, which results in a reduc-
tion in computational complexity as well as maintains the
temporal coherency of the state (no loss of information).
Also, unlike most alternative approaches for point set regis-
tration, we make no geometric assumptions on the two data
sets. Experimental results are provided that demonstrate the
robustness of the algorithm to initialization, noise, missing
structures or differing point densities in each sets, on chal-
lenging 2D and 3D registration tasks.

1. Introduction

A well-studied problem in computer vision is the fun-
damental task of optimally aligning two point clouds with
applications ranging from medical image analysis, quality

(b)

(a) (c)
Figure 1. Common problems in point set registration. (a) Initial
alignment that can yield an incorrect registration to the “wrong”
side of the truck, when using iterative based techniques.(b) Dense
point set. (c) Sparse point set.

control, or military surveillance and tracking [10, 1, 2, 5]. In
general, point set registration is a two part problem: first, the
correspondences between points across the two sets of inter-
est must be established; then, the transformation parameters
are estimated. The registration task is further complicated
when there exists clutter or when information is missing.

A popular technique and benchmark for point set reg-
istration is the Iterative Closest Point (ICP) algorithm [1].
Given an initial alignment, ICP assigns a set of correspon-
dences based on the L2 distance, computes the transforma-
tion parameters, and then proceeds in an iterative manner
with a newly updated set of correspondences. However, the
basic approach is widely known to be susceptible to local
minima. To address this issue, Fitzgibbon [6] introduces
a robust variant by optimizing the cost function with the
Levenberg-Marquardt algorithm. Even though this method
and variants of ICP [2, 6] do improve the narrow band of
convergence, they are still heavily dependent of the initial
alignment, and may fail due to the existence of homolo-
gies (due to noise, clutter, outliers) within the correspon-
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dence matrix. For instance, Figure 1 demonstrates a com-
mon problem in registration, in which a poor initial align-
ment can yield an incorrect registration to the “wrong” side
of the truck.

The use of robust statistics and measures form a second
class of point set registration algorithms [12, 20]. Repre-
senting point sets as probability densities, Tsin and Kanade
[21] propose a Kernel Correlation (KC) approach using
kernel density estimates. The method computes the op-
timal alignment by reducing the “distance” between sets
via a similarity metric. An extension is considered in [13]
through the use of a Gaussian mixture model. Both ap-
proaches admit solutions which may be interpreted as ro-
bust multiply-linked ICP registration schemes where the
cost function is defined globally. Reducing these cost func-
tionals, which are independent of point correspondences, al-
low for a wider basin of convergence. However, these meth-
ods are computationally expensive as one point set must in-
teract with each point in the opposing set. In Section 5, we
compare the KC algorithm with the particle filtering tech-
nique discussed in this paper.

To solve the dependency to the initial alignment as in
standard ICP and other iterative based methods, Chui et. al
[3] introduced a global-to-local technique, the Robust Point
Matching (RPM) algorithm. The approach performs an ex-
haustive search that is reduced over time with an appropriate
annealing schedule. However, the authors of [19] demon-
strate the failure of RPM in the presence of clutter or when
certain structures are missing. This is one of the main prob-
lems that is addressed in our work.

The next class of point set registration schemes, referred
to as shape descriptors, introduces structural information
[7, 14, 11]. While not specifically classified as a shape de-
scriptor, the approach in [19] employs a covariance driven
correspondence scheme. Although these techniques gener-
ally perform well under poor initializations, they make an
underlying assumption on the point set densities. Without
special consideration, registration may fail if one tries to
match a sparse cloud to a dense cloud. See Figure 1 for
illustration of “sparsity.”

Related works that follow the approach presented in this
paper are based on filtering methods [15, 16, 17]. Ma and
Ellis [15] successfully pioneered the use of the Unscented
Particle Filter (UPF) for point set registration. Although the
algorithm accurately registers small data sets, it requires a
large number of particles (5000) to perform accurate regis-
tration. Because of the large computational costs involved,
the method becomes impractical for large data sets. To
address this issue, the authors in [17] propose to use an
Unscented Kalman Filter (UKF) approach. However, their
method suffers the limitation of assuming a unimodal prob-
ability distribution of the state vector, and thus, may fail
for multimodal distributions. Also, both filtering methods

use a deterministic annealing schedule to drive the predic-
tion model of the registration process. Even though the es-
timates are improved over time and the variance of particles
is reduced, the annealing schedule itself does not incorpo-
rate any information learned online. Instead, the parameters
of the annealing schedule are chosen a priori. Moreover,
the above factors have the effect of increasing the compu-
tational complexity rendering the approaches unsuitable for
real-time applications, such as tactical tracking.

As a result, the particle filtering framework presented in
this paper introduces a registration scheme that attempts to
address the concerns mentioned above: local point-wise ac-
curacy, the ability to handle both sparse and dense points,
robustness to noise, initialization, and extraneous structures,
while still being computationally efficient. By incorporat-
ing information learned online, we propose a prediction
model that diffuses particles in the direction of uncertainty
of the transformation. This can also be re-interpreted as
having stochastic dynamical motion, where motion is de-
fined, in this paper, to be local variations in pose parameters
obtained from running a few iterations of ICP.

This paper is organized as follows: In the next section,
we discuss the particle filter and the basic local optimizer,
ICP. In Section 3, we describe the registration algorithm
along with the specifics of the prediction step, measurement
model, and the resampling scheme. Section 4 provides nu-
merical implementation details. Experimental results are
given in Section 5. Limitations and future work are dis-
cussed in Section 6.

2. Preliminaries

In this section, we review some basic notions from the
theory of particle filtering, as well as give a brief description
of ICP, which we will need in the sequel.

2.1. Particle Filtering

Letting x ∈ R
n, Monte Carlo methods allow for the eval-

uation of a multidimensional integral I =
∫

g(x)dx via
a factorization of the form I =

∫
f(x)π(x)dx, whereby

π(x) can be interpreted as a probability distribution. Tak-
ing samples from such a distribution in the limit yields the
estimate of I that would otherwise be difficult or impos-
sible to compute. However, generating samples from the
posterior distribution is usually not possible. Thus, if one
can only generate samples from a similar density q(x), the
problem becomes one of “importance sampling.” That is,
the Monte Carlo estimate of I can be computed by gen-
erating N >> 1 independent samples {xi; i = 1, ..., N}
distributed according to q(x) by forming the weighted sum:

IN = 1
N

∑N
i=1 f(xi)w(xi), where w(xi) = π(xi)

q(xi) , rep-
resents the normalized importance weight. Thus, by em-
ploying Monte Carlo methods in conjunction with Bayesian



filtering, authors in [8] first introduced the Particle Filter.
We refer the reader to [18, 4] for an in-depth discussion on
Monte Carlo methods and particle filtering schemes. How-
ever, it is important to note that the proposal density q(x)
has the utmost significance in any Monte Carlo method and
must be properly approximated. This is further addressed
in Section 3.

Now considering xt ∈ R
n to be a state vector, par-

ticle filtering is a technique for implementing a recur-
sive Bayesian filter through Monte Carlo simulations. At
each time t, a cloud of N particles is produced, {xi

t}N
i=1,

whose empirical measure closely “follows” p(xt|z0:t) =
πt(xt|z0:t), the posterior distribution of the state given the
past observations.

The algorithm starts with sampling N times from the
initial state distribution π0(x0) in order to approximate it
by πN

0 (x0) = 1
N

∑N
i=1 δ(x0 − xi

0), and then implements
Bayesian recursion at each step. With the above formu-
lation, the distribution of the state at t − 1 is given by
πt−1(xt−1|z0:t−1) ≈ 1

N

∑N
i=1 δ(xt−1 − xi

t−1). The algo-
rithm then proceeds with a prediction step that draws N
particles from the proposal density q(xt|z0:t−1). With ap-
propriate importance weights assigned to each particle, the
prediction distribution can now be formed in a similar fash-
ion as above, i.e. π̂t(xt|z0:t−1) = 1

N

∑N
i=1 wi

tδ(x̂t − x̂i
t).

Then, in the update step, new information arriving online
at time t from the observation zt is incorporated through the
importance weights in the following manner:

wi
t ∝ wi

t−1

p(zt|xi
t)p(xi

t|xi
t−1)

q(xi
t|xi

t−1, zt)
. (1)

From the above weight update scheme, the filtering dis-
tribution is given by π̃t(xt|z0:t) = 1

N

∑N
i=1 wi

tδ(xt − xi
t).

Resampling N times with replacement from π̃t allows us to
generate an empirical estimate of the posterior distribution
πt. Even though π̃t and πt both approximate the posterior,
resampling helps increase the sampling efficiency as parti-
cles with low weights are generally eliminated.

2.2. Iterative Closest Point (ICP) Algorithm

Suppose now that we are given two point sets that reside
in R

n. We denote these two sets as model and data, with
their respective elements {m}Nm

i=1 and {d}Nd
j=1. Assuming a

rigid body transformation, T (�d, φ) : R
n → R

n, for a set of
data points �di and model points �mj , ICP computes a rota-
tion matrix R and translation �t that minimizes the following
L2 distance:

E(�d, �m, C) =
Nd∑
i=0

‖�dj − CijR�mj − �t‖2, (2)

where C is the correspondence matrix. Because these cor-
respondences are not known a priori, the algorithm chooses

mj that is the closest, in the L2 sense, to each di. After
establishing point correspondences, the optimal transforma-
tion, φ = {�t, R}, can be computed with minimization of the
following energy functional:

E(�d, �m) =
Nd∑
i=0

‖�dj − R�mj − �t‖2. (3)

For the sake of brevity, we do not provide the derivation
of minimizing the above functional, but refer the reader to
[5, 1] for details. It is important to note here that after the
transformation parameters are computed, a new “image” of
the correspondence matrix is formed by applying the trans-
formation T (�d, φ). The algorithm proceeds in an iterative
manner until convergence or a stopping criterion is reached.

We also note that other local optimizers [2, 6, 9], which
include objective functions, may be considered instead of
the basic ICP algorithm presented here.

3. Point Set Registration Algorithm

In this section, we cast the problem of pose estimation
for point sets within a particle filtering framework. By mod-
eling the uncertainty of the transformation, the resulting ap-
proach is substantially less susceptible to local minima, and
is robust to noise, clutter, and initialization.

3.1. The State Space Model

Assuming 2D and 3D point sets, we let xt ∈ R
3 and

xt ∈ R
6 represent the respective state space of a rigid body

transformation, i.e.

x(t) =
( �t

�θ

)
(t). (4)

For the 3D case, the translation and rotation vectors are �t =
[tx, ty, tz ]T and �θ = [Rx, Ry, Rz]T , respectively. Similarly,
for 2D point sets, the state space is x(t) = {tx, ty, θ}T . As
stated above, we exploit the uncertainty of the registration
in our prediction step. This forms an estimate of the state
x̂t from the stochastic diffusion modeling of the distribution
p(xt|xt−1, zt−1). A detailed discussion is provided in Sec-
tion 3.2, where it is also shown that the basis of this predic-
tion model can be viewed as approximation to the selection
of the proposal density. After an estimate is formed, we ob-
tain an observation at time t, which is the “image” formed
under the intermediate update of the correspondence matrix,
C(T (�d, φ)).

Thus, the observation space is given as follows:

z(t) =
( �tm

θm

)
(t) (5)

where θm and �tm are the measured transformation parame-
ters.



3.2. Prediction Model

We seek a model for the prediction distribution, which
can best describe uncertainty of the transformation during
the registration process.

3.2.1 “Motion” Alignment Error

Inspired by [19], let us define the “motion” error for each
particle {xi; i = 1, ..., N} that is learned online at time t as

e(xt−1, x̂t−1) = xi
t−1 − x̂i

t−1, (6)

where x̂t−1 and xt−1 are the predicted and measured state
at t−1, respectively. Then the covariance of “motion” error
is given as

Si
t−1 = E[e(xi

t−1, x̂
i
t−1)e(x

i
t−1, x̂

i
t−1)

T ]. (7)

Assuming independence amongst the error parameters,
St−1 basically describes the variability or severity of mo-
tion in each of the principal axis for a rigid body trans-
formation. This is shown in Figure 2. Here, a displace-
ment is made for the pure translation and rotation case of
a truck model. In these simplistic cases, the transformation
estimate will be predominantly in the x-direction for (a) or
about the rotational x-axis for (b).

By computing these transformation estimates from lo-
cal variations in the pose parameters, we propose to explore
the space described by their principal components of mo-
tion in a non-deterministic fashion. It is important to note
that the model dynamics employed in conjunction with par-
ticle filtering will have an impact on the registration results
(see Section 5.2.1). In the context of registration, the use
of filtering dynamics enables algorithms to avoid local min-
ima due to poor point correspondences. Depending on the
basins of attraction for local minima, certain dynamics, such
as constant velocity, may not help. However, by introduc-
ing stochastic motion dynamics, we allow for particles to
diffuse in a manner that will avoid local minima that have
large basins of attraction. In the next section, we incorpo-
rate this notion of stochastic motion into particle filtering
via the proposal density.

3.2.2 Proposal Density

Now if we assume a translational prior for the proposal den-
sity, we can model the multivariate distribution with the use
of a mixture of Gaussian. This is given as follows:

q(xt|xi
t−1, zk) = p(xt|xi

t−1)

=
N∑

i=1

ρiN (xt; μt−1; αt−1σt−1 + vt−1),

(8)

(a) (b)
Figure 2. Simplistic case of the uncertainty in point set registration.
(a) For translation, parameter estimates are largest for tx. (b) For
rotation, the estimates are largest in Rx

where ρi is the mixture of Gaussian weight, and μt−1 and
the term αt−1σt−1 + vt−1 are the mean and standard devia-
tion describing a Gaussian distribution. The variance is the
“weighted diffusion” of particles with dependency on co-
variance of the alignment error σ2

t−1 with weight αt−1, and
the process noise vt−1. While the choice of these parame-
ters can be adjusted to suit a particular application, we have
assumed the following:

ρi =
1
N

μt−1 = xi
t−1

αt−1 = 1 vt−1 ≈ 0

σ2
t−1 = E[e(xi

t−1, x̂
i
t−1)e(x

i
t−1, x̂

i
t−1)

T ].

As stated in Section 2, the selection of the proposal den-
sity is a critical issue in the design of any particle filter [18].
Equation (8) describes a prediction that diffuses stochasti-
cally in the direction of motion (through the variance term)
providing sensible and robust results in the context of point
set registration.

A simplification of the weight update scheme can now
be made by substituting (8) into Equation (1) yielding:

wi
t ∝ wi

t−1p(zt|x̂t). (9)

Finally, unlike the approach of [15, 16, 17], we have as-
sumed the process noise to be minimal, allowing the reg-
istration to be purely driven by information learned on-
line. Through the stochastic diffusion model, we introduce
a non-deterministic process. More complex schemes of in-
troducing process noise to help drive registration will be
a subject of future work. Note that, as t → ∞, the un-
certainty embedded in the diffusion process is naturally re-
duced (σ2

t−1 → 0) leading to convergence.

3.3. Measurement Model

The measurement function, zt = h
(
x̂t, C(t)

)
, where x̂t

is a seed point (corresponding to a transformed point set),
and C(t) = C

(
T (�d, φ)

)
is the “image” that becomes avail-

able at time t, can be described as follows:



1. Run minimization of the functional (3) for R iterations
for each of the x̂i

t: the choice of R depends upon the
local optimizer and the method of minimization (e.g.,
gradient descent, Gauss-Newton). This results in a lo-
cal exploration of both the transformation and the de-
gree of misalignment existing between point sets.

2. Compute an update of the importance weight by Equa-

tion (9) by defining p(zt|x̂t) � e
∑ Nd

i=1 ‖mi−T (�d,φ)‖2
.

3. Build a cumulative distribution function from these
importance weights. Using the generic method in [18],
resample N times with replacement to generate N new
samples.

4. Select the transformed point set with the minimum ICP
energy (smallest L2 distance) as the measurement. Up-
date the path of transformation for each particle, which
is used by Equation (6) to describe the “motion” align-
ment error.

As can be noticed from above, the posterior distribution
and transformation parameters can vary drastically depend-
ing on the set of correspondences obtained at each step.
Hence, we must not model the distribution as unimodal.
Thereby, this justifies the use of a mixture of Gaussian to
capture the wide variety of particle motions. Next, we dis-
cuss the resampling scheme, and the importance of doing
gradient descent for R iterations.

3.4. Resampling

The resampling step is introduced into particle filtering
schemes as a solution to “sampling degeneracy,” which is
unavoidable in sequential importance sampling. That is, the
authors in [4] show that the variance of importance weights
are only allowed to increase over time. This results in parti-
cles that are not concentrated in a region of high likelihood
of the posterior distribution. Aside from the computational
cost, the phenomenon of degeneracy creates poor filtering
results. Thus, in this paper, we adopt the general resam-
pling scheme, and we refer the reader to [18] for details.

Although resampling attempts to solve “sampling degen-
eracy,” it induces another problem known as “sample im-
poverishment,” whereby all of the particles are only con-
centrated in a single region. Because this leads to a loss
of diversity for a given set of particles, an approximation to
the posterior distribution is not accurate, and the registration
may fail.

To address both of the above problems, careful consid-
eration of the number of ICP iterations R must be made.
By choosing R too large, we would be converging towards
the local minima. This is not desirable since the state at
t and t − 1 would lose dependency. Indeed, “sample de-
generacy” will occur if all of the particles tend toward one

region. Likewise, if R is chosen to be too small, then most
of the particles may never be associated with the high like-
lihood region of the posterior resulting in “sample impover-
ishment.” In other words, the choice of R depends on how
much one trusts the system model versus the obtained mea-
surement. For our experiments, we have found that a choice
R = 7 for gradient descent and R = 3 for Gauss-Newton’s
method has given robust results, as will be seen in Section 5.

4. Implementation

Here, we provide implementation and numerical details
along with the pseudo-code of the algorithm described in
Section 3.

4.1. Numerical Details

Experiments performed on 2D data sets are implemented
by minimizing the ICP function with the gradient descent
method, but we opted for the Gauss-Newton approach when
working with 3D data sets. This is done to ensure the al-
gorithm’s independence with regards to minimization tech-
nique chosen. For a fast calculation of the correspondence
matrix, we use a “KD tree” for the model points. Nearest
neighbor searches are then easily performed for the varying
data sets, as we proceed through the algorithm.

4.2. Pseudo-Code

Point Set Registration Algorithm

For t = 0

• Initialize by drawing N particles from π0(x0)

• Propagate particles through z0 = h
(
x̂i

0, C
i(0)

)
, i.e.

– Perform R steps of ficp(�d, �m, x̂i
0)

– Update Weights via wi
0 ∝ p(z0|x̂0)

– Resample according to [18]

– Compute z0 = min
{

arg{ficp(�d, �m, x̂i
0)}

}

For t = 1,2,3,...

• Draw N particles from q(xt|xi
t−1, zk) using (8)

• Propagate particles through zt = h
(
x̂i

t, C
i(t)

)
, i.e.

– Perform R steps of ficp(�d, �m, x̂i
t)

– Update Weights via wi
t ∝ wi

t−1p(zt|x̂t)

– Resample according to [18]

– Compute zt = min
{

arg{ficp(�d, �m, x̂i
t)}

}



(a) (b)

(c) (d)

(e) (f)

Figure 3. Examples of estimating the pose with points sets having
clutter or sparseness. (a) Initial letter off-set. (b) Initial cube off-
set. (c) KC word search result. (d) KC cube result. (e) Particle
filtering word search result. (f) Particle filtering cube result.

5. Experimental Results

We provide experimental results for both 2D and 3D
point sets that undergo a rigid body transformation. Sev-
eral specific tests are undertaken that demonstrate the ro-
bustness of the algorithm to initialization, partial struc-
tures (or clutter), and noise. Moreover, we highlight the
importance of the stochastic motion dynamics described
in Section 5.2.1. In addition to the above tests, we show
that the method is robust to differing geometric structures
among point sets.

5.1. Comparative 2D Rigid Registration

In the first set of experiments, we compare the
Kernel Density Correlation (KC) approach [21] with
our algorithm here. The MATLAB code of the KC
algorithm is made available on the authors’ website
(http://www.cs.cmu.edu/˜ytsin/KCReg/). In this
algorithm, a global cost function is defined such that the
method can be interpreted as a multiply-linked ICP ap-
proach. Rather than define a single pair of correspondences,
one point set must interact with each point in the opposing
set, thereby eliminating point correspondences altogether.
Our algorithm can also be re-interpreted as a switching

(a)

(c)

(b)

(d)
Figure 4. Examples of robustness to noise and initialization with a
3D model of a horse (Note: Noise is colored black for visualiza-
tion). (a) 10% (Substitution) Gaussian zero mean isotropic noise
level. (b) Registration result for 10% case. (c) 25% (Substitution)
Gaussian zero mean isotropic noise level. (d) Registration result
for 25% case

stochastic ICP approach where one point set interacts with
only a handful of correspondences. Interestingly enough,
we show next that this switching approach out performs the
multiply-linked method (at least in the examples tested).

5.1.1 Partial Structures (Letter Search)

In this example, we create the words “CVPR ALASKA,”
and off-set the letter S with a rather large pose transforma-
tion as seen in Figure 3(a). Running the KC algorithm and
the proposed approach, we attempt to recover this transfor-
mation. The task of finding a letter within a set of words is
a typical partial matching problem. We performed the KC
method for several varying kernel bandwidths, and found
that σKC = 2 provided the most successful result. This
is shown in Figure 3(c). In particular, as one increases the
bandwidth σKC , the algorithm tends to align distributions
spatially, which makes it particularly ill-suited for partial
matching. The result of the particle filtering approach (num-
ber of particles is 200 with R = 7) described in this paper
is shown in Figure 3(e). The transformation is recovered.

5.1.2 Geometric Assumptions (Cube)

The next experiment deals with the case of differing densi-
ties across the two point sets. While not usually stating it,
many point set registration algorithms make some tacit as-
sumptions on the point set density. In another words, they



(a) (b) (c) (d)
Figure 5. The importance of stochastic motion. (a) Initialization. (b) Result with no dynamical model. (c) Result with constant velocity
model. (d) Result with stochastic motion model.

assume point sets that have a similar density or geometry
around a local neighborhood for each point within their re-
spective sets. We refer the reader again to Figure 1(b) and
(c) for an illustration of differing densities. In particular, the
KC algorithm uses kernel density estimates to describe the
(dis)similarity between points across the two sets. To over-
come poor initialization, noise, or clutter, the kernel band-
width must be increased. However, in doing so, the kernel
smoothes the point sets, which makes it increasingly diffi-
cult to discriminate among individual points when working
with sparse and dense sets. To demonstrate this, we gener-
ate 50 points from the model cube, which is itself composed
of 400 points. A transformation T (�d, φ) is then applied to
the extracted data set. Similar to the preceding section, we
tested several kernel bandwidths, and found σKC = 3 to
be the optimal choice. The result is shown in Figure 3(d),
where a suboptimal registration is obtained. A successful
alignment is recovered using the proposed method (number
of particles = 100, R = 7) as seen in Figure 3(f).

5.2. Rigid Registration of 3D Point Sets

Our experiments with 3D rigid registration of point sets
use a 3D model of a truck and a horse. The main focus here
is the importance of stochastic motion dynamics and the al-
gorithm’s inherent robustness to noise and initialization.

5.2.1 Motion Dynamics (Truck)

In this experiment, we demonstrate the importance of
stochastic motion. As stated in Section 3.2, dynamics have
a significant impact on the registration results. In contrast
to a constant velocity model, diffusing by Equation (8) en-
ables some particles to avoid local minima that have a large
basin of attraction. It also follows that without any dynam-
ics, registration will fail due to poor initialization, and will
tend to suffer the normal fate of local optimizers.

To demonstrate this, we first extract a cloud of points
from the front side of the truck as seen in Figure 5(a). A
translation displacement places the point set on the oppo-
site side with a rotation of 60 ◦ about the z-axis. Figure 5(b)
shows that using no dynamics registers the localized struc-
ture to the “wrong” side of truck, while Figure 5(c) shows

that a constant velocity yields an incorrect registration to the
middle portion of the “right” side of the truck. Figure 5(d)
presents a successful registration result of our method with
diffusion. Note that the same initial conditions are used for
each test, including the initial distribution of particles, high-
lighting the influence of the diffusion model.

5.2.2 Robustness to Noise and Initialization (Horse)

In this example, we extensively test the algorithm’s per-
formance in the case of large misalignment and large lev-
els of noise. First, we generate 1000 random transforma-
tions, and apply them to a data set that is uniformly sam-
pled from the model. In particular, we generate translations
�t = [tx, ty, tz] from a normal distribution with each com-
ponent having a standard deviation of 45, i.e. N (0, 45).
This value is chosen according to the range of model points,
([−36, 33], [−67, 74], [−75, 82]). The rotation angle θ is
also chosen randomly along the z rotation axis, but from
a uniform distribution U(0, π

3 ).
After a transformation is applied, the data set is sam-

pled with replacement with Gaussian zero mean noise. The
applied noise is N (0, 40), which is again chosen with re-
spect to the dimensions of the horse. In this experiment, we
generated noise levels of 5, 10, 25, and 35 percent substitu-
tion, and then we performed 1000 tests at each of the several
varying noise levels. Further, the number of particles used
is 40 with R = 3, and the initial distribution has the same
spread for each random transformation. Two examples with
their registration results are shown in Figure 4.

We computed the off-set of the measured transformation
with respect to the ground truth. Table 1 below presents av-
erage, standard deviation, and maximum off-sets that were
computed across the 1000 tests. Notice the results are low,
demonstrating the robustness of the algorithm to noise and
initialization.

6. Limitations and Future Work

In this paper, we cast the problem of pose estimation for
point sets within a particle filtering framework that exploits
the underlying variability in the registration process. The
proposed method was shown to be able to deal with partial



Noise �t θ �R

5 %.
μ = 0.73
σ = 0.31

max = 1.86

μ = 0.68 ◦

σ = 0.57 ◦

max = 4.39 ◦

μ = 0.11
σ = .22

max = 1.91

10 %
μ = 1.23
σ = 0.49

max = 3.04

μ = -0.29 ◦

σ = 1.42 ◦

max = 3.99 ◦

μ = .14
σ = 0.22

max = 1.91

25 %
μ = 2.83
σ = 0.87

max = 5.71

μ = -0.93 ◦

σ = 2.61 ◦

max = 7.36 ◦

μ = .19
σ = 0.26

max = 1.92

35 %
μ = 3.82
σ = 1.11

max = 7.53

μ = 2.87 ◦

σ = 2.05 ◦

max = 8.24 ◦

μ = .20
σ = 0.28

max = 1.95

Table 1. Average, Standard Deviation, and Maximum Offset Errors
for Each Noise Level

structures, poor initialization, and noise without making any
geometric assumption on the point set density. Unlike [15,
16, 17], the method does not require an annealing schedule
and drives the registration with information that is learned
online through a stochastic diffusion model.

As compared to the KC algorithm [21], our approach
only considers a set of correspondences in a switching like
fashion. This enables the algorithm to correctly align point
sets when dealing with partial structures or with the match-
ing of dense and sparse sets.

The above framework can be further improved by using
robust estimation techniques [12]. Specifically, taking the
L1 norm (within the measurement function) is expected to
reduce the effect of noise and outliers even more (as shown
e.g., in [6]). Also, our future work will focus on modify-
ing the proposed approach to address non-rigid transforma-
tions.

7. Acknowledgments

This work was supported in part by grants from NSF,
AFOSR, ARO, MURI, as well as by a grant from NIH
(NAC P41 RR-13218) through Brigham and Women’s Hos-
pital. This work is part of the National Alliance for Medical
Image Computing (NAMIC), funded by the National Insti-
tutes of Health through the NIH Roadmap for Medical Re-
search, Grant U54 EB005149. Information on the National
Centers for Biomedical Computing can be obtained from
http://nihroadmap.nih.gov/bioinformatics.

References

[1] P. J. Besl and N. D. McKay. A method for registration of 3-d
shapes. PAMI, 14(2):239–256, 1992. 1, 3

[2] Y. Chen and G. Medioni. Object modeling by registration
of multiple range images. Image Vision and Computing,
10(3):145–155, 1992. 1, 3

[3] H. Chui, A. Rangarajan, J. Zhang, and C. M. Leonard. Un-
supervised learning of an atlas from unlabeled point-sets.
PAMI, 26(2):160–172, 2004. 2

[4] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte
Carlo Methods in Practice. Springer, 2001. 3, 5

[5] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-
d rigid body transformations: a comparison of four major
algorithms. Machine Vision and Applications, 9:272–290,
1997. 1, 3

[6] A. W. Fitzgibbon. Robust registration of 2d and 3d point
sets. Image Vision and Computing, 21(13). 1, 3, 8

[7] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Ro-
bust global registration. In Proc. Symp. Geom. Processing,
2005. 2

[8] N. Gordon, D. Salmond, and A. Smith. Novel approach to
nonlinear/nongaussian bayesian state estimation. IEEE Pro-
ceedings on Radar and Signal Processing, 140(2):107–113,
1993. 3

[9] S. Granger and X. Pennec. Multi-scale em-icp: A fast and
robust approach for surface registration. In ECCV, pages
418–432, 2002. 3

[10] B. Horn. Closed-form solution of absolute orientation using
unit quaternions. Journal of the Optical Society of America
Association, 4(1):629–634, 1987. 1

[11] D. F. Huber and M. Hebert. Fully automatic registration of
multiple 3d data sets. Image Vision and Computing, 21(7),
2003. 2

[12] P. J. Huber. Robust Statistics. John Wiley & Sons, New York,
1981. 2, 8

[13] B. Jian and B. C. Vemuri. A robust algorithm for point
set registration using mixture of gaussians. In ICCV, pages
1246–1251, 2005. 2

[14] A. Johnson and M. Herbert. Using spin-images for efficient
object recogntion recognition in cluttered 3-d scenes. PAMI,
21(5):433–449, 1999. 2

[15] B. Ma and R. E. Ellis. Surface-based registration with a par-
ticle filter. In MICCAI, 2004. 2, 4, 8

[16] B. Ma and R. E. Ellis. Unified point selection and surface-
based registration using a particle filter. In MICCAI, 2005.
2, 4, 8

[17] M. Moghari and M. Abolmaesumi. Point-based rigid-body
registration using an unscented kalman filter. Transactions
on Medical Imaging, 26(12):1708–1728, Dec. 2007. 2, 4, 8

[18] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the
Kalman Filter: Particle Filters for Tracking Applications.
Artech House, 2004. 3, 4, 5

[19] M. Sofka, G. Yang, and C. V. Stewart. Simultaneous covari-
ance driven correspondence (cdc) and transformation estima-
tion in the expectation maximization framework. In CVPR,
volume 14, pages 234–778, 2007. 2, 4

[20] C. V. Stewart. Robust parameter estimation in computer vi-
sion. SIAM Rev., 41(3):513–537, 1999. 2

[21] Y. Tsin and T. Kanade. A correlation-based approach to ro-
bust point set registration. In ECCV, pages 558–569, 2004.
2, 6, 8


