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Abstract
We propose a new template-based approach for view-

invariant recognition of body poses, based on geometric
constraints derived from the motion of body point triplets.
In addition to spatial information our templates encode
temporal information of body pose transitions. Unlike exist-
ing methods that study a body pose as a whole, we decom-
pose it into a number of body point triplets, and compare
their motions to our templates. Using the fact that the ho-
mography induced by the motion of a triplet of body points
in two identical body pose transitions reduces to the spe-
cial case of a homology, we exploit the equality of two of
its eigenvalues to impose constraints on the similarity of the
pose transitions between two subjects, observed by different
perspective cameras and from different viewpoints. Exten-
sive experimental results show that our method can accu-
rately identify human poses from video sequences when they
are observed from totally different viewpoints with different
camera parameters.

1. Introduction
Existing body pose recognition methods can be divided

into two main categories: 3D approaches and 2D ap-

proaches. The 3D approaches try to recover the 3D body

pose from 2D images and compare the body poses in the 3D

Euclidean space. These approaches can be further divided

into two groups: model based approaches, e.g. [5, 9, 13, 4],

and learning based approaches, e.g. [1, 14, 11, 12]. A key

problem in model-based approach is to define a good likeli-

hood function in terms of edges [5, 15, 18, 17, 10], silhou-

ettes [5, 9], intensities [16], or body joints [18]. Another

important issue is how to reduce the cost search in the high-

dimensional model parameter space. The learning based

approaches avoid the high dimensional search in model pa-

rameter space by constraining the possible human poses to

a small subset. To account for camera viewpoint variations,

the training data usually consist of several 2D observations

of plausible 3D poses.

Temporal information is also taken into account in some

existing methods [8, 6] In this category, there are also a few

2D approaches that do not require a 3D parametric body

model or the prior knowledge of 3D configurations of body

poses [3, 2]. However, these work do not take into con-

sideration the variations in camera viewpoint and intrinsic

parameters, thus limited in practice under wide camera vari-

ability.

1.1. Overview of Our Method
We represent the body pose by a space-time template:

Spatial information is represented by a set of 2D imaged

body points, and the temporal information by the transition

between two poses. Unlike temporal templates proposed

in [6] or snippets in [8] that require to be generated from

multiple viewpoints, our template is generated from only a

single arbitrary viewpoint, and the recognition is achieved

using geometric constraints imposed by the motions of body

point triplets, which we show to be invariant to camera cali-

bration matrix and changes in viewpoints. View-invariance

in most learning-based approaches is heavily dependent on

the number of viewpoints used in the training data. Our so-

lution eliminates these problems since only one viewpoint

is required and the constructed likelihood function is inde-

pendent of camera viewpoints and its intrinsic parameters.

2. Body Pose from Space-Time Templates
Our goal is to recognize a set of predefined poses P in a

collection or sequence of 2D body poses {I1...n}. The se-

quence can be from an uncalibrated camera and an unknown

viewpoint. To this end, we maintain a set of space-time

templates for a selected set of poses to be recognized. For

each body pose, we require only one template from any ar-

bitrary viewing angle. A body pose is recognized by match-

ing the input unknown pose against all available templates

and choosing the one with highest score, provided that the

likelihood is above some threshold τ (see section 2.2). Our

space-time templates require only the 2D image coordinates

of body joints, and can be either extracted from a real video

sequence or synthesized from motion capture data. A tem-

plate is composed of an ordered pair of 2D poses: a key pose

which represents the specific pose of interest and a succeed-

ing one, which captures the transition shortly after the key

pose. The succeeding pose can be selected arbitrarily, as

long as it is sufficiently distinct from the key pose. Fig. 1

shows an example of a space-time template extracted from

a tennis-serve video sequence.
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(a) (b) (c)
Figure 1. An example of a space-time template composed of two

poses: (a) the key pose and (c) the succeeding pose. The two poses

are overlapped in (b) to show their differences.

2.1. View-invariant Template Matching
Let Ii and Ij , j > i be two frames with labeled body

points in a video sequence, and T k
1 , T k

2 be the key pose and

the subsequent pose of the template T k, respectively. The

key feature of our solution is the design of a matching score

function S(Ii,j , T
k
1,2), that is independent of viewpoint and

camera intrinsic parameters. Therefore, S(Ii,j , T
k
1,2) at-

tains its maximum value when I1 and I2 correspond to T k
1

and T k
2 , regardless of camera parameters and varying view-

points. The next section describes the steps to achieve this.

2.1.1 Template matching based on body point triplets
The spatial information in our body model is represented

by the image of 11 points as shown in Fig. 2. We then de-

compose this body model into triplets of points. Since any

three non-collinear points in the 3D space define a planar

surface, this effectively breaks down the articulated human

body into a collection of planar surfaces defined by every

non-degenerate triplet in the image plane. Our templates

also encode temporal information in the form of pose tran-

sition. We thus match a pose pair 〈Ii, Ij〉 and a template

〈T k
1 , T k

2 〉 by comparing their pose transitions1. Using our

point-triplet representation has the following advantages:

• The similarity of pose transitions for articulated bod-

ies can be measured by matching the rigid motions of

scene planes defined by all triplets of body points.

• The representation leads to a highly over-determined

formulation of the problem, allowing us to achieve ro-

bustness to noise and self-occlusions: Given n body

point correspondences, we obtain
(
n
3

)
criteria to mea-

sure the similarity.

• Anthropometric restrictions can be relaxed, since only

the transitions of planes in the 3D space matter, and

not the points defining these planes.

Homographies Induced by a Triplet of Body Points
Consider the case that Ii,j corresponds to T k

1,2, and the

1For brevity of notation, we will hereafter denote a pair 〈Ii, Ij〉 as Ii,j .

HEAD

RIGHT_SHOULDER LEFT_SHOULDER

RIGHT_ELBOW
LEFT_ELBOW

RIGHT_HAND LEFT_HAND

RIGHT_KNEE
LEFT_KNEE

RIGHT_FOOT
LEFT_FOOT

Figure 2. Human body model used in this paper with 11 body

points: head, shoulders, elbows, hands, knees and feet.

π1

H1

C1 C2e1

x1
x2

x3

e2

y1
y2

y3

X1
X2 X3

π2

H2

C1 C2e1

x′
1
x′
2
x′
3

e2

y′
1

y′
2
y′
3

X′
1

X′
2

X′
3

π1
π2

C1 C2

Hx

x

x′
H1
H2

(a) (b) (c)
Figure 3. Homographies induced by a moving triplet of points.

The motion of a triplet of 3D points {Xi} → {X′
i} is observed

by two stationary cameras, C1 and C2, as {xi} → {x′
i} and

{yi} → {y′
i}. Together with the epipoles e1 ↔ e2, the point

correspondences induce two homographies H1 and H2. For sim-

ilar motions of triplets, the homography H = H−1
2 H1 reduces

to a homology with two identical eigenvalues, providing thus a

constraint for identifying similar pose transitions.

transformation from Ii to Ij corresponds to that from T k
1

to T k
2 . Ii,j and T k

1,2 can then be regarded as the images of

same moving subject viewed by two different cameras P1

and P2, respectively. P1 and P2 may have different inter-

nal and external parameters. These point correspondences

induce an epipolar geometry via the fundamental matrix F.

The projection of the camera center of P2 on Ii,j is given

by the epipole e1, which is the right null vector of F. Sim-

ilarly the image of the camera center of P1 on T k
1,2 is the

epipole e2 given by the right null vector of FT . Note that

this fundamental matrix does not correlate the entire scene,

but only the body points.

Let us now consider an arbitrary triplet of 3D body

points, Δ = {X1,X2,X3}, which corresponds to Δi =
〈x1,x2,x3〉 in Ii and Δ1 = 〈y1,y2,y3〉 in T k

1 . After the

pose transformation, Δ transforms to Δ′ = {X′
1,X

′
2,X

′
3},

which corresponds to Δj = 〈x′
1,x

′
2,x

′
3〉 in Ij and Δ2 =

〈y′
1,y

′
2,y

′
3〉 in T k

2 , as illustrated in Fig. 3. Δ and Δ′ de-

termine two scene planes π1 and π2 in the 3D space, which

induce two homographies H1 and H2 between P1 and P2.

These plane-induced homographies can be computed given

four point correspondences, i.e. the image point correspon-

dences xi ↔ yi and the epipoles e1 ↔ e2

A degenerate case occurs when three of the four points

are collinear. In general, we can simply discard these degen-

erate triplets, because the number of non-degenerate triplets

exceeds by far the degenerate triplets. A special case is

when the epipole is at or close to infinity, all triplets then

may be regarded as degenerate. We solve this problem by

transforming the image points in projective space in a man-



ner similar to the method described in [19]. The idea is to

find a pair of projective transformations corresponding to

each image, such that after transformation the epipoles and

transformed image points are not at infinity.

Constraints on Homographies due to Moving Triplets
As described above, during a pose transition, the motion

of a triplet Δ → Δ′ specifies a rigid motion of a scene

plane π1 → π2, which induces two homographies H1 and

H2 (see Fig. 3). The interesting key observation that leads

to our solution is that these homographies define a mapping

from Ii (or Ij) to itself given by

H = H−1
2 H1.

As shown in Fig. 3, H first maps a point x on Ii (or Ij) to

y on T k
1 (or T k

2 ) through π1, and then transforms it back to

Ii (or Ij) as Hx through π2. It can be readily verified either

algebraically or from Fig. 3 that points on the intersection of

π1 and π2 are fixed during the mapping. Another fixed point

under this mapping is the epipole e1. Thus the homography

H has a line of fixed points (the intersection line of π1 and

π2) and a fixed point not on the line (the epipole e1), which

means that:
Proposition 1 If a triplet of 3D points observed by two
cameras undergo the same motion, then the homography H
reduces to a planar homology, and hence two of its eigen-
values must be equal.

The equality of the two eigenvalues of H defines a con-

sistency constraint on H1 and H2, imposing the assumption

that the two cameras are observing the same scene plane

motions. In the special case when the triplet is stationary,

this equality constraint is still satisfied since H reduces to an

identity matrix, with all its eigenvalues equal to 1. In prac-

tice, due to noise and subject-dependent differences, this

constraint of equality of two eigenvalues for the same pose

transition can be expressed by defining the following error

function on H:

E(H) = |a − b|/|a + b|, (1)

where a, and b are the two closest eigenvalues of H. E(H)
can be used to measure the similarity of motion of a triplet

between two sequences, and the combination of E(H) for

all non-degenerate triplets provides a measure of similarity

between pose transitions Ii → Ij and T k
1 → T k

2 :

E(Ii → Ij , T
k
1 → T k

2 ) = Median
all Δ→Δ′

(E(H)) . (2)

E(Ii → Ij , T
k
1 → T k

2 ) is minimal for similar pose tran-

sitions, and is invariant to camera calibration matrix and

viewpoint variations.

We now summarize our algorithm to compute the match-

ing score for Ii,j and T k
1,2 based on pose transition:

1. Suppose that n body point correspondences are given

by {mi
p}, {mj

p}, {m1
p}, {m2

p}, for Ii, Ij , T k
1 and T k

2 ,

respectively, where p = 1, . . . , n. Compute the funda-

mental matrix F and epipoles from points correspon-

dences mi
p ↔ m1

p and mj
p ↔ m2

p.

2. For each non-degenerate triplet Δ → Δ′, compute

the homographies H1 and H2 as described above.

Then compute the planar homology H = H−1
2 H1 and

eigenvalues equality error E(H). Combine all non-

degenerate triplets to compute E(Ii → Ij , T
k
1 → T k

2 ).

3. The matching score, which may be interpreted as a

likelihood function is then given by:

Seig(Ii,j , T
k
1,2) = 1 − E(Ii → Ij , T

k
1 → T k

2 ) (3)

2.2. Pose recognition from a video sequence

Here we describe our solution for recognizing human

poses in a video sequence taken by an uncalibrated camera

from arbitrary viewpoints. Suppose we are given a video

sequence {I1...n}, where Ii is the body point representation

of the human pose in ith frame, and n is the total number

of frames. We are also given the temporal template T k
1,2 of

some known pose Pk. The procedure for recognizing Pk,

if it exists in {I1...n}, is described as follows:

1. For each frame Ii, i = 1 . . . n, find its d succeeding

frames in the video {Ii+1, Ii+2, . . . , Ii+d}.

2. The body pose in Ii is recognized as Pk if

max
j

{Seig(Ii,j , T
k
1,2)|j = i + 1, . . . , i + d

}
> τ,

where τ is a threshold.

Checking a segment of d frames allows our method to ac-

commodate for different frame rates of videos and varying

execution rates of the motions.

3. Experimental Results
We first present our results on semi-synthetic data, gen-

erated from real motion-capture data using synthetic cam-

eras of different internal parameters and viewing directions,

with varying noise levels. We then show our test results on

real data.

3.1. Evaluation Based on Motion-Capture Data
We generated our semi-synthetic data us-

ing the CMU Motion Capture (MoCap) database

(http://mocap.cs.cmu.edu/), which consists of recorded 3D

points from various real life human actions. The MoCap

data were imaged through synthesized cameras with

different intrinsic and extrinsic parameters, and Gaussian

noise was added. Experiments were then carried out on

these semi-synthetic data to evaluate the performance of

our method in terms of recognizing poses, in the presence

of noise, varying viewpoints, different camera parameters,

and subject-dependent variations.

3.1.1 Testing View Invariance

We selected four different poses P1, P2, P3, and P4 from

a golf-swing sequence (see Fig. 4 (a)). These 3D poses are
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Figure 4. View invariance and the matching error for pose transition using a large set of camera orientations with camera locations dis-

tributed on a sphere (see text). (a) four 3D poses selected from a golf-swing sequence. (b) the distribution of two cameras - camera 1 is

fixed at the location marked in red, and camera 2 is distributed on a sphere around the subject. (c) the plot of two error surfaces for same

and different pose transitions. The lower surface corresponds to the error of same pose transitions observed by two cameras for all the

configurations shown in (b), while the upper surface corresponds to that of different pose transitions. (d) the plots of error surfaces as in

(c) under noise level σ = 1 on the left, and the black regions on the right show the camera configurations when there is confusion between

same and difference pose transition. (e), (f) and (g) show the same plots as (d) under noise levels σ = 2, 3, 4.
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Figure 6. Results of using our likelihood function against one based on classical Sampson error: (a) and (b) show the plots of matching

scores of same and different pose transitions with increasing Gaussian noise for our likelihood function and the Sampson’s, respectively.

(c) shows the confusion margin in (a) and (b) (see text).
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Figure 5. Data used to test robustness to noise. Here, we show the

noise-free images observed by two cameras (see text).

observed by two synthesized cameras: camera 1 with fo-

cal length of f1 = 1000 looking at the origin of the world

coordinate from a fixed location (marked by red color in

Fig. 4 (b)), and camera 2 obtained by rotating camera 1

around x and y axes of the world coordinates in increment

of 10◦, and changing the focal length randomly in the range

of 1000 ± 300. Fig. 4 (b) shows all locations of camera 2

as blue points. Let I1 and I2 be the images of poses P1 and

P2 on camera 1, and I3, I4, I5 and I6 the images of poses

P1, P2, P3, and P4 on camera 2, respectively. Two sets

of matching scores were computed for all camera positions:

Seig(I1,2, I3,4) and Seig(I1,2, I5,6). The surfaces of match-

ing scores are plotted in Fig.4 (c). The upper flat plane in

Fig.4 (c) demonstrates that when two cameras are observ-

ing the same pose transition, the error E(I1 → I2, I3 → I4)
is always zero in all camera configurations. As shown in

this figure, the same pose transition observed by different

cameras is readily distinguishable from the case of different

transition, regardless of the changes in the viewpoint and

camera internal parameters.

3.1.2 Testing Robustness to Noise
We selected two poses P1 and P2 from a kick-ball se-

quence and two poses P3 and P4 from a golf-swing se-

quence. The same experiments of section 3.1.1 were then

repeated with camera 1 observing P1 and P2 as I1,2 and

camera 2 observing P1, P2, P3, and P4 as I3,4 and I5,6,

respectively (see Fig. 5). We then added Gaussian noise to

the image points, with σ increasing in the range 0 to 8. As

in section 3.1.1, two matching scores Seig(I1,2, I3,4) and

Seig(I1,2, I5,6), corresponding to same and different poses,

were computed. For each noise level (σ), we repeated the

experiment for 100 independent trials and the mean and the

standard deviation of both error functions were calculated.

Examples of error surfaces and confusion areas (black ar-

eas) with σ = 1, 2, 3, 4 are shown in Fig.4 (d)-(g). Fig. 6



(a) shows the result of configuration in which camera 1 and

2 are related by a 90◦ rotation around y axis (noise free im-

ages are shown in Fig. 5). Using equation (3), the mean

of matching scores of two cases (same and different poses)

are plotted as curves, and standard deviations as error bars

in Fig. 6 (a), which shows that the two cases are unambigu-

ously distinguishable until σ is increased to 7.25. Note that

in this experiment the size of the subject is about 250× 250
pixels (see 5), which indicates that our method performs

extremely well under sever noise. We compared our results

to those obtained using a more classical likelihood func-

tion based on Sampson’s error [7]. The plots are shown in

Fig. 6 (b). To compare the results in Fig. 6 (a) and (b),

we also computed what we refer to as the confusion margin
for each likelihood function, which is obtained by comput-

ing the distance d(σ) between minimum of same pose error

bars and maximum of different pose error bars at each noise

level σ, and then normalizing it using d̂(σ) = d(σ)/d(0). If

the confusion margin is negative, then the error bars over-

lap, which indicates confusion in recognizing same and dif-

ferent poses. The curves of both likelihood functions are

plotted in Fig. 6 (c), and where they go negative are marked

by red crosses. Fig. 6 (c) shows that our likelihood function

is more robust than one based on classical Sampson’s error.
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Figure 7. The distribution of cameras used to evaluate view-

invariance and camera parameter changes in pose recognition us-

ing semi-synthetic data.

3.1.3 Testing pose recognition
We selected 40 poses from the MoCap database: 20 from

running motion, 10 from golf swing motion, and 10 from

walking motion. Each pose is performed by different actors

(6 actors for running, 10 for golf swing, and 6 for walking).

For each pose, one actor was selected, and the correspond-

ing pose transition was pictured by a camera with arbitrary

focal length and viewpoint, to be used as the template for

the pose to be recognized. We thus built a database of tem-

plates for the 40 pose transitions, denoted as DB. The rest

of the pose instances were used to generate testing data by

projecting each instance onto images through 48 cameras

distributed on a hemi-sphere, as shown in Fig. 7. We thus

built a test dataset of totally 11, 520 2D pose transitions,

with a vast variety of actor behaviors, camera calibrations

and viewpoints. Fig.8 shows an example of the same pose

observed by some of these cameras. Each 2D pose transi-

tion in the test data is matched against each template in DB,

and the recognition result is shown in Table 1.

Metric Value

Tot. Recognition 11,520

True Recognition 10785

True Recog. % 93.62%

Mis-recognition 735

Mis-recogntion % 6.38%

Table 1. Results on testing pose recognition on MoCap data.

3.2. Results on real data
To evaluate our method on real data, we collected a large

number of video sequences from Internet, which are taken

by cameras with unknown internal parameters and view-

points. Our data includes video sequences with various ac-

tions, such as ballet spin, golf swing, tennis backhand and

forehand strokes, tennis serve, etc., and each group includes

instances performed by different persons. We selected a

number of poses in each action, and built templates for them

from one of the instances in that group. When building tem-

plates, we set the distance between key pose and successive

pose as 5 frames, and during recognition phase we tested

using d = 10 successive frames for each frame in the video.

Three selected poses and their associated templates are

shown in Fig. 9 (a), (c) and (e), where the key poses of the

templates are marked in blue and the succeeding poses are

marked in red. (a) and (c) are built from a tennis backhand

stroke sequence, and their corresponding poses are recog-

nized in two video sequences taken by unknown cameras

from different viewpoints. Blue arrows in Fig. 9 (b), (d) and

(f) indicate the locations of recognized poses (key poses)

and red arrows indicate their succeeding poses. Results on

several hundreds of different poses from different action se-

quences show that by using a single template from an arbi-

trary viewpoint, our method can recognize poses captured

by unknown cameras with different internal parameters and

viewpoints.

4. Conclusions
In summary, we propose a novel approach for human

body pose recognition by exploiting multi-view geometric

constraints in pose transition. Unlike existing methods that

study human body pose as a whole, we decompose a body

pose into triplets of body points, and compare two pose tran-

sitions by matching the motions of their corresponding body

point triplets. This reduces the problem from its original

non-rigid body pose estimation to that of a better under-

stood and more tractable problem of estimation of the poses

of planar surfaces. To this end, we exploit the fact that

a moving triplet induces a planar homology between two

views, imposing thus an equality constraint on two of its

eigenvalues. This constraint is independent of camera cali-

bration matrix and viewpoint, enabling us to achieve view-

and camera-invariant recognition of human body poses.



Figure 8. A pose observed from different viewpoints. Note that only 11 body points in red color are used. The stick shapes are shown here

for better illustration of pose configuration and extreme variability being handled by our method.
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Figure 9. Example results of recognizing human poses in real video sequences collected over Internet.
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