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Abstract

When rotating a pinhole camera, images are related by
the infinite homography KRK−1, which is algebraically
a conjugate rotation. Although being a very common im-
age transformation, e.g. important for self-calibration or
panoramic image mosaicing, it is not completely under-
stood yet. We show that a conjugate rotation has 7 degrees
of freedom (as opposed to 8 for a general homography) and
give a minimal parameterization. To estimate the conju-
gate rotation, authors traditionally made use of point cor-
respondences, which can be seen as local zero order Tay-
lor approximations to the image transformation. Recently
however, affine feature correspondences have become in-
creasingly popular. We observe that each such affine corre-
spondence now provides a local first order Taylor approx-
imation, which has not been exploited in the context of ge-
ometry estimation before. Using those two novel concepts
above, we finally show that it is possible to estimate a con-
jugate rotation from a single affine feature correspondence
under the assumption of square pixels and zero skew. As a
byproduct, the proposed algorithm directly yields rotation,
focal length and principal point.

1. Introduction

The infinite homography H∞ = K1RK−1
2 is an image-

to-image transformation, which relates points in one im-

age with points in another image, if the camera has either

only rotated or the corresponding 3D point is infinitely far

away. It is a very important concept in self-calibration [22],

projective geometry [9], or when dealing with purely ro-

tating cameras, e.g. with pan-tilt-units [4], or for creating

panoramic image mosaics[3].

In this work we concentrate on the case of constant in-

trinsic camera parameters, i.e. we assume K1 = K2. Then,

algebraically a 3x3-matrix H acting in the projective image

space P
2 is such an infinite homography, if and only if it is

proportional to a conjugate rotation, i.e. has the same eigen-

value structure as a scaled rotation matrix [9].

However, the dimension and structure of the set of conju-

gate rotations within the space of all possible homographies

has not been fully understood yet, so that no algorithm for

the direct computation of general conjugate rotations cur-

rently exists. So far a solution exists only for the special

case when nearly all intrinsics (skew, aspect ratio, princi-

pal point) are known exactly [2]. In the general case, re-

searchers typically estimate general homographies (e.g. us-

ing direct linear transformation [9] on n ≥ 4 point corre-

spondences) and state that - in the presence of little noise -

the estimate should not be too far from a conjugate rotation

[10, 4]. However, even in this case enforcing the “conjugate

rotation constraints” afterwards is not as straightforward as

for instance in the 8-point algorithm [9] for the fundamental

matrix, because the eigenvalue decomposition of H∞ will

in general contain complex vectors. Simply projecting onto

the allowed manifold has not been possible, because nei-

ther the dimension of this manifold has been known nor a

suitable minimal parameterization is available.

In this work we will propose such a minimal parame-

terization for the conjugate rotation and show that the set

of conjugate rotations is a 7-dimensional manifold in the

space of all 3x3-matrices R
9. As a second contribution we

will show how to estimate a conjugate rotation from a sin-

gle affine feature (cf. to [19]) correspondence, which pro-

vides already 6 constraints, using the additional assumption

of zero skew and square pixels. This is in contrast to the al-

gorithm presented in [2], which also requires the principal

point to be known exactly, which is not always available.

This work is structured as follows: since the proposed

parameterization and estimation is based upon a novel dif-

ferential constraint from affine feature correspondences, we

will start by explaining the concept of such a correspon-

dence (a first order Taylor approximation of H∞) in section

2 before we come to the conjugate rotation in section 3. In

section 4, we will present a direct way of computing the

conjugate rotation from a single affine correspondence and
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either another point or line correspondence or using the as-

sumption of zero skew and square pixels. In the latter case

rotation, focal length and principal point of the camera di-

rectly result from the proposed algorithm. Finally, in sec-

tion 5 we will evaluate our novel algorithm, investigate its

sensitivity to disturbances of the affine correspondence and

show results in panoramic mosaicing with real images.

Notation: To improve the readability of the equations

we use the following notation in this paper. Boldface italic

serif letters x denote Euclidean vectors while boldface up-

right serif letters x denote homogeneous vectors. For ma-

trices we do not use serifs, so that Euclidean matrices are

denoted as A and homogeneous matrices are denoted as A.

2. Affine Correspondences
Progress in robust local features (cf. to [19, 18] for a

thorough discussion) allows automatic matching of images

in which appearance of local regions undergoes approxi-

mately affine changes of brightness and/or of shape, e.g.

for automated panorama generation[3] or scene reconstruc-

tion through wide-baseline matching[24]. The idea is that

interesting features are detected in each image and that the

surrounding region of each feature is normalized with re-

spect to the local image structure in this region, leading to

about the same normalized regions for correspondences in

different images, which can be exploited for matching. The

concatenation of the normalizations provides affine corre-

spondences between different views, i.e. not only a point-

to-point relation but also a relative transformation of the lo-

cal region (imagine scale, shear or rotation).

Although such correspondences carry more information

than the traditional point correspondence used in estima-

tion of multiple view geometry [9], this additional informa-

tion is rarely used. Approaches not using point correspon-

dences deal with conic correspondences [12, 11], which

typically lead to systems of quadratic equations or require

lots of matrix factorizations. Others require the identifi-

cation of locally planar rectangle correspondences [13] for

H∞-computation. Schmid and Zisserman[25] investigated

the behavior of local curvature under homography mapping.

Chum et al. noted in [5] that an affine correspondence is

somehow equivalent to three point correspondences: in ad-

dition to the center point two further points can be detected

in the feature coordinate system (the local affine frame).

This allowed the estimation of a fundamental matrix from

3 affine feature correspondences (from which 9 point cor-

respondence were generated). The “local sampling” of the

affine feature concept was recently also adopted by Riggi et

al. [23] for fundamental matrix estimation and by Perdoch

et al. for extended essential matrix estimation[20].

In contrast to the latter we do not sample but use a com-

pact analytic expression for the whole correspondence: We

observe that the concatenation of the normalization trans-

Figure 1. An affine correspondence in two images related by an

infinite homography H∞: The linear transformation (e.g. shear,

rotation, magnification) between the two magnified image regions

approximates the local derivative of the global image-to-image

mapping H∞ in the center of the window. Considering also the

center shift, the resulting affine transformation can be thought of

being tangent to H∞, which can be exploited for estimation.

formations provides a good approximation to the first or-

der Taylor expansion of the homography, i.e. that the affine

transform is the linearization of the homography (see also

figure 1):

H(x) = H(x0) +
∂H(x)

∂x

∣∣∣∣
x0

(x − x0) + . . . (1)

A ≈ ∂H(x)
∂x

∣∣∣∣
x0

A ∈ R
2×2 (2)

Here H : R
2 → R

2 is the homography mapping between

the two images in Euclidean coordinates and A represents

local shear, scale and rotation between the two correspond-

ing features.

This is actually already exploited for matching but has

not been used for geometry estimation before. As will be

seen in the next section, using this compact representation

of a correspondence keeps local relations and allows for pa-

rameterizing the conjugate rotation, because it provides a

differential constraint on the local image transformation.

2.1. Upgrade and Refinement

The considerations so far apply to affine covariant fea-

tures (e.g. MSER[16]). However, if matches result from

weaker features (e.g. DoG/SIFT[14]), the proposed method

can also be applied. The main insight is that if a correct

match has been established such that the local regions are

approximately aligned, the affine transform based upon the

relative parameters is already almost correct. The straight-

forward way is to compute the affine transformation directly

from the local frames of these features. This is usually al-

ready quite close to correct, because the correct match is a

result from a high image similarity, e.g. in small baseline

matching. However, since we need an accurate estimate of

the Jacobian of the image transformation, it is reasonable

even for already affine features to apply a gradient-based



optimization of A using the Lucas-Kanade approach [15, 1].

The concept of A as the local derivative of the image trans-

form now leads to a parameterization of the conjugate rota-

tion, as is shown in the next section.

3. The Infinite Homography: A Conjugate Ro-
tation

We will now derive a minimal parameterization for the

conjugate rotation. Despite being a very important concept

in multi view geometry, the number of degrees of freedom

has not been investigated yet. Neither exists a parameteri-

zation with less than the 8 parameters (as the naive param-

eterization with 5 intrinsic parameters and 3 rotation pa-

rameters). Such an over-parameterization can cause trou-

ble in optimization, e.g. degenerate covariance matrices in

maximum-likelihood estimation. Some authors have sim-

plified K for the conjugate rotation to pure diagonal shape

with zero skew, known aspect ratio and principal point [2].

Consequently, in this simplified model only a subset of all

possible conjugate rotations is allowed. Instead, we will

now derive a minimal parameterization for general conju-

gate rotations and will then discuss estimation in the next

section. A 2d homography mapping

x′ � Hx =

⎛
⎝ hT

1

hT
2

d

hT
3 1

⎞
⎠x (3)

is expressed in Euclidean coordinates as

x′ =

(
hT

1

hT
2

)
x + d

hT
3 x + 1

(4)

Its derivative is

A =
(

a11 a12

a21 a22

)
=

∂x′

∂x
= (5)

(hT
3 x + 1)

(
hT

1

hT
2

)
−

(
hT

1

hT
2

)
xhT

3 − dhT
3

(hT
3 x + 1)2

We now change without loss of generality the coordinate

systems of both images, such that x = (0, 0)T, then this

simplifies to

A =
(

hT
1

hT
2

)
− dhT

3 (6)

Solving this for h3 and using d = x′ − x, the homogra-

phy given x′ and A is therefore

H =
(

A + (x′ − x)hT
3 x′ − x

hT
3 1

)
(7)

=
(

I2 x′ − x
0T

2 1

) (
A 02

hT
3 1

)
(8)

So far, H may be any homography and no special con-

jugate rotation assumptions have been made. We will now

assume that H is proportional to a conjugate rotation, i.e.

H = λKRK−1 (9)

where R is the relative camera rotation and K is the cam-

era calibration matrix holding focal length f , aspect ratio a,

skew s and principal point (cx, cy)T:

K =

⎛
⎝ f s cx

0 a f cy

0 0 1

⎞
⎠ (10)

From the orthogonality of the rotation matrix R follows

that its eigenvalues and therefore also the eigenvalues of 1
λH

are {1, eiφ, e−iφ}. Exploiting that all eigenvalues have the

same absolute value, Pollefeys et al. derived a fourth order

polynomial constraint for self-calibration, called the mod-

ulus constraint [21], which is a neccessary condition for a

conjugate rotation. In contrast to this the above parame-

terization now leads to a linear relation between h31 and

h32, which provides a sufficient condition for conjugate ro-

tations. We therefore factorize its characteristic polynomial

into its roots

det
(

1
λ

H − τ I3

)
= α(τ − 1)(τ − eiφ)(τ − e−iφ) (11)

Multiplying out both sides yields a 3rd order polynomial in

τ on both sides of the equation.

c3τ
3 + c2τ

2 + c1τ + c0 = (12)

ατ3 − α(eiφ + e−iφ + 1)τ2 + α(eiφ + e−iφ + 1)τ − α

where the coefficients ci depend on H and λ. By compar-

ison of the polynomial coefficients we eliminate the un-

knowns α and φ and obtain two constraints, which are

equivalent to

λ3 = det A (13)

λtr(H) =
1
2
((tr(H))2 − tr(H2)) (14)

Observe that eq. (13) eliminates the scale factor λ from sub-

sequent computations and that all homographies, which ful-

fill these constraints, must be conjugate rotations. We now

insert equation (7) into those constraints and obtain the con-

dition (
(λ − trA)(x′ − x)T + (x′ − x)TAT

)
h3 (15)

=
1
2
(trA)2 − trA − 1

2
tr

(
A2

)
− λ (trA + 1)

which is linear in h3, so that, given an affine feature corre-

spondence (x ↔ x′, A), only one unknown h32 is left, i.e.

we can write

h3 =
(

ah32 + b
h32

)
(16)



for some a and b derived from the linear constraint of equa-

tion (15). From a geometrical point of view the equation

above enforces the fixpoint of the conjugate rotation: the

fixpoint is the eigenvector corresponding to the eigenvalue

1 (the intersection of the rotation axis and the image plane).

We now have a family of homographies, which depends

on the six parameters of the affine correspondence and one

parameter of the equation above. In other words, the nine-

dimensional H depends on seven parameters

p = (a11, a12, a21, a21, d1, d2, h32)T (17)

now. By construction, H must be a conjugate rotation and

the manifold for conjugate rotation can have at most seven

dimensions, since it depends on seven parameters only. We

evaluate the Jacobian ∂H/∂p, which is a 9 by 7 matrix with

the partial derivatives of the 9 entries of H. Proving linear

independence of seven of the columns is quite tedious and

lengthy, but using a symbolic linear algebra processor[17]

we obtained that

rank(∂H/∂p) = 7 (18)

Intuitively this means, that if we vary p we can run in 7

orthogonal directions on the manifold and this defines the

dimension of the manifold [8].

This may be surprising at first sight, since knowing the

eigenvalue structure seems to be more information than a

single constraint[21]. Note however, that the rotation an-

gle φ is unknown and we therefore only know the absolute

value of the second and the third eigenvalue. Also, since

the characteristic polynomial is holomorphic (as all polyno-

mials), complex conjugates of any root must also be a root

and finally, in projective space a homography is equivalent

to a scaled version, so we basically end up with the con-

straint “All eigenvalues have the same absolute value”. In

the next section we show how the conjugate rotation with its

7 degrees of freedom can be estimated based upon an affine

correspondence, which already provides 6 constraints.

4. Estimation and Self-Calibration with Con-
straints

In the previous section we derived a homography of the

form

H(h32) =
(

I2 x′ − x
0T

2 1

) (
A 02

hT
3 1

)
(19)

which, given an affine feature correspondence, depends

only on one parameter h32. Basically this means that the

affine transform locally fixes the conjugate rotation, but the

pre-image of the line at infinity h3 still depends on one un-

known parameter: we do not know, what maps to infinity

yet.

In order to determine this remaining parameter we need

one additional constraint. This may be obtained from an-

other point or line correspondence or from a constraint on

the intrinsic camera parameters.

4.1. Additional Point or Line Correspondence

If an additional image point correspondence (y, y′) is

given, it must fulfill the homography mapping (using the

parameterization from equation (19))(
y′ − x

1

)
� H

(
y − x

1

)
(20)

=
(

I2 x′ − x
0T

2 1

) (
A 02

hT
3 1

) (
y − x

1

)

We bring the displacement matrix to the left hand side

and require that the cross product of the left hand side and

the right hand side is zero[
y′ − x′

1

]
×

(
02×2

(y − x)T

)
h3 (21)

= −
[

y′ − x′

1

]
×

(
A(y − x)

1

)

Selecting one of the first two rows yields a linear equa-

tion in h3, which in general1 determines the last remain-

ing degree of freedom and therefore the conjugate rotation

without any restrictions on skew, aspect ratio, focal length

or principal point. Alternatively, another line correspon-

dence might be used, e.g. if the horizon can be found in

both images. Lines are dual to points and backward-map

with a transposed H, so basically the same linear algebra

applies as in the point correspondence case.

Self calibration is now possible with the approach of

Hartley [10]. Note however, that in contrast to the homogra-

phy estimation method used in [10], our estimated homog-

raphy will be a perfect conjugate rotation.

If on the other hand some intrinsics of the used camera

are known beforehand, no additional correspondence is re-

quired for estimation of the infinite homography as will be

shown next.

4.2. Constraints on the Intrinsics

If only a single affine feature correspondence is given,

the remaining unknown h32 may be computed using con-

straints on the intrinsic camera parameters. We will assume

zero skew and unit aspect ratio in the following, which is

true for most consumer cameras on the market. The only

other algorithm to estimate a conjugate rotation [2] addi-

tionally requires the exact principal point position (see fig-

ure 2 for the sensitivity of [2] to principal point deviations).

1In the case that the point is on the line between the fixpoint and the

affine feature, equations (16) and (21) will not be linearly independent. In

this case a different point must be used.



Figure 2. Synthetic evaluation of the sensitivity of the 2-point-

algorithm [2] to principal point position (10.000 point pairs on

a 50◦ field of view camera with width 1024 pixels), where we

shifted the principal point several degrees away from the assumed

position (the image center). The solid red curve shows the robust

average error as evaluated by Brown et al. [2], while the dotted

green curve shows the fraction of cases in which the algorithm did

not come up with a solution at all. Already at 3◦ (5% image width)

principal point error, the average error is above 6 pixels. Note that

this is not a numerical or an implementation issue but caused by

the resulting rays when the principal point varies.

Since often the principal point is only roughly known, e.g.

close to the image center, our algorithm does not assume

anything about the principal point.

In order to compute the remaining parameter h32 we use

the image of the absolute conic (IAC, cf. [9])

ω =
(

KKT
)−1

=
(

ω11 ω12

ωT
12 t

)
(22)

which is transformed by the conjugate rotation as follows

HTωH = λ2K−TRTKTK−TK−1KRK−1 = λ2ω (23)

Collecting the entries of the upper triangular part of ω11 in

the vector κ = vech(ω11) (cf. [7]), it will be shown in ap-

pendix A, how a linear constraint nTκ = 0 can be derived

from the above equation and that, given the affine feature

correspondence, the vector n(h32) is a rational function of

h32.

The next step is to impose auto-calibration constraints

on the IAC. We will assume zero skew, hence κ2 = 0, and

unit aspect ratio, hence κ1 = κ3. Together with the linear

constraint nTκ = 0 from equation (43) (see appendix A

for the derivation), we obtain the following homogeneous

equation system

⎛
⎝ nT(h32)

0 1 0
1 0 −1

⎞
⎠ κ = 03 (24)

Figure 3. Qualitative distribution of homography mapping error

(length of error vector) in a sample image, black means low error

while white means large error. Left: The homography mapping

error is low near the affine feature and increases outwards (result

from extrapolation). Center: In the 2-point algorithm the error

can have two local minima near the two feature positions. Right:

Error for DLT on 4 point correspondences. σ was 0.5 pixels and

principal point distortion for 2-point was 1 degree.

This equation system can only have a non-trivial solution,

if the determinant of the matrix is zero. Because nT is a

rational function of h32, also this determinant is a rational

function of h32. Its numerator is a quadratic polynomial in

the unknown h32, so that the desired solution can finally be

computed. If the unknown intrinsic parameters are needed

it is straightforward to substitute h32 backward to obtain the

IAC.

5. Evaluation

So far we showed that a conjugate rotation has seven de-

grees of freedom and derived ways to estimate it from as

few data as possible, which is interesting e.g. for RANSAC-

like algorithms [6] or in scenarios where user initializa-

tion or interaction is required. In RANSAC-like algorithms

the performance decreases exponentially with the number

of correspondences needed to estimate a solution (see also

[5]), e.g. 4 point correspondences with DLT or 2 (SIFT[14])

correspondences as proposed in [2]. Our method pushes this

concept to the extreme such that we need only one affine

correspondence, while we do not require the principal point

to be known exactly. However, it is clear that in such a sit-

uation, where one local measurement determines a global

transformation, small disturbances of the measurement can

have severe effects on the extrapolated transformation. Fig-

ure 3 qualitatively shows for an example that the error is

small at the correspondence and slowly grows in the vicinity

while it becomes larger far away from the feature. This sug-

gests the application of a growing strategy, which first incor-

porates nearby correspondences for estimation of the global

homography before iterating and increasing the neighbor-

hood radius. In the two-point algorithm [2] there are two

local minima, because both features are forced to fit well.

To evaluate the sensitivity of our algorithm with respect

to noise, we used the quality measure proposed in [2], where

the average reprojection error across the overlap image re-



Figure 4. Conjugate rotation estimation from only one correspon-

dence in each image pair. The first image is warped to the second

and vice versa using the estimated homography.

gion is measured and clipped at 10 pixels to ensure ro-

bustness against gross errors in the homography estimation.

Figure 5. Sensitivity of the affine and the local 2-point algo-

rithm against noise of the affine correspondence. The derivative

is disturbed with 1% of the position uncertainty, which approxi-

mately evolves from the assumption that the corners of a patch for

gradient-based minimization are found with the same uncertainty

as the patch center. The images are of size 640x480 with 50◦ FOV

and related by random rotations. The principal point prediction

for the 2-point algorithm is disturbed with Gaussian noise of 1◦

(lower green curve) and 10◦ (upper red curve), which simulates

that the principal point is only close to the image center for real

cameras.

Figure 6. Quality of least-squares optimized conjugate rotation

plotted against the number of correspondences used. The three

curves represent three different standard deviations of the position

noise, where we again used 1% noise in the homography’s deriva-

tive. The setting is the same as in figure 5.

Figure 5 shows this quality measure plotted against the stan-

dard deviation of the noise on synthetic data. We compare

our method to the two point algorithm [2] for different prin-

cipal point distributions. For a fair comparison we gener-

ate the two correspondences by obtaining two points of dis-

tance 2 pixels from each affine feature as described in [23]

(called local two-point algorithm in the following).

In this evaluation we observe that our algorithm requires

a good affine correspondence. It is particularly sensitive to

errors in the estimate of the homography’s derivative. The

error of the local two-point algorithm on the other hand is



dominated by the principal point distortion. However, if

many correspondences are available the novel minimal pa-

rameterization allows for a simple nonlinear least squares

maximum likelihood optimization of conjugate rotations

given affine feature correspondences. Figure 6 shows the

reprojection error plotted against the number of correspon-

dences for different noise levels. The reprojection error de-

creases significantly if more affine feature correspondences

are used.

Next we obtained SIFT-feature correspondences be-

tween the images pairs depicted in figure 4 according to the

method of [3] and computed focal length and principal point

from each of the correspondences, which we refined before-

hand to enhance the accuracy of the homography’s deriva-

tive estimate. While some of the estimates were reasonable,

we observe that the variation in the resulting intrinsic pa-

rameters was too large, so that the one-feature approach for

auto-calibration seems rather of theoretical interest.

Finally, we demonstrate some results on real images

taken with different cameras as depicted in figure 4. From

only one local correspondence we estimated a conjugate ro-

tation using the proposed algorithm under the assumption

of zero skew and square pixels. The images were stitched

together and the results are shown in figure 4. Although

not being subpixel correct, particularly in regions far away

from the correspondence, we find the results quite appealing

given the minimalistic data they are based upon.

6. Conclusion
We have shown that a general conjugate rotation has

seven degrees of freedom and proposed a minimal parame-

terization. This parameterization arises from the insight that

an affine feature correspondence provides a first order Tay-

lor approximation to the image transformation, allowing for

a differential constraint onto the homography.

The second major contribution of this work is an algo-

rithm for estimating a conjugate rotation from a single affine

feature correspondence under the assumption of zero skew

and known aspect ratio involving nothing more expensive

than the solution of a quadratic equation.

Also, our method does not require the principal point

to be exactly at the image center, a crucial assumption to

which previous methods are sensitive to, but which might

not exactly be fulfilled in real cameras. Although not be-

ing suitable for auto-calibration, we have demonstrated that

panoramic stitching is possible using only one single affine

feature correspondence.

A. Constraints on the IAC
We will now show, how to derive a linear constraint

nTκ = 0 on κ = vech(ω11) (cf. equation (22) and [7])

from equation (23). Therefore we first compute the left

hand side of equation (23) stepwise. Starting with the in-

ner part, the translated conic is(
I2 02

(x′ − x)T 1

) (
ω11 ω12

ωT
12 t

) (
I2 x′ − x
0T

2 1

)

=
(

ω11 φ12

φT
12 u

)
(25)

with the substitution

φ12 = ω12 + ω11(x′ − x) (26)

u = t − (x′ − x)Tω11(x′ − x) + 2φT
12(x

′ − x) (27)

Next we apply the affine and projective part of the trans-

formation yielding

(
AT h3

0T
2 1

) (
ω11 φ12

φT
12 u

) (
A 02

hT
3 1

)

=
(

ρ11 ρ12

ρT
12 u

)
(28)

with the substitutions

ρ11 = ATω11A + h3φ
T
12A + ATφ12h

T
3 + h3uhT

3 (29)

ρ12 = ATφ12 + h3u (30)

From equation (23) now follows u = λ2t, ρ12 = λ2ω12

and ρ11 = λ2ω11. We start by substituting u = λ2t into

equation (27) yielding

u =
λ2

1 − λ2
((x′−x)Tω11(x′−x)−2φT

12(x
′−x)) (31)

Next we solve equation (26) for ω12 and obtain from the

condition ρ12 = λ2ω12 and equation (30) the equation

ATφ12 + h3u = λ2(φ12 − ω11(x′ − x)) (32)

Substituting equation (31) and solving this for φ12 yields

φ12 = Mκ (33)

with

M = P−1Q((x′ − x)T ⊗ I2)D2 (34)

using the substitutions

P = λ2

(
I2 +

2
1 − λ2

h3(x′ − x)T
)
− AT (35)

Q = λ2

(
I2 +

1
1 − λ2

h3(x′ − x)T
)

(36)

and the duplication matrix

D2 =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 1 0
0 0 1

⎞
⎟⎟⎠ (37)



Substituting this back into equation (31) yields

u = mTκ (38)

with

mT =
λ2

1 − λ2
(x′ −x)T(I2 − 2P−1Q)((x′ −x)T ⊗ I2)D2

(39)

Finally we use the last remaining condition ρ11 =
λ2ω11 and obtain from equation (29) the condition

ATω11A + h3φ
T
12A + ATφ12h

T
3 + h3uhT

3 − λ2ω11 = 02

(40)

Substituting equations (33) and (38) yields the homoge-

neous linear equation system

Nκ = 04 (41)

with

N = (AT ⊗ AT)D2 + (ATM) ⊗ h3 (42)

+h3 ⊗ (ATM) + h3 ⊗ (h3m
T) − λ2D2

This equation system contains only rational functions of h32

(the denominator is det P, as P−1 = P∗/ det P) and turns

out to have only rank 1. Hence we may select one single

row nT from N
nTκ = 0 (43)

which is the desired result.
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