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Abstract

Because of the large variation across different environ-
ments, a generic classifier trained on extensive data-sets
may perform sub-optimally in a particular test environment.
In this paper, we present a general framework for classifier
adaptation, which improves an existing generic classifier in
the new test environment. Viewing classifier learning as a
cost minimization problem, we perform classifier adapta-
tion by combining the cost function on the old data-sets with
the cost function on the data-set collected from the new en-
vironment. The former term is further approximated with
its second order Taylor expansion to reduce the amount of
information that needs to be saved for adaptation. Unlike
traditional approaches that are often designed for a specific
application or classifier, our scheme is applicable to var-
ious types of classifiers and user labels. We demonstrate
this property on two popular classifiers (logistic regression
and boosting), while using two types of user labels (direct
labels and similarity labels). Extensive experiments con-
ducted for the task of person detection in conference-room
environments show that significant performance improve-
ment can be achieved with our proposed method.

1. Introduction

Pattern classification has been one of the most impor-
tant tasks in computer vision. In the past decades, learning
based data-driven methods have demonstrated superior per-
formance on various classification tasks, such as object de-
tection, object recognition, tracking, etc. The performance
of a learning based classifier depends heavily on the rep-
resentativeness of the labeled data used during training. If
the training data contains only a small number of examples
sampled in a particular test environment, the learned clas-
sifier may be too specific to be generalized to unseen data.
On the other hand, if the training data is extensive, the clas-
sifier may generalize well but perform sub-optimally in a
particular test environment.

In many situations, a generic classifier is needed to per-

form detection task for a variety of environments. For in-
stance, when a person detector is applied in users’ offices
to detect people and set their presence status automatically,
a generic detector is necessary so that the application can
work in any office. On the other hand, although the test en-
vironment is unknown, the variation of the test environment
is generally limited after the deployment of the classifier.
That is, once the person detector has been deployed in the
end user’s office, the color of the walls, the furniture, the
lighting condition, and even the people seen in the office
remain largely the same. Ideally, we would like to have a
mechanism for the generic classifier to adapt itself to the
new environment and improve its performance over time.

In this paper, we study the problem of classifier adapta-
tion, namely, how to adapt a generic classifier trained from
extensive data-sets and improve its performance in a par-
ticular test environment. There are two main challenges
in classifier adaptation. Firstly, additional labeled data col-
lected in the new test environment are often required for the
adaptation. Since labeling is an expensive task for the end
user, the amount of additional data has to be minimal. This
is also the main obstacle to training a classifier from scratch
only for that particular test environment. Secondly, a typical
generic classifier may require thousands of example images
or billions of sub-windows for training (e.g., the face de-
tector in [22]). It is usually impractical to send these data
to the end user for a batch retraining of the classifier. One
has to limit the amount of data associated with the generic
classifier to be sent to the end user for classifier adaptation.

In various recognition tasks such as speech recogni-
tion and handwriting recognition, adaptation has become
an indispensable tool to achieve high recognition accuracy.
However, the importance of classifier adaptation for ob-
ject detection tasks has rarely been explored in literature.
Recent developments of adaptation algorithms for track-
ing [4, 1, 14], in particular online boosting based meth-
ods [11, 15], can be viewed as efforts toward classifier
adaptation, but few have directly addressed the problem of
adapting an existing generic detector to a particular test en-
vironment. In addition, most existing adaptation schemes
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are designed for a particular application, and applicable to
a particular type of classifier and a particular type of user
label. As a result, few can be easily applied to different
applications with different classifiers or user labels.

The main contribution of this paper is two-fold. First,
we present a general formulation of the classifier adapta-
tion problem, and a novel Taylor expansion based adapta-
tion method that is applicable to many classifiers. With our
proposed method, the amount of data to be sent to the end
user is only the gradient and Hessian of the classifier, which
is typically very small. We demonstrate the application of
the proposed method on two popular machine learning al-
gorithms – logistic regression and boosting. Second, in ad-
dition to the typical direct user labels which are given to
individual examples, we introduce adaptation based on sim-
ilarity labels, which are given to pairs of examples indicat-
ing whether they have the same, although unknown, labels.
Similarity labels can be derived by an automatic tracking al-
gorithm in video sequences, which creates a novel unsuper-
vised classifier adaptation scheme that can be complemen-
tary to existing direct label based co-training schemes such
as [13, 18, 12]. Experiments are conducted on a challeng-
ing person detection task in conference rooms. We show
that significant performance improvement can be achieved
after adaptation from a generic person detector.

The paper is organized as follows. Section 2 presents
a general formulation of the detection adaptation problem
and the Taylor expansion based solution. The proposed al-
gorithm is applied to logistic regression and boosting clas-
sifiers in Section 3, along with the two forms of example
labels. In Section 4 we discuss the relationship of the pro-
posed method with a number of existing approaches in the
literature. Experiments and conclusions are given in Sec-
tion 5 and 6, respectively.

2. Problem Formulation
2.1. Parametric Learning

Without loss of generality, consider a two-class classi-
fication problem as follows. A set of labeled examples
S = {(xk, tk), k = 1, · · · ,K} are given for training, where
tk = 1 for positive examples and tk = 0 for negative ex-
amples. A parametric learning algorithm intends to find a
mapping function

y = F (x|Θ), (1)

where y is the predicted label of the example, and Θ is a
set of parameters for the mapping function. In order to find
the optimal mapping parameters, a common practice is to
define a cost function

C(F (x|Θ),S) (2)

over the training data-set. Various optimization algorithms
can then be applied to minimize the cost function in order

to obtain the optimal parameters Θ.

2.2. Detector Adaptation

During adaptation, a generic classifier trained on an ex-
tensive data-set S(o) is given, denoted as F (x|Θ(o)), where
superscript (o) indicates that the parameters are optimal on
the old data. The user has collected data S(n) from a new
test environment, where superscript (n) indicates new. The
goal is to find a new set of parameters Θ(n), such that the
classifier performs better in the new test environment.

While there are many possible ways to find Θ(n), in this
paper we propose to use:

Θ(n) = arg min
Θ

J(Θ)

= arg min
Θ

C(F (x|Θ),S(o)) + λD(F (x|Θ),S(n)),

(3)

where J is the revised overall cost function for adaptation;
D is a cost function defined on the new data-set; and λ is a
parameter controlling the relative importance of the old and
the new data-set. Note D may be different from C because
the labels on the new data-set may be in a different form
(e.g., Section 3.2.2).

Eq. (3) combines the cost functions on the old and the
new data-sets, which ensures that the adapted classifier can
work well even when the new data-set is very small. The
remaining challenge is how to obtain C(F (x|Θ),S(o)). As
mentioned earlier, the old data-set S(o) is extensive and
too huge to be made available for adaptation which is per-
formed at the end user’s side. Our proposal is to use a com-
pact representation or an approximation of the cost function
on the old data-set to replace C(F (x|Θ),S(o)) in Eq. (3)
during adaptation, i.e.:

C(F (x|Θ),S(o)) ≈ C̃(F (x|Θ),C(S(o))), (4)

where C(S(o)) is a compact representation of the old data-
set S(o). Depending on the classifier’s formulation, such a
compact representation may or may not be easy to find. Be-
low we present a widely applicable approximation method
based on Taylor expansion.

2.3. Taylor Expansion Based Adaptation

We propose to use the Taylor expansion of the cost func-
tion on the old data as an approximation. For instance, with
the second order Taylor expansion at the previously trained
parameters Θ(o), we have:

C(F (x|Θ)) ≈ C(F (x|Θ(o))) +
∇C(F (x|Θ(o)))(Θ−Θ(o)) +
1
2
(Θ−Θ(o))T HC(Θ(o))(Θ−Θ(o)),

(5)



where we represent parameter Θ in a vector form and omit
symbol S(o) for conciseness. ∇C(F (x|Θ(o))) is the gra-
dient of the cost function, and HC(Θ(o)) is the Hessian
matrix whose elements comprise the second order deriva-
tive of the cost function with respect to Θ. With this ap-
proximation, the adaptation algorithm only needs to receive
∇C(F (x|Θ(o))) and HC(Θ(o)), which are generally much
smaller in size compared with the original data-set S(o).

Note the above Taylor expansion approximation is valid
for smooth multivariate functions where ∇C(F (x|Θ)) and
HC(Θ) exist within a ball in the space of Θ with center at
Θ(o) [10]. The error of the approximation is on the order of
||Θ −Θ(o)||3. In practice, we note many cost functions of
parametric machine learning algorithms are indeed smooth
around the optimized Θ(o). In the following, we demon-
strate the application of the above adaptation scheme on
two popular machine learning algorithms: logistic regres-
sion and boosting.

3. Adaptation of Logistic Regression Classi-
fiers and Boosting Classifiers

3.1. Logistic Regression

Logistic regression is a very popular tool in machine
learning [2]. In this method, a set of features fj(·), j =
1, · · · , J are extracted from the training data set S =
{(xk, tk), k = 1, · · · ,K}. The likelihood of an example
xk being a positive example is:

pk =
1

1 + exp{−∑
j wjfj(xk)} , (6)

where wj is the set of parameters to be determined. The
likelihood function of the whole data-set can be written as:

P =
∏

k

ptk

k (1− pk)1−tk . (7)

As usual, we can define a cost function by taking the neg-
ative logarithm of the likelihood, which gives the cross-
entropy error function as:

C , − 1
K

ln P = − 1
K

∑

k

{tk ln pk +(1− tk) ln(1−pk)}.
(8)

Logistic regression minimizes the above cost function on
the training data-set to find the optimal set of parameters
wj . We refer the readers to [17] for a comparison between
various algorithms to solve logistic regression.

3.2. Adaptation of Logistic Regression Classifier

The gradient and Hessian of the logistic regression error
function with respect to the parameters wj can be easily

computed as [2]:

∂C

∂wj
=

1
K

∑

k

(pk − tk)fj(xk), (9)

∂2C

∂wi∂wj
=

1
K

∑

k

pk(1− pk)fi(xk)fj(xk) (10)

Denote w = [w1, · · · , wJ ]T as the parameter vector; de-
note p = [p1, · · · , pK ]T and t = [t1, · · · , tK ]T as the like-
lihood and label vector of all examples; and denote F as the
K × J design matrix with fj(xk) as the (k, j)th element.
We have in vector form:

∇C(w) =
1
K

FT (p− t)

HC(w) = ∇∇C(w) =
1
K

FT RF, (11)

where R is the K ×K diagonal weighting matrix with ele-
ments Rkk = pk(1− pk).

It is therefore straightforward to apply Eq. (3) for logistic
regression adaptation. Following the idea in Section 2.3, the
cost function on the old data-set can be approximated as:

C(w) ≈ C(w(o)) +∇C(w(o))(w −w(o)) +
1
2
(w −w(o))T HC(w(o))(w −w(o)),(12)

where ∇C(w(o)) and HC(w(o)) are computed at the
generic classifier’s weight vector w(o) on the old data-set.
The cost function on the new data-set depends on the form
of user labels. Next, we present two types of labels that can
be used in our adaptation framework: direct labels and simi-
larity labels. Note both types of labels can be obtained auto-
matically, via co-training [18, 21] or tracking (Section 5.2).

3.2.1 Direct Labels

Direct labels are labels given on examples directly, e.g.,
S(n) = {(x(n)

k , t
(n)
k ), k = 1, · · · ,K(n)}, where x

(n)
k is the

example and t
(n)
k is the label information. Such labels are

identical to those used for training the generic detector be-
fore adaptation. The cost function on the new data-set can
be the same cross entropy error function defined in Eq. (8):

D , − 1
K(n)

∑

k

{t(n)
k ln p

(n)
k + (1− t

(n)
k ) ln(1− p

(n)
k )},

(13)
where p

(n)
k is defined as in Eq. (6). The overall cost function

for classifier adaptation is hence:

J(w) = C(w(o)) +∇C(w(o))(w −w(o)) +
1
2
(w −w(o))T HC(w(o))(w −w(o)) +

λD(w). (14)



We minimize the overall cost function by an efficient itera-
tive technique based on the Newton-Raphson iterative opti-
mization scheme. It takes the form:

w[i+1] = w[i] −H−1
J (w[i])∇J(w[i]), (15)

where i is the iteration index. It is easy to compute:

∇J(w[i]) = HC(w(o))(w[i] −w(o)) +
∇C(w(o)) + λ∇D(w[i]),

HJ(w[i]) = HC(w(o)) + λHD(w[i]), (16)

where the gradient and Hessian of the error function D(w)
on the new data-set can be computed as in Eq. (11).

During the iterative optimization process, the weight
vector of the generic classifier is used for initialization:

w[0] = w(o). (17)

We iterate on Eq. (15) until the Newton decrement is less
than a certain threshold ξ:

√
∇J(w[i])T H−1

J (w[i])∇J(w[i]) < ξ. (18)

3.2.2 Similarity Labels

Instead of labeling examples with positive or negative
tags, one may also specify similarity labels, which in-
dicates whether two examples share the same direct la-
bel or not. Similarity label takes the form of S(n) =
{(x(n)

k1 , x
(n)
k2 , z

(n)
k ), k = 1, · · · ,K(n)}, where x

(n)
k1 and x

(n)
k2

are the two examples, z
(n)
k = 1 indicates the two examples

should have the same label, and z
(n)
k = 0 indicates the two

examples should have different labels. In the following, we
skip the superscript (n) to simplify the notations.

The probability of xk1 and xk2 sharing the same label
can be written as:

pk = pk1pk2 + (1− pk1)(1− pk2), (19)

where

pkl =
1

1 + exp{−∑
j wjfj(xkl)} , l ∈ 1, 2. (20)

The cross-entropy error function is again:

D , − 1
K

∑

k

{zk ln pk + (1− zk) ln(1− pk)}. (21)

We still resort to the Newton-Raphson method to find
the optimal parameter vector as in Eq. (15) and (16), except
that the gradient and Hessian of the cost function on the
new data-set needs to be revised. The gradient of the cost
function on the new data-set is:

∂D

∂wj
=

1
K

∑

k

(pk − zk)gjk

rk
, (22)

where

rk = pk(1− pk),

gjk =
∂pk

∂wj
= −qk2rk1fj(xk1)− qk1rk2fj(xk2),

with rkl = pkl(1− pkl), qkl = ∂rkl

∂pkl
= 1− 2pkl, l ∈ {1, 2}.

Second order derivatives are:

∂2D

∂wi∂wj
=

1
K

∑

k

{ [p2
k + zkqk]gjkgik

r2
k

+
(pk − zk)hijk

rk

}
,

(23)
where

qk =
∂rk

∂pk
= 1− 2pk,

hijk =
∂gjk

∂wi

= 2rk1rk2[fi(xk1)fj(xk2) + fi(xk2)fj(xk1)]−
qk1qk2[rk1fi(xk1)fj(xk1) + rk2fi(xk2)fj(xk2)]

Note the Hessian matrix for similarity labels on the new
data-set is not necessarily positive definite, hence optimiz-
ing the error function D(w) on the new data-set alone does
not ensure a global minimum. Fortunately, w(o) is the
global optimal estimate minimizing the error function on
the old data-set and serves well as a good initial estimate in
the optimization for adaptation.

3.3. Boosting Classifier and Its Adaptation

In a typical boosting classifier, each example is classified
by a linear combination of weak classifiers. Given a test ex-
ample xk, define the score of the example sk as a weighted
sum of weak classifiers hj(·), i.e.,

sk =
∑

j

αjhj(xk) (24)

where hj(xk) can be written as:

hj(xk) =
{

+1 if hj(xk) > tj
−1 otherwise (25)

where tj is the threshold for weak classifier hj(·). The final
decision is made by comparing the example’s score with an
overall threshold T . That is, if sk > T , then example xk is
a positive example; otherwise, xk is a negative example.

There have been many approaches proposed in litera-
ture on how to effectively learn a boosting classifier, e.g.,
AdaBoost [8], GentleBoost [9], MILBoost [23], Brown-
Boost [7], etc. Friedman et al. showed in [9] that the Ad-
aBoost algorithms are indeed Newton methods for optimiz-
ing a particular exponential loss function – a criterion which
behaves much like the log-likelihood on the logistic scale.



In [16], Mason et al. showed that boosting can be viewed
as a gradient-decent algorithm in the function space. We
follow Mason’s AnyBoost framework and define the proba-
bility of an example being positive as:

pk =
1

1 + exp{−sk} , (26)

Subsequently, we can use gradient-decent to search for the
weak classifiers hj(·) and the weights αj with the same cost
function as in Eq. (8) [16].

Under the above AnyBoost formulation, if we restrict
ourselves to updating only the weights αj , the adaptation of
a boosting classifier can be identical to the adaptation of the
logistic regression classifier. The difference is that in logis-
tic regression, the features fj(·) are usually real-valued. In
contrast, in a boosting classifier, the weak classifiers hj(·)
are binary. However, this has no impact on the application
of adaptation on boosting classifiers.

In some recent work for tracking [11, 15], the weak clas-
sifiers were also updated during tracking. One approach is
to compute the gradient of the cost function over weak clas-
sifiers numerically, as was done in [15]. Alternatively, one
can record the compact information (e.g., the gradient and
the Hessian) for all possible combinations of weak classi-
fiers. This may result in a large amount of information to
be sent to the end user, hence its application for classifier
adaptation may be limited.

4. Related Work
Classifier adaptation, as presented in the form of Sec-

tion 2.2, can be viewed as a very general formulation of
classifier learning. For instance, if we set the parameter λ
in Eq. (3) very large, minimizing Eq. (3) is equivalent to
training a classifier on the new data-set only. This may in-
deed be the best practice if sufficient amount of data are
collected in the test environment. On the other hand, if the
new data-set contains examples given one-by-one, and the
adaptation algorithm runs for every new input example, the
methodology shown in Section 2.2 can be used to explain
many online learning or sequential learning algorithms.

Many recent approaches that involve online learning
for detection/tracking [4, 1, 11, 14, 15, 20] are related to
our work. However, we found some of these methods
(e.g., [1, 15]) do not consider the cost function on the old
data-set. Instead, they take the feature set from the pre-
vious frame, update it if necessary, and then learn a new
weight vector solely based on the tracked result in the cur-
rent frame. This approach can cause model drifting in track-
ing. Collins and Liu [4] addressed this issue by using the
first frame as an “anchor” frame, effectively always keep-
ing a small old data-set in its original form. In [14], the
generic person detector is in fact never updated. The au-
thors relied on some simple classifiers (e.g., LDA) to learn

the appearance change of the tracked object, and combine
it with the generic person detector to avoid drifting. While
this approach is interesting, we consider it a very special
case of classifier adaptation that operates on the fused clas-
sifier instead of the generic person detector.

Another family of related work is co-training based
detector adaptation or improvement [13, 18, 21, 12, 6],
or more generally, semi-supervised learning [24]. In co-
training, multiple independent classifiers are applied on the
same examples. If some of the classifiers have high con-
fidence on a particular example, it can be used to update
the remaining classifiers. Therefore, co-training is a mech-
anism to obtain additional training examples from unlabeled
data, and our proposed adaptation algorithm can be applied
once these examples are obtained. As for the adaptation al-
gorithms used after new examples are obtained, [18] used an
online Winnow algorithm to update the classifier; [12, 21]
used online boosting based on the work in [19]. Our pro-
posed Taylor expansion based classifier adaptation algo-
rithm can be applied to both, and many other classifiers such
as linear discriminant analysis, neural networks, logistic re-
gression, etc. In addition, our algorithm can handle data
with similarity labels, which cannot be used for traditional
online Winnow or boosting.

Interestingly, the Taylor expansion based adaptation can
also be viewed as a regularization method for parametric
learning. Take logistic regression as an example. Using the
Bayesian formulation, it can be shown that a Gaussian or
Laplacian prior of the parameter vector can lead to a logis-
tic regression formulation with L2 or L1 regularization [2].
Our proposed method can be viewed as using the Hessian
matrix on the old data-set to regularize the logistic regres-
sion optimization on the new data-set. It certainly belongs
to the category of L2 regularization. However, unlike the
widely used i.i.d. Gaussian prior [17], the Hessian matrix
from the old data-set contains more information about each
parameter and their correlations, hence it can serve better
when the new data-set is small.

5. Experimental Results
We test the proposed classifier adaptation algorithm on

the task of detecting people from panoramic videos of con-
ference rooms, as shown in Figure 1. The videos are cap-
tured at resolution 1056×144. The task is very challenging
due to pose variations, occlusions, small head sizes (e.g., as
small as 10× 10 pixels), non-static background (e.g., mov-
ing chairs and monitor contents), lighting variation, etc.

A generic boosting-based person detector is trained on
93 meetings (6350 labeled frames) collected in more than
10 different rooms. In every labeled frame each person is
marked by a hand-drawn box around the head of the person.
The blue box in Figure 1 shows such an example. Since the
head size can be very small, we expand the ground truth



Figure 1. Example panoramic views of two meeting rooms for per-
son detection. In the upper image, the blue box is one of the hand-
labeled ground truth heads. The red box is the expanded box that
includes shoulder for detector training.

box to include people’s shoulders, making it effectively an
upper body detector (see the red box in Figure 1). The mini-
mum detection window size is 35×35, and the 93 sequences
comprise over 100 million examples (both positive and neg-
ative) for training.

In addition to the monochrome images, two additional
feature images are used. One measures the difference be-
tween two subsequent video frames and the other measures
the long term average of the temporal difference frames.
A set of 6946 Haar like features are extracted from these
three images and serve as the feature pool for boosting.
We adopt the logistic variation of Adaboost developed by
Collins, Schapire and Singer [3] to train the classifier. The
resultant detector has a total of 120 weak classifiers.

The generic person detector performs well in unseen
meeting rooms. However, since a meeting room often has
limited variations in background and lighting, we believe a
classifier adaptation algorithm can help improve the generic
detector’s performance further. We collected a total of 17
meetings in the same meeting room (upper image of Fig-
ure 1) during a period of one week. A total of 265 frames are
labeled as before. The 17 meetings are randomly split into
two groups: 8 meetings (128 labeled frames) for adaptation
and 9 meetings (137 labeled frames which contain 527 per-
sons in total) for testing. The adaptation is performed on the
weights (αj in Eq. (24)) of the weak classifiers only, and the
optimization is done through the Newton-Raphson scheme
(Eq. (15) and (16)).

5.1. Results on Direct Labels

In the first set of experiments we assume the end user has
provided direct labels for some of the frames in the adapta-
tion data-set. Figure 2 shows the adapted detectors’ receiver
operating characteristic (ROC) curves on the 9 testing se-
quences for λ = 0.5 and 5.0. In each figure, we gradually
increase the number of labeled frames in order to observe
the impact of the amount of labeled data on the adaptation
performance. Note each labeled frame contributes around
16,000 labeled examples for training. When all 128 frames
are used for adaptation, the total number of labeled exam-
ples is over 2 million. For the curves that use N (where
N = 2, 4, 8, 16, 32) labeled frames, we randomly sample

N 2 4 8 16 32 all
λ ≤0.1 ≤0.1 0.1-0.5 0.5-1.0 0.5-1.0 5.0-10.0

Table 1. Optimal λ range for different amount of ground truth data.
N is the number of labeled frames used for adaptation.

N labeled frames from the adaptation data-set to perform
classifier adaptation. Each ROC curve in Figure 2 is the
average of 100 trials of such random sampling.

From Figure 2, it can be seen that in general the more
labeled frames one has the better the performance is after
adaptation. When λ = 0.5, with 4 newly labeled frames in
the test environment the adapted classifier already outper-
forms the generic detector. When all frames in the adapta-
tion data-set are used, we observe the detection accuracy
improves from 85.6% to 90.4% with 30 false detections
(λ = 5.0), a decrease of around 33.3% in detection error.

Figure 3 shows two sets of curves when the number of
labeled frames are 8 and 128 (all available frames). We
vary the parameter λ from 0.1 to infinity. As mentioned
earlier, when λ is infinite classifier adaptation is equivalent
to re-training a detector on the newly labeled data only. It
can be seen that in both sets of curves, setting λ to infinity
does not achieve the best performance. This demonstrates
the necessity of having the Hessian of the generic classifier
as the regularization term. In Table 1, we show the opti-
mal λ range with respect to the number of labeled frames
for adaptation. It can be seen that when the number of la-
beled frames is small, a small λ tends to give better results.
On the other hand, if a large number of labeled frames are
available, a large λ tends to perform better.

5.2. Results on Similarity Labels

We next report our experimental results on similarity la-
bels. All 128 frames from the 8 adaptation sequences are
used in the following experiments. These frames are orga-
nized into 120 pairs, where each pair consists of two subse-
quent frames in the same meeting sequence. Note, however,
that a pair of subsequent frames may be a few seconds apart.

In the first experiment, we give ground truth similar-
ity labels to the adaptation algorithm. For each pair of
frames, we choose a detection window from one frame, and
randomly choose another detection window from the other
frame. The similarity label is computed from the actual di-
rect labels of the two windows, i.e., 1 if they have the same
direct label and 0 otherwise. This sampling process contin-
ues until all detection windows in the first frame have been
selected. In total around 2 million example pairs are created
for training (most of them are pairs of negative examples).

The data collected above are then fed into the classifier
adaptation algorithm as described in Section 3.2.2. Figure 4
shows the detector performance after adaptation. Note with
all λ values, the adapted detector outperforms the generic
detector (Figure 4(a)). Figure 4(b) gathers the best adapted
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Figure 2. Adapted person detector performance with direct labels. In each figure λ is fixed. The two figures share the same legend.
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Figure 3. Adapted person detector performance with direct labels. In each figure the number of labeled frames is fixed. The two figures
share the same legend.

detector with direct labels (λ = 10.0) and similarity labels
(λ = 5.0). The two ROC curves are very similar, hence sim-
ilarity labeling is as effective as direct labeling when used
for adaptation.

Finally, we present a simple algorithm to generate sim-
ilarity labels automatically for adaptation. First, define
the histogram distance between two detection windows as
follows. Let the histogram of the first window be p =
{p(u), u = 1, · · · ,m}, where m is the total number of bins,
and the histogram of the second window be q = {q(u), u =
1, · · · , m}. The distance between the two discrete distribu-
tions is defined as [5]:

d =
√

1− ρ[p,q], (27)

where

ρ[p,q] =
m∑

u=1

√
p(u)q(u) (28)

is the sample estimate of the Bhattacharyya coefficient be-
tween p and q.

For each pair of frames, we choose a detection window
from one frame, and search for a window (with identical
size) in the other frame that has the smallest histogram dis-
tance to the first window. Once the window with the small-
est distance has been found, we put the example pair in the
training set with label 1 if the distance d < 0.03. Over 1

million example pairs are constructed automatically, among
which 10 pairs have the wrong labels (∼ 0.001%).

Figure 5 shows the adapted detector’s performance when
varying λ. Note the adapted detector outperforms the
generic detector when λ < 0.1. The small λ values indicate
that we shall rely more on the generic detector when the
similarity labels are provided automatically by a rudimen-
tary algorithm such as this one. We expect a more elabo-
rated algorithm for generating the similarity labels may lead
to further improvements in the detector performance.

6. Conclusions and Future Work
We have presented a general framework for classifier

adaptation, and a Taylor expansion based solution that is
applicable to various classifiers and user labels. The idea
is to combine the cost function on the old and new training
data-set, and approximate the cost function on the old data-
set with a Taylor expansion representation. In this way, only
the gradient and Hessian of the generic classifier need to be
sent to the end user for adaptation. The algorithm is gen-
eral enough to handle different classifiers such as logistic
regression and boosting, and different user labels such as
direct labels and similarity labels.

A few challenges remain as our future work. For in-
stance, while the rule of thumb is to use a small λ value
when the amount of data collected in the new test envi-
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Figure 4. Adapted person detector performance with ground truth similarity labels. (a) Using all frames for adaptation, the performance of
the adapted classifier with respect to different λ. (b) Best adaptation performance comparison using direct labels and similarity labels.
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Figure 5. Adapted person detector performance with automatically
generated similarity labels.

ronment is small (as shown in Table 1 based on our em-
pirical study), determining the optimal λ is still a difficult
task. Also, the adapted classifier may require a different
final threshold. Typically the threshold is derived from a
validation data-set, but such a data-set may be difficult to
obtain without significant user effort.
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