

Abstract
In this paper, we describe a novel type of feature for fast

and accurate face detection. The feature is called Locally
Assembled Binary (LAB) Haar feature. LAB feature is
basically inspired by the success of Haar feature and Local
Binary Pattern (LBP) for face detection, but it is far beyond a
simple combination. In our method, Haar features are
modified to keep only the ordinal relationship (named by
binary Haar feature) rather than the difference between the
accumulated intensities. Several neighboring binary Haar
features are then assembled to capture their co-occurrence
with similar idea to LBP. We show that the feature is more
efficient than Haar feature and LBP both in discriminating
power and computational cost. Furthermore, a novel efficient
detection method called feature-centric cascade is proposed
to build an efficient detector, which is developed from the
feature-centric method. Experimental results on the
CMU+MIT frontal face test set and CMU profile test set show
that the proposed method can achieve very good results and
amazing detection speed.

1. Introduction
In the past decade, we have witnessed the vigorous

development on face detection techniques. More and more fast
and accurate face detection systems are developed by different
research or commercial organizations for various practical
applications such as visual surveillance, robotics, image
retrieval, and intelligent human computer interfaces.

Before introducing the developments and problems in face
detection we first give the concept of face detection which is
quoted from reference [1]: Given an arbitrary image or an
image sequence, the goal of face detection is to determine
whether or not there are any faces in the image, and if present,
return their image locations and extents.

In general scenario faces in images change with different
lighting conditions, persons, poses, expressions etc. All of
these factors make face detection challenging. To cope with
the changes, it is well accepted by researchers [2, 3, 4] that
proper features and effective learning methods should be
designed or adopted to model ‘faces’. More generally
speaking, this is actually the key problem for all pattern
classification problems.

Many different types of features are proposed based on
various physical properties of human faces. These features

include intensity, color, texture, edge and figure [2, 3, 4, 5, 6].
Some features show good performance under specific
conditions, but have limitations for general cases. For example,
skin color can be an effective feature to segment face regions.
However, it needs heuristic post-processing to extract faces
from the segmentation results. Also, skin color is sensitive to
illumination changes and can only be applied to color images.
Other features, such as wavelet [7], may handle moderate
illumination variation. However, when considering
classification accuracy and computation cost together, the
methods based intensity usually achieve the best performance
in some special application environments [2, 7, 8].

As to the classifiers, typical classifiers applied to face
detection include neural networks [8, 9], Bayesian classifier
[7], Support Vector Machine (SVM) [2], and SNoW [10].

The recent milestone in face detection research is Viola and
Jones’s work [11]. In their work, a frontal face detection
system was developed which achieved excellent accuracy and
nearly real-time speed. Haar features and Adaboost are
explored to build a cascaded detector. After this seminal work,
many improved versions were proposed. Mostly of them
focused on alternatives to AdaBoost [12, 13, 14, 15, 16, 17, 18
and 19], Haar features [19, 20], coarse-to-fine architecture [21,
22, 23, 24] and the optimization tuning of the cascade
architecture [17, 18, 26, 27, 28].

Indeed, the aforementioned technologies, especially Viola
and Jones’ work, have greatly advanced face detection.
However, it is of course not the end of face detection research
in terms of both classification accuracy and detection speed,
especially under complicated situations.

To further improve the efficiency of face detection system,
in this paper, we propose a novel face detection method. The
first key contribution of our method is a novel type of feature.
We call the feature Locally Assembled Binary (LAB) feature.
LAB feature is inspired by the success of Haar feature and
Local Binary Pattern (LBP) for face detection, but it is far
beyond their simple combination. In our method, Haar
features are modified to keep only the ordinal relationship
(named by binary Haar feature) rather than the difference
between the accumulated intensities. Then, several
neighboring binary Haar features are assembled together to
capture their co-occurrence with a similar idea to LBP.

To learn an efficient face detector, a feature-centric cascade
is further proposed, which bases on the original feature-centric
detection method. Feature-centric cascade introduces cascade

Locally Assembled Binary (LAB) Feature with Feature-centric Cascade for
Fast and Accurate Face Detection

Shengye Yan1, 2, 3, Shiguang Shan1, 2, Xilin Chen1, 2, Wen Gao4, 2

1Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS) , Beijing, China
2Digital Media Research Center, Institute of Computing Technology, CAS, Beijing, 100190, China

3Graduate School of the Chinese Academy of Sciences, Beijing, 100039, China
4School of EE&CS, Peking University, Beijing, 100871, China

{syyan, sgshan, xlchen, wgao}@jdl.ac.cn

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

idea into feature-centric method. It speeds up frontal final face
detection largely, and even more for multi-view face detection.
This is the second contribution of the paper.

To evaluate the classification accuracy and computation
cost of the proposed LAB feature and feature-centric cascade,
we conduct experiments on a fairly large frontal face dataset
(includes 230,000 frontal face samples). The face images in
the dataset cover various sources of variations. The final
detector is evaluated on CMU+MIT frontal face test set and
shows better performance compared with the known best
results. We also conduct multi-view face detection
experiments to further investigate the proposed method, in
which the proposed method also shows good performances in
both accuracy and speed.

The rest of the paper is organized as follows: we first
introduce the proposed LAB feature in Section 2.
Feature-centric cascade is described in Section 3. The next
section presents the experimental results on both frontal face
detection and multi-view face detection. Conclusions and
future works are given in Section 5.

2. Locally Assembled Binary (LAB) features
In this section, we describe the proposed LAB features in

three hierarchical aspects: the binary Haar feature; the
assembled binary Haar feature, and LAB feature.
2.1. Binary Haar feature

For the purpose of clarity, we firstly review Haar feature
and analyze the disadvantages for computational cost, and
then the binary Haar feature is presented.

A Haar feature is a difference between the accumulated
intensities of several adjacent rectangle areas. The classical
layouts of the rectangles are illustrated in figure 1. The feature
value is the difference between the filled rectangles and the
unfilled rectangles. More generally, the layouts of the
rectangles can vary arbitrarily. The accumulated intensities of
the rectangle region can be computed efficiently by an aided
image called integral image. Refer to [11] for details. The
calculation of Haar features includes additions or subtractions
of the accumulated intensities of the involved rectangles. For
example, a 2-rectangle Haar feature as shown in Figure 1(a)
and (b) can be calculated as:

1 2() () ()j j jf x s s= − , (1)

where
1() js and

2() js denote the intensity sum of the filled
and unfilled rectangle of Haar feature j, x is the input image.

In practice, in order to extract features robust to lighting
variations, lighting correction are generally used on the
candidate image windows before feature extraction.
Frequently used lighting correction methods include variance
normalization, histogram equalization, and linear lighting
correction etc. Though these lighting correction operations
seem simple, the detection may become time-consuming
because of their application to each candidate window in the
input image. For instance, in Viola and Jones’ work [11], for
each candidate window of the input image, variance
normalization is conducted. Haar feature is then calculated on

variance normalized window.

（ a） （ b） （ c） （ d） （ e）
Figure 1: Haar feature.

What’s more, the above lighting correcting procedure
results in another problem: for the same Haar feature
belonging to different candidate windows, it has to be
re-calculated more than more times because of different
lighting correction parameters for different windows. The
re-calculation results in multiple feature evaluations and
largely increases the computational cost. For instance, Haar
feature with lighting correction is calculated by:

1 2() ()' () j j

x

s s
jf x σ

−= , (2)

where σ is the variance of some candidate window x. Because
σ s are different for different candidate windows, the same
Haar feature is re-calculated for each different candidate
windows which contains it, as illustrated in figure 2. Evidently,
this leads to multiple floating point divisions.

To overcome the aforementioned problems, binary Haar
feature is proposed, which keeps only the ordinal relationship
in Haar feature computation:

() (){ 1 21 () 0)

0
() j j

j otherwise
b x − >

=
S S

. (3)

In other words, the proposed binary Haar feature keeps only
the sign information of Haar feature, while the absolute
difference is discarded. By this binary operation, the feature
becomes more robust to global lighting changes. Therefore,
lighting correction specific for each candidate window is
avoided by this light-robust feature, which decreases the
computation cost. Furthermore, the above-mentioned feature
re-calculation problem is avoided at the same time, and which
facilitates the use of feature-centric strategy as described in
section 3.1 and 3.2. As a result, the face detection speed is
improved.
2.2. Assembling binary Haar features

In spite of its computational merits, we found that the
discriminating power of a single binary Haar feature might be
too weak to construct a robust classifier. To improve the
discriminative power of the binary Haar feature, we propose to
assembling multiple binary Haar features together and using
their co-occurrence as a new kind of feature. The feature is
called Assembled Binary Haar (ABH) feature. Figure 3 shows
an example of the ABH feature. In the figure, the ABH feature
integrates three binary Haar features. When the three binary
Haar feature values are 1, 1 and 0, the ABH feature is
calculated by:

1 2 3 2(, ,) (110) 6a b b b = = , (4)
where a is the ABH feature calculation function from three
binary Haar features b1, b2, and b3, (.)2 is the operation from a
binary code to a decimal index. The feature value specifies an

index for 2F different combinations, where F is the number of
combined binary features.

input image

' '
1 2() ()j jf x f x≠

1x 2x

j

Figure 2: Re-calculation of Haar in different candidate windows.

1 2 3 2(, ,) (110) 6a b b b = =
Figure 3: Assembling three binary Haar feature.

2.3. Locally Assembling Binary (LAB) features
The number of ABH feature is huge. To enumerate all of

them, there are several free parameters, such as the number of
binary Haar feature to be assembled, the size of each binary
feature, and the position of each binary Haar feature. To learn
from this large feature pool is intractable. Fortunately, we find
a reduced set which is very good for face detection. the feature
in the reduced set is called Locally Assembled Binary Haar
feature. To be simplicity, it is called LAB feature hereinafter.

Among the assembled binary Haar features, LAB features
are those ones that only combine 8 locally adjacent 2-rectangle
binary Haar features with the same size and they share a
common centre rectangle. The 8 binary Haar features used for
assembling a LAB feature are shown in figure 4. Figure 5
gives two examples of LAB feature. In the figure, two
different LAB features are showed. The centric black
rectangle is shared by 8 neighboring binary Haar features. All
nine rectangles are of the same size.

Formally, a LAB feature can be denoted by a 4-tuple,
l(x,y,w,h), where x and y denote the X-coordinate and
Y-coordinate of the left top position of the feature in the image,
(w, h) are the width and height of the rectangles.

LAB feature inherits all the advantages of binary Haar
feature and is very discriminative. Also the number of it is
small. LAB feature captures the local intensity structure of the
image. Computation of a LAB feature needs to calculate 8
2-rectangle Haar features. The computation cost increases
comparing with one Haar feature. But it possesses more
discriminative power and do not need special light correction
in detection process. These advantages in total reduce
computation cost of the face detection process in our proposed
method (section 3).

LAB feature is somewhat similar to locally binary pattern
(LBP), which have been proved to be effective in texture
analysis [29]. As one can see, LBP is the special case of LAB
feature with one pixel size.

Similar to LBP, LAB feature value are lying in {0, …255}.
Each value corresponds to a specific local structure.

Figure 4: 8 Binary Haar features in a LAB feature.

input image

()1 1x ,y ()1 1 1 1l x ,y ,w ,h
()2 2 2 2l x ,y ,w ,h

()2 2x ,y

1w

1h

2w

2h

Figure 5: Two LAB features.

3. Face detection using LAB features
Cascade structure is also used in the proposed detection

method. The whole cascade structure of the proposed face
detector is shown in figure 6. It can be divided into two
obvious parts. The first part is some sub-classifiers, which in
total is called feature-centric cascade. They are run according
to the proposed method in section 3.2. The second part is the
other sub-classifiers, called window-centric cascade. They are
run in a window-centric way similar to that of Viola and
Jones’ work.

This section is organized as following: Firstly, in section
3.1, two detection methods, feature-centric and
window-centric, named by H. Schneiderman in [23] are
introduced. Then, in section 3.2, based on the thorough
analysis of theses two detection method, the feature-centric
cascade method is proposed to build more efficient face
detector. In section 3.3, the learning of window-centric
cascade is described. Finally in section 3.4, the proposed
detection method for one view is adapted to multi-view.
3.1. Feature-centric detection method

Before introducing feature-centric and window-centric
method in detail, let us firstly review the total process of face
detection in a high level. To find a face in the image, we need
to do “exhaustive-search” in the image. This involves building
a classifier that distinguishes between the object and
“non-object” (any other scenery) while only having to tolerate
limited variation in object location and size. The methods find
the object by scanning this classifier over an exhaustive range
of possible locations and scales in an image. Figure 7
illustrates this process, where the classifier calculates all
possible “windows” in the image as shown by the rectangles.

Most cascades, such as the Viola and Jones [11], use
“window-centric” method. These approaches compute
lighting correction and feature calculation separately for each
window. The scan of each possible window of the classifier
means that each feature is also calculated in each position of
the image. This means that the features containing in some
window are calculated by other windows’ classification, but it
have not used for classification by this window’s classifier.
Feature-centric method aims to use more of the calculated

feature for each window.

Sub-Classifier #1

Sub-Classifier #n

Sub-Classifier #2

...

Classify as object

Reject as non-object

Candidates

Reject as non-object

Reject as non-object

Fe
at

ur
e-

ce
nt

ri
c

ca
sc

ad
e

W
in

do
w

-c
en

tr
ic

ca
sc

ad
e

Figure 6: Overall structure of the proposed detector.

Search in scales

Search in positions

Figure 7: Exhaustive search in face detection.

To understand the window-centric and feature-centric
detection method better, an example is given. The setup in the
example is the same as it is in all our experiments. For
window-centric method, Let us suppose that the classifier
contains only one LAB feature. The feature is as shown in the
rectangle in figure 8(a). While detection, each window in the
image is classified, so this feature belonging to the classifier is
also calculated at each position of the image. The calculation
of the feature at each position means that the detection process
produces a byproduct, which is the feature value image. The
feature value image is shown in figure 8(b). For each window,
in the case of this example, only the one feature is used for
classifying it, the other features contained in it calculated by
the other neighboring window’ classification are not used.
This is wasteful and less computation efficient, so
feature-centric method is proposed to improve the utilization
ratio of the calculated features.

In feature-centric method, firstly, feature value image (the
middle image shown in figure 9,) is computed by scanning the
upper feature in each position of the image. It is just the same
one as in figure 8(b).Then the ‘feature-centric’ classifier is run
on the feature value image and needs no feature calculation
operation. Figure 9 illustrates this procedure. As to learning,
the ‘feature-centric’ classifier is learned from all the features
belonging to the window. In fact, the features are of the same
size because they are collected by shift one specific feature on
the image. Of course, any size can be used to build the
‘feature-centric’ classifier. But it is better to pick out the most

effective one. In this paper we use a greedy search to find the
best size, which is 3*3 in our experiments.

Utilizing all the calculated features in the window also
incurs more classification operations because each feature is
used to build a classifier and the classifier is run when
classifying. But the extra classification operations are
deserved because much more discriminating power is brought,
especially when the classification operation is very simple and
effective. In theory, any learning algorithm can be used to
build a classifier for window-centric and feature-centric
method. But considering the simplicity and effectiveness of
classification operation, we use RealBoost learning [30]
algorithm to learn a linear classification function, which can
be expressed as:

() ()()
1

T

i
i

c x h l x
=

= ∑ , (5)

where c is the classification function, x is the sample window,
h is the weak classifier function, li is the feature calculation
function of feature i, T is the total feature number. For
RealBoost, the classification operation h includes one
look-up-table for feature value, one look-up-table for
confidence and one addition. In figure 8 and figure 9, the
linear classifier of window-centric and feature-centric method
are also shown respectively. In figure 9, for feature-centric
detection method, the classifier contains all the features
containing in the window. The total feature number is denoted
by N in the classification function.

Input image Feature value image
() ()()1c x h l x=

(a) (b)

Figure 8: Windows-centric method with the classifier only contains
one feature and the feature value image.

Input image Feature value image
Feature

evaluation
c

() ()()
1

N

i
i

c x h l x
=

= ∑

Figure 9: Feature-centric method with one size of LAB features.

3.2. Feature-centric cascade
In this section, we modify the ‘feature-centric’ classifier to

a cascade for the sake of computational efficiency. In
feature-centric method, all features containing in the window
are used to construct one whole classifier. But
‘feature-centric’ classifier is frequently fairly strong.
Scanning it as a whole at each position of the input image is
not computationally smart. To promote the computation
efficiency, it is better to further divide it into a cascade. The
cascade learned from a ‘feature-centric’ classifier is called
feature-centric cascade. Of course, it is run in a feature-centric
way.

Obviously feature-centric cascade reduce computation cost.

An example and its computation cost analysis are given here.
The setup of it is as the example in section 3.1.

Assuming the classification window size is 24*24, the
feature is 3*3 LAB feature, so there are 256 features in a
window. Because the other processes are of the same for
feature-centric method and feature-centric cascade, so the
numbers of classification operation number averaged on each
window of these two methods represent their difference in
computation cost. For feature-centric method, all 256
classification operations incurred by these 256 features are
operated on each candidate window. So the mean
classification operations for each window are 256 times. But
for a feature-centric cascade, because some windows are
rejected gradually with stage increasing, the mean
classification operations for each candidate window must be
less than 256 times. In our experiments, the classification
operation number is less than 15 for frontal face detection.

The process of building a feature-centric cascade from a
‘feature-centric’ classifier is similar to Viola and Jones’ work
[11]. The features of the ‘feature-centric’ classifier and the
feature-centric cascade are illustrated in figure 10. In the
figure, li is the ith LAB feature picked out by RealBoost, N is
the total feature number of a feature-centric classifier. The
numbers in the arrowed arcs denote the stage number. The
features covered by the arrow arcs are features belonging to
the corresponding stages.

l1 l2 ... li lN

1
2

M

Figure 10: Feature-centric cascade.

3.3. Learning a further window-centric cascade
After learning the feature-centric cascade which rejects

most simple non-faces efficiently, a window-centric cascade
is learned based all sizes of LAB features to further reject
those difficult non-faces. The learning procedure is similar to
that of feature-centric cascade except that all sizes of LAB
features are used. Of course, window-centric cascade is run in
a window-centric way.
3.4. Multi-view face detection

Till now, we have presented the method to build a detector
for one view of faces. In this section we extend the method to
multi-view face detection. To construct a multi-view face
detector, we first divide all faces into 5 categories according to
left-right rotate off plane, and then continue to split each
category into 3 views, each of which takes charge of 30°
rotation in plane. Besides, each view covers [-30°, +30°]
up-down rotation off plane for robustness. The 15 different
views are illustrated in figure 11.

We build a feature-centric cascade and a window-centric
cascade for each view. For detection, the procedure is
illustrated in figure 12. Given the input image, we first
compute the feature value image. Then for each view,

feature-centric cascade is firstly run based on the calculated
feature image, and then the window-centric cascade is run on
the raw image.

Note that for multi-view face detection the feature value
image is shared by all the feature-centric cascade of 15 views.
This speeds up the detector largely.

Right Full
Profile

Right Half
Profile Frontal Left Half

Profile
Left Full
Profile

Figure 11: Multi-view face categories, each rectangle include 3

rotations in plane.

Input image 1st View'
feature-centric cascade

Feature
evaluation

.

.

.

2nd View'
feature-centric cascade

1st View'
window-centric cascade

2nd View'
window-centric cascade

.

.

.

Further
Process

Further
Process

Figure 12: Feature-centric cascades for multi-view detection.

4. Experiments
In this section, we evaluate LAB features and the proposed

detection method in frontal face and multi-view face detection.
Section 4.1 gives the experimental setup firstly. Then in
section 4.2, a quantitative analysis of LAB feature is given.
Section 4.3 and section 4.4 report the performance of the
proposed method on frontal and multi-view face database
respectively.
4.1. Experimental setup

For frontal face detection, 23,608 frontal face samples are
collected from various sources, such as WEB, FERET, and
BioID. Most faces in the sample set have the variation of
up-down off plane rotation within range of [-30°, 30°]. Totally
236,080 24×24 grayscale face samples are generated from the
original 23,608 face images with manually labeled eyes by
following transformation: mirroring, in plane rotation of
-12°,-6°, 0°, and 6° 12°.

For multi-view face detection, the left full profile faces and
the left half profile faces are mostly collected from 700 video
clips captured by us. The scene of these video clips is in a
room with normal lighting conditions. Each video clip
contains one person. The faces in these video clips are about
100*100 in size. Totally 24,000 left full profile faces and

60,000 left half profile faces are collected. . By rotation in
plane of -12°,-6°, 0°, and 6° 12°, the left full profile and the
left half profile faces are 120,000 and 300,000 respectively.
The face samples of other views can be generated by
horizontal flip and rotation in plane.

As for the negative samples, 30,000 images without faces
are collected for generating non-faces.

From the description above, one can see our training face
set is quite large. We use Matrix-Structural Learning (MSL)
[28] to learn from the training sets, which is a cascade learning
method to deal with enormous training set. In cascade learning,
Minimum detection rate and maximum false alarm rate of
feature-centric and window-centric cascade are both set to
0.9999 and 0.4 respectively. The non-face samples used to
train a feature-centric classifier are 60,000. The training
non-face samples for each window-centric stage are fixed to
10,000. For the positive bootstrap in MSL, the starting face
sample set size is 2,000. At each positive bootstrap, maximally
500 new samples are added.

To detect faces with various scales, test images are
down-sampled with a coefficient of 0.8. In the later sections, if
there is no specific mention, the experiments are conducted on
a common PC with a 3.20GHz Pentium IV processor.
4.2. Evaluation of LAB feature on efficiency on

frontal face samples
To build a feature-centric cascade, firstly, we search the

most efficient size. The classifiers learned from different sizes
of LAB features are investigated according to their
classification accuracies. 3*3 is picked out as the most
effective size.

Secondly, we conduct experimental comparisons with Haar
features. For 3*3 LAB features, when sample size is 24*24,
there are totally 256 features. In contrast, Haar feature set
consists of quite a larger number of features, which is 31,728
to be exact. The feature types are as shown in figure 1. The bin
number for Haar feature is set to 40 empirically.

The feature numbers, which mainly determine the
computational cost, of a set of classifiers learned from 3*3
LAB features and Haar features are presented in table 1. The
classifiers are learned by adjusting the target false alarm rate
with the detection rate fixed to 0.9999. In table 1, ‘FAR’
denotes the false alarm rate. From table 1 one can see that
feature numbers of LAB classifiers is always less than the
corresponding ones of Haar classifiers by a half despite Haar
features used to learn these classifiers are much more than 3*3
LAB features.

FAR 0.4 0.1 0.05 0.01 0.005 0.001 0
Haar 13 34 48 68 72 80 89
LAB 7 18 22 30 31 35 39

Table 1: Feature numbers of the classifiers learned from Haar and
3*3 LAB features at different false alarm rates.

4.3. Experiment on frontal face detection
A frontal face detector is trained based on the proposed

method. The detection speed is about 30ms.for a 320*240
image. The face detector processes faces from 24*24 to

240*240.
In fact, the computation speed is about 20 times faster than

Haar features at the same accuracy. Here, we also try to
analyze the total operations in both detectors. As shown in
Table 1, the LAB feature number in a feature-centric cascade
is nearly a half of the Haar feature number at the same
accuracy. Exactly, the LAB cascade processes about 15 LAB
features for each window averagely, which includes 15
look-up-tables and 15 additions (for computing confidence).
Including the feature evaluations (about 17 additions) in
advance for each window, totally, LAB cascade needs 32
additions and 15 look-up-tables for each window. In contrast,
Haar cascade processes nearly 30 Haar features, which
include 30 Haar feature evaluations (each feature evaluation
takes at least 7 additions using integral image), 30 divisions
(for variance normalization), 30 look-up-tables and 30
additions (for computing confidence). So, totally Haar
cascade needs at least 240 additions, 30 divisions and 30
look-up-tables. Evidently, the proposed method is
overwhelming in speed.

To get a sense of the classification accuracy, the face
detector is tested on CMU+MIT dataset comprising 130
images containing 507 faces. The ROC curves are given in
figure 13. Obviously, our method gets the best results.

0.86

0.88

0.90

0.92

0.94

0.96

0 10 20 30 40 50 60 70 80 90 100

False Positives

D
e
t
e
c
t
i
o
n

R
a
t
e
s

Bourdev[25]

Schneiderman[23]

Viola[16]

Huang[21]

Yan[28]

Our method

Figure 13: ROC curves on CMU+MIT frontal face set.

4.4. Experiment on multi-view face detection
We also trained a multi-view detector to investigate the

proposed method. The multi-view face detector requires 80 ms
on a 320x240 image. The detection processes faces from
24*24 to 240*240. It is reasonable that the multi-view face
detector’ detection time does not increase linearly with
multiple classifiers because the preceding procedures (integral
image computation, feature value image computation etc) are
shared by all the feature-centric cascades of 15 categories.

To get a sense of the classification accuracy, the multi-view
face detector is tested on CMU profile face test set comprising
of 208 images containing 441 faces. Figure 14 shows the ROC
curve. For comparison, the results of the previous methods are
also listed. From the figure, one can see that our results are
better than [23] but a little worse than [19]. Considering the
profile face training samples in our experiment are lacking in
varieties, the results are acceptable. Note that our method gets

a much higher detection speed than [23]. As to [19], the
detection speed is close. In fact it is difficult to say which
method is faster only from the results of the related literature
because the programming is also very important. By the way,
the frontal face detector and two half profile face detector
without rotation in plane have been re-programmed to a 600M
Hz DSP as a whole multi-view face detector. It surprisingly
gets a detection speed of 30ms on a 320*240 image to run
them simultaneously.

0.71

0.76

0.81

0.86

0.91

0.96

0 140 280 420 560 700

False Positives

D
et
e
c
t
i
o
n

R
a
te

Schneiderman[23]

Huang[19]

Our method

Figure 14: ROC curves on CMU profile face set.

5. Conclusion and future works
We propose a novel type of feature, called LAB feature,

accompanying which a feature-centric cascade is also
presented. In LAB feature, Haar feature is binarized and
assembled together in a mode similar to LBP to model local
texture modes. In some sense, LAB feature bridges the gap
between Haar features and LBP operator. We show that LAB
feature is not only robust to lighting variations (thus avoiding
time-consuming lighting correction operator), but also very
discriminative for face/non-face classification. Furthermore, it
also facilitates using the feature-centric cascade to further
improve the face detection speed. Extensive experiments
verified the above observations.

There are still many open questions related to LAB features
and feature-centric cascade, such as: Is there other more
efficient features in assembled binary Haar features rather
than LAB features? If any, how to find them out? If more sizes
of features are used for feature-centric method, what will
happen? Can the detection speed be promoted further? It is
also interesting to apply LAB feature to other object detection,
such as pedestrian, car.

Acknowledgements
This paper is partially supported by National Natural

Science Foundation of China under contract No.60332010,
No.60772071, and No.60673091; Hi-Tech Research and
Development Program of China under contract
No.2006AA01Z122 and No.2007AA01Z163; 100 Talents
Program of CAS; and ISVISION Technology Co. Ltd.

References
[1] M.H. Yang, D. Kriegman, N. Ahuja. Detecting faces in images:

a survey. IEEE TPAMI, 2002, 24 (1): 34~58.

[2] E. Osuna, R. Freund, and F. Girosi. Training support vector
machines: an application to face detection. CVPR1997.

[3] R.L. Hsu, M. Abdel-Mottaleb, A.K. Jain. Face detection in color
images. IEEE TPAMI, 2002, 24 (5): 696–706.

[4] C.A. Waring, X. Liu. Face detection using spectral histograms
and svms. IEEE T.SMC, Part B, 2005, 35 (3): 467–476.

[5] K. C. Yow, R. Cipolla. A probabilistic framework for perceptual
grouping of features for human face detection. AFGR 1996.

[6] B. Heiselet, T. Serre, M. Pontil, T. Poggio. Component-based
face detection. CVPR 2001.

[7] H. Schneiderman, T. Kanade. A statistical method for 3d object
detection applied to faces and cars. CVPR 2000.

[8] H. A. Rowley, S. Baluja, T. Kanade. Neural network-based face
detection. IEEE TPAMI, 1998, 20 (1): 23–38.

[9] C. Garcia, M. Delakis. Convolutional face finder: A neural
architecture for fast and robust face detection. IEEE TPAMI,
2004, 26 (11):1408–1423.

[10] D. Roth, M. Yang, N. Ahuja. A snow based face detector. NIPS
2000.

[11] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. CVPR 2001.

[12] S.Z. Li, L. Zhu, Z. Q. Zhang, A. Blake, H. J. Zhang and H. Shum.
Statistical learning of multi-view face detection. ECCV 2002.

[13] C. Liu and H.Y. Shum. Kullback-Leibler boosting. CVPR 2003.
[14] S.W. Lyu. Infomax Boosting. CVPR 2005.
[15] J. Sun, J. M. Rehg and A. F. Bobick. Automatic cascade training

with perturbation bias. CVPR 2004.
[16] P. Viola. Fast and robust classification using asymmetric

AdaBoost and a detector cascade. NIPS 2001.
[17] J. X. Wu, M. D. Mullin, and J. M. Rehg. Linear asymmetric

classifier for cascade detectors. In ICML 2005.
[18] J. X. Wu, J. M. Rehg, M. D. Mullin. Learning a rare event

detection cascade by direct feature selection. NIPS 2004.
[19] C. Huang, H.Z. Ai, Y. Li and S.H. Lao. High-performance

rotation invariant multi-view face detection. IEEE TPAMI,
2007, 29(4): 671-686.

[20] R. Lienhart and J. Maydt. An extended set of Haar features for
rapid object detection. ICIP 2002.

[21] C. Huang, H.Z. Ai, B. Wu and S. H. Lao. Boosting nested
cascade detector for multi-view face detection. ICPR 2004.

[22] R. Lienhart, L. Liang, and A. Kuranov. A detector tree of
boosted classifier for real time object detection and tracking.
ICME 2003.

[23] H. Schneiderman. Feature-centric evaluation for efficient
cascaded object detection. CVPR 2004.

[24] R. Xiao, L. Zhu, and H. J. Zhang. Boosting chain learning for
object detection. ICCV 2003.

[25] L.Bourdev and J. Brandt. Robust object detection via soft
cascade. CVPR 2005.

[26] H.T. Luo. Optimization design of cascaded classifiers. CVPR
2005.

[27] J. Sochman, J. Matas. WaldBoost–Learning for time
constrained sequential detection. CVPR 2005.

[28] S.Y. Yan, S.G. Shan, X.L. Chen, W. Gao and J. Chen.
Matrix-Structural Learning (MSL) of cascaded classifier from
enormous training set. CVPR 2007.

[29] T. Ojala, M. Pietikainen, and D. Harwood. A comparative study
of texture measures with classification based on feature
distributions. Pattern Recognition, 1996, 29(1):51–59.

[30] R. E. Schapire and Y. Singer. Improved boosting algorithms
using confidence-rate predictions. Machine Learning, 1999,
37(3): 297-336.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

