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Abstract

We propose a person-dependent, manifold-based ap-
proach for modeling and tracking rigid and nonrigid 3D
facial deformations from a monocular video sequence. The
rigid and nonrigid motions are analyzed simultaneously in
3D, by automatically fitting and tracking a set of landmarks.
We do not represent all nonrigid facial deformations as a
simple complex manifold, but instead decompose them on a
basis of eight 1D manifolds. Each 1D manifold is learned
offline from sequences of labeled expressions, such as smile,
surprise, etc. Any expression is then a linear combination of
values along these 8 axes, with coefficient representing the
level of activation. We experimentally verify that expres-
sions can indeed be represented this way, and that individ-
ual manifolds are indeed 1D. The manifold dimensionality
estimation, manifold learning, and manifold traversal oper-
ation are all implemented in the N-D Tensor Voting frame-
work. Using simple local operations, this framework gives
an estimate of the tangent and normal spaces at every sam-
ple, and provides excellent robustness to noise and outliers.
The output of our system, besides the tracked landmarks in
3D, is a labeled annotation of the expression. We demon-
strate results on a number of challenging sequences.

1. Introduction

Nonrigid deformation is an important property of hu-
man faces, as it conveys information about a human’s men-
tal state. A lot of research has been devoted to investigate
deformable face models based on linear subspace analysis.
The 2D Active Shape Model (ASM) and Active Appear-
ance Model (AAM) [5, 6, 15] approximate the shape defor-
mation as a linear combination with some 2D basis shapes.
The model is learned using Principal Component Analysis
(PCA). The AAM inherits the idea of deformable shape, but

also learns an appearance model for texture variation. A 3D
deformable model has also been proposed. In [22], Xiao
et al extended the 2D AAM to a combined 2D+3D AAM.
In [2, 3], Blanz and Vetter built a 3D morphable model for
facial animation and face recognition.

More recently, in [11], Gu and Kanade proposed a 3D
deformable model consisting of a set of sparse 3D points
and patches associated with each point. Based on this
model, an EM style algorithm is proposed to infer head pose
and face shapes. In [23], Zhu and Ji proposed a normalized
SVD to estimate the pose and expression. Based on this, a
non-linear optimization method is also proposed to improve
the tracking result. Vogler et al [21] proposed an integration
system to combine 3D deformable model with 2D ASM.
The proposed system uses ASM to track reliable features
and 3D deformable model to infer the face shape and pose
from tracked features.

In the above papers, the construction of a deformable
model is built on top of the linear subspace approach. How-
ever, linear subspace methods are inadequate to represent
the underlying structure of real data, and nonlinear mani-
fold learning approaches are proposed [19, 20]. Nonlinear
dimensionality reduction techniques provide a good alter-
native to model the high dimensional visual data. In [4],
Chang et al proposed a probabilistic approach based on the
appearance manifold for expression analysis. In [9, 10], the
author proposed a manifold based approach for 3D body
pose tracking and general tracking.

Most nonlinear manifold learning techniques character-
ize the intrinsic structure by recovering the low-dimensional
embedding. For example, ISOMAP [20] finds a low-
dimensional embedding that preserves geodesic distances
in the input space. Locally-linear embedding (LLE) [19]
searches for a manifold based on the local linearity prin-
ciple. Recent works argue that this may not be the best
way to parameterize the manifold, especially for the pur-
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Figure 1. Flow chart of proposed system

pose of handling noisy data and out-of-sample generaliza-
tion [1, 7, 8]. They propose different algorithms to estimate
the local tangent hyperplane on the manifold, and use the
estimated tangent to manipulate novel points. Besides, [18]
proposed computational tools for statistical inference on a
Riemannian manifold.

Here, we propose a new framework to model the de-
formable shape using nonlinear manifolds. The main con-
tribution is two-fold. First, instead of using a linear sub-
space analysis, we argue the 3D facial deformations are
better modeled as a combination of several 1D manifolds.
Each 1D manifold represents a mode of deformation or ex-
pression, such as smile, surprise, blinking, etc. By learning
these manifolds, a 3D shape instance, usually represented
by a very high dimensional vector, can be mapped into a
low-dimensional manifold. The coordinate on the manifold
corresponds to the magnitude of facial deformation along
that mode. We thus call it the “level of activation”. Second,
we propose a novel framework of nonlinear manifold learn-
ing based on N-D Tensor Voting [16, 17]. Tensor Voting
estimates the local normal and tangent spaces of the mani-
fold at each point. The estimated tangent vectors enable us
to directly navigate on the manifold.

The proposed 3D deformable shape model is applied to
nonrigid face tracking. We develop an algorithm to infer the
nonrigid 3D facial deformations with the head pose and ex-
pression iteratively, based on the proposed model. Without
learning complex facial gestures dynamics, the proposed al-
gorithm can track a rich representation of the face, includ-
ing the 3D pose, 3D shape, expression label with probabil-
ity, and the activation level. The flow chart of our proposed
system is outlined in figure 1.

The rest of this paper is organized as follows: We start
with the offline construction of the manifold-based facial
deformation model. The formulation and learned manifolds
are presented in section 2. The manifold learning and infer-
ence is implemented in the N-D Tensor Voting framework,
shown on section 3. Based on the proposed model and in-
ference tool, we develop an iterative algorithm to track the
nonrigid facial deformation with 3D head pose, as detailed
in section 4. In section 5, we conduct several experiments

(a) 2D (b) 3D Frontal (c) Non-frontal

Figure 2. Shape model. The red points indicate the landmarks

to analyze and evaluate the proposed model and algorithm.
Finally, conclusions and discussions are given in section 6.

2. Manifolds of 3D Facial Deformations

Using a deformable model allows to find a compact
parametrization to represent the nonrigid facial shape and
motion. Linear subspace techniques approach this problem
by searching for a set of optimal basis, whose span covers
varying shapes. For a given shape instance, the projection
into this subspace is an approximation:

S = S0 + Φb + ε (1)

where S0 is the mean shape, ε is the noise term, and Φ is
the matrix of basis, which is usually learned by applying
Principal Component Analysis (PCA) on the training data. b
is the parameter that represents the weight of each principal
component and controls the variation of the shape instance.

On the other hand, the 3D shape itself is conceptually
aligned on the manifolds. The 3D facial shape is governed
by two factors, the type of expression and the magnitude
of the deformation. The type of expression indicates the
style of deformation, such as smile, surprise, or blinking,
and warps the neutral face based on this deformation. The
magnitude of the deformation controls the “level of activa-
tion”, such as onset, apex, or offset, for this shape instance.
The mathematical formulation of the above ideas is:

S = S0 + f(L, c) + ε (2)

where S0 now is the neutral face. c is the variable indicates
the type of deformation, and L is the variable controling the
magnitude of this deformation. f is a nonlinear function
that maps L and c into the 3D shape space. X = S −
S0 is the 3D facial deformation. If S0 is fixed and known,
modeling the facial deformation, X , and modeling the 3D
shape, S, are equivalent.

Under this setting, for a specific expression c, the de-
formation X should lie on a 1D manifold, since L is con-
ceptually a real-valued scalar that controls the magnitude of
this expression. Because the face can mix several different
expressions, we have a set of 1D manifolds and any facial
deformation is a combination of this set of manifolds.
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Figure 3. Learned manifolds of 3D facial deformations

% classified as 1D
Surprise 90.1%
Anger 85.3%
Joy 93.4%
Disgust 95.3%
Sadness 90.1%
Close and open eyes 88.7%
Left-eye blinking 92.4%
Right-eye blinking 93.9%

Table 1. Estimated dimensionality of 3D facial deformations using
Tensor Voting

To validate this deformation manifold concept, we con-
duct an off-line learning process as follows: A face shape
is represented by 42 landmark points. For a collected ex-
pression video, we use a 2D active shape model to detect
landmark points. These points are tracked across frames
using the Lucas-Kanade feature tracker [14]. After track-
ing, we have the 2D image coordinates for each landmark
point and they represent the 2D shape variation. We project
these landmark points into 3D by using a previously gener-
ated 3D face model. Currently, we use a person specific face
model, but it might be sufficient to use either a generic one,
or even a cylinder. Figure 2 illustrates the shape model. The
deformation vector X is the stack of 3D point displacement
and it is the input to the manifold learning algorithm.

The dimensionality of facial deformation manifolds are
examined. Figure 3 plots the learned manifolds of 8 com-
mon facial deformations, and table 1 reports the estimated
dimensionality using Tensor Voting. The 8 modes of de-
formations are surprise, anger, joy, sadness, disgust, close
and open eyes, left eye blinking, and right eye blinking, and
each learned manifold is projected into a 2D space. It is ver-
ified experimentally that the dimensionality of the manifold
is very close to 1, which confirms our assumption.

To visualize the meaning of the parameter L, figure 3
plots each sample in a different color based on its order in
the original sequences. We record videos with the subject

going from neutral to the apex of the expression and back to
neutral. The samples in the beginning and end are plotted in
blue and the samples in the middle of the video are plotted
in red, which is assumed to be the peak of this expression.

3. Tensor Voting and Nonlinear Manifold
Learning

Tensor Voting is a computational framework to estimate
geometric information. It was originally developed in 2D
for perceptual grouping and figure completion, and later to
3D and ND for other problems, such as stereo matching and
motion processing. Since the focus of this paper is not the
Tensor Voting framework, we only introduce the fundamen-
tal concepts, particularly in the context of learning concep-
tual manifold, and refer readers to [16, 17] for the complete
presentation and implementation details.

Suppose we have a set of samples in a high dimensional
space V and these samples lie on a manifold M of much
lower dimension. Our objective is to infer the geometric
structure of this manifold. In other words, we try to find
the vectors that span the normal and tangent space at each
point, and use them to characterize this manifold.

Tensor voting is an unsupervised approach to estimate a
structure tensor T at each point. Here, T is a rank-2, sym-
metric tensor, whose quadratic form is a symmetric, non-
negative definite matrix, representing underlying geometry.
Given training samples, {Xi}, Tensor Voting encodes each
sample as a ball tensor, which indicates an unoriented to-
ken. Each Xi receives a vote from Xj , Tj→i, and Xi sums
up all incoming tensors. Tj→i is generated by taking Xj’s
tensor and relative orientation between Xi and Xj into ac-
count, and weight the distance between them. The result of
this process can be interpreted as a local, nonparametric es-
timation of the geometric structure at each sample position.

After accumulating all cast tensors, the local geometry
can be derived by examining its eigensystem. Recall that a
tensor can be decomposed as

T=
N∑

i=1

λieie
T
i =

N−1∑

i=1

[(λi−λi+1)
i∑

k=1

ekeT
k ]+λN

N∑

i=1

eie
T
i (3)

where {λi} are the eigenvalues arranged in descending or-
der, {ei} are the corresponding eigenvectors, and N is the
dimensionality of the input space.

Equation 3 provides a way to interpret the local geometry
from T . The difference between two consecutive eigenval-
ues, λi − λi+1, encodes the salience of certain structure:

λi − λi+1 � λj − λj+1, ∀j ∈ {1, · · · , N − 1}, j �= i

means the geometric structure, whose normal space is i-D
and the tangent space is (N − i)-D, is most salient. The
eigenvectors {e1, ..., ei} span the normal space of this point,
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Figure 5. Traversing the manifold with tangent vectors

while {ei+1, ..., eN} represent the tangent space. For exam-
ple, if λN−1 − λN is the most salient structure, this point is
considered in an 1D manifold and eN is its tangent vector.

Figure 4 shows an example of applying Tensor Voting
in 2D. The red dots represent the training samples, which
come from a 1D curve. We perturb each point with noise,
thus they are not perfectly aligned in the manifold. After
Tensor Voting, we have the tangent direction and saliency
value of each position. In figure 4(a), arrows indicate direc-
tion of tangent vector and it is clear that for position near the
conceptual manifold, the estimated tangent direction is ac-
curate. On the other hand, figure 4(b) is the saliency map of
λ1−λ2: If it is more salient, its color is close to blue, other-
wise it is close to white. We can observe that positions close
to the curve have higher saliency. Combining these two fig-
ures, we can easily identify those points that are more likely
to be on the manifold, and also estimate their tangent vec-
tors. The estimated tangent and saliency value are used to
traverse the manifold, as shown in the next section.

3.1. Traversing the Manifold with Tangent Vectors

The estimated tangent plane enables us to directly nav-
igate on the manifold. The key idea is to “walk down the
manifold” along the estimated tangent hyperplane. Figure 5
illustrates the idea of traversing a manifold with tangent hy-
perplane. To be more specific, we present 4 tasks related to
the 3D facial deformation modeling. The first two tasks are
about learning the manifold from training data, and the last
two are inference tasks after we have learned the manifold.
Training Task 1. Estimate dGeo(Xi, Xj), the geodesic dis-
tance between Xi and Xj .

dGeo(Xi, Xj) can be estimated as the minimum traveling

distance between Xi and Xj along the manifold. Let Xi be
starting point and destination is Xj , and set X0 = Xi. In
each Xk, we move toward the destination under the guid-
ance of moving direction Dk:

Dk = HkHkT (Xj − Xk) (4)

where Hk is the matrix of tangent vectors estimated by
Tensor Voting. We then move iteratively to estimate the
geodesic distance:

Xk+1 = Xk + αkDk

dGeo = dGeo + ‖αkDk‖ (5)

until Xk reaches an ε-neighborhood of Xj .
The step length α is chosen to ensure we are still within

the manifold. In other works [1, 7, 8], the authors have to
use a very small step to avoid leaving the support of man-
ifold. In contrast, Tensor Voting provides a mechanism to
prevent this undesirable situation, as saliency indicates the
underlying structure. If we reach a point outside the man-
ifold, the saliency value is low and we change to a smaller
step. This is clearly an advantage over other approaches.
Training Task 2. Recover the manifold coordinate L of X .

Given 2 samples Xi and Xj , the geodesic distance
dGeo(Xi, Xj) is assumed to be the same as ‖Li−Lj‖manifold,
the distance in the embedded manifold. Therefore, if Li is
known, we can recover Lj as the byproduct of estimating
the geodesic distance.

To recover the manifold coordinate of a given training
set {Xi}, we first identify a sample as the starting point. In
practice, we include a vector 0 in the training data. Its L is
defined as 0, since it means zero deformation and represents
the neutral shape. Starting from this point, we recursively
move outward to estimate the geodesic distance and mani-
fold coordinate.
Inference Task 1. Given L, find its mapping X̂ in input
space.

This is a nonlinear function approximation problem, as
the objective is to learn the function fTV:

X̂ = fTV(L) (6)



However, we can solve it as a search problem, using the es-
timated tangent hyperplane: First, we find point L0, whose
coordinate is X0 in input space. In practice, L0 is the near-
est point of L in training set. We iteratively move Xk and
Lk following the estimated tangent vectors, until we reach
L. The procedure is outlined in algorithm 1.

input : L
output: X̂
Initialize L0 and X0;
while ‖L − Lk‖ ≥ ε do

Hk ← Tensor Voting at Xk;
Dk ← Hk(L − Lk);
Xk+1 ← Xk + αkDk;
Lk+1 ← Lk + αk(L − Lk);

end
X̂ ← Xk;

Algorithm 1: Map L to X̂

Inference Task 2. Given an arbitrary X in input space, find
its optimal projection X̂ in the manifold.

In 3D facial deformation modeling, this is the most im-
portant interpretation task, since we want to recover the
“true” position from noisy observation using deformation
model. Given an observation X , it is represented as X =
f(L) + ε, where ε is the noise. Let X̂ = f(L) be the op-
timal projection of X on the manifold. This “projection”
operation can be called filtering, since it discards the noise.

If we further assume the equal prior of L, X̂ will be:

L̂ = arg min
L

‖X − fTV(L)‖input

X̂ = fTV(L̂)
(7)

Therefore, X̂ is the point nearest to X on the manifold.
In practice, searching X̂ is formulated as an optimization
problem, and solved by algorithm 2. We choose to initial-

input : X
output: X̂
Initialize X0;
repeat

Hk ← Tensor Voting at Xk;
Dk ← HkHkT (X − Xk);
Xk+1 ← Xk + αkDk;

until convergence ;
X̂ ← Xk;
Algorithm 2: Search for optimal projection of X

ize X0 as the nearest point to X in the training samples. The
convergence criteria is either ‖X −Xk‖ < ε or ‖X −Xk‖
reaches a local minimum.

3.2. Working with Multiple Manifolds

The recovered manifold coordinate and projection can be
used to determine the likelihood of the input point belong-

ing to this manifold. Since there may exist several mani-
folds in input space, and these manifolds may have the same
dimensionality, as we have shown that there are multiple 1D
deformation manifolds of a human face, we would like to
measure such likelihood, and infer the posterior probability
of each manifold.

Given a point X and recovered low dimensional embed-
ding L for manifold c, we define the joint probability of X
and L using mixture modeling:

P (X, L|c) =
∑

m

wmPm(X |L, c)Pm(L|c)

=
∑

m

wc
mPG(X |fTV(L; c), Σc

m)PG(L|μc
m, σc

m)
(8)

where fTV(.; c) is the mapping using manifold c.
PG(X |fTV(L; c), Σc

m) is the Gaussian pdf with mean
fTV(L; c) and covariance matrix Σc

m. For simplicity, we
assume Σc

m is diagonal. PG(L|μc
m, σc

m) is the Gaussian pdf
with mean μc

m and standard deviation σc
m.

Equation 8 relates the relative position between X and its
optimal projection X̂ with its manifold coordinate L. Based
on this equation, the posterior probability of expression c
can be computed as:

P (c|X, L) ∝ P (X, L|c)P (c) (9)

4. Tracking the Nonrigid Facial Deformation
with Head Pose

u

Xθ

c L

Figure 6. The generative model of 2D shape

The proposed deformation manifold method can be used
to track the 3D head pose with nonrigid facial deforma-
tion. The 3D shape, 2D observation, and the head pose
can be represented by a generative model in figure 6. Here,
θ = {ωx, ωy, ωz, tx, ty, tz} is the 3D head pose, and u is
2D observed positions of landmark points in the image. To
extract u from images, we train a feature detectors for each
point. The detector is learned using a boosting approach.
Each detector is trained by real-Adaboost and its structure is
nesting [12]. For each incoming frame, we first use a Lucas-
Kanade feature tracker to initialize the 2D landmarks, and
apply the feature detectors to update their positions.

Using this generative model, the inference of head pose
θ and nonrigid deformation X is divided into two steps:

• Estimate θ. Given the 2D-3D correspondence u and
X , 3D head pose estimation θ̂ can be computed by
minimizing the reprojection error:

θ̂ = arg min
θ

∑

i

‖F (Pi; θ) − pi‖2
2 (10)



where Pi and pi are the 3D and 2D position of i-
th landmark point, respectively. Equation 10 can
be solved by using standard optimization algorithms,
such as Gauss-Newton.

• Estimate X . Given u and θ, the initial guess of 3D
facial deformations, X̃, can be computed by backpro-
jecting u into 3D using a 3D face model. X̃ is a noisy
observation of true deformation, and we rely on the of-
fline learned manifold-based facial deformation model
to refine the estimation. For each expression c, al-
gorithm 2 is used to infer the optimal projection X̂c

from X̃ and the posterior probability is computed us-
ing equation 9. The estimated deformation X̂ is the
expectation over posterior probability:

X̂ =
∑

c

X̂cP (c|X̃, L̂c) (11)

Algorithm 3 outlines the tracking procedure. Currently,
the implemented system runs near 1 fps, the slowest part is
the traversal of the manifold (algorithm 2). We believe real
time can be achieved by using the power of the GPU.

Initialize tracker;
foreach frame do

θ̂ ← 3D rigid head tracker;
ũ ← Lucas-Kanade feature trackers;
repeat

û ← use feature detector at ũ;
X̃ ← backproject û using θ̂ and 3D face model;
L̂c, X̂c ← use algorithm 2 with X̃;
P (c|X̃, L̂) ← use equation 9;
X̂ ← use equation 11;
θ̂ ← optimization using equation 10;
ũ ← project 3D landmark points using θ̂;

until convergence ;
end

Algorithm 3: Tracking algorithm

5. Experiments

5.1. Evaluation of Proposed Method

The objective of this evaluation is to compare the perfor-
mance of our proposed nonlinear manifold approach with
other approaches for recovering correct face shape under
noise. We manually label the ground truth position of all
landmark points and their 3D coordinates are reconstructed
using 3D face model, as described in section 2. For each
true 3D shape X , we perturb the 3D position of landmark
points independently with Gaussian noise. This step is re-
peated 10 times to produce 10 test samples. We have 20
ground truth for each expression, total 20 × 8 = 160 true
shapes and 1600 test samples. The noisy shape, X ′, is con-
sidered as the initial observation of 3D shape. We then use
different methods to estimate X̂ from X ′. This evaluation
can be interpreted as examining the “denoising” ability, as
we try to filter out the noise and estimate the true shape.

For our proposed method, we estimation X̂TV using al-
gorithm 2. For the linear subspace approach, we use PCA
to learn the person-specific model. We compare with two
types of PCA estimation, naive PCA estimation and shrink-
age PCA estimation. Recall that PCA is to find the optimal
projection of X in linear subspace:

X = Xmean + Φb

where Φ is the matrix of eigenvectors of principal compo-
nents.

The naive PCA estimation X̂NPCA of observation X is:

X̄NPCA = Xmean + ΦΦT (X − Xmean) (12)

Although naive PCA enjoys the advantage of easy im-
plementation and inexpensive computation, it has several
drawbacks. One is it may generate “unallowable” shapes.
This has been investigated in the literature. For example,
in [13], Li and Ito have proposed a shape parameter space
optimization technique for 2D active shape model. A set
of complicated rules is devised to eliminate the unallow-
able configurations. On the other hand, for 3D shape, [11]
propose a shrinkage process to restrict the variation in pa-
rameter space. The shrinkage PCA estimation X̂SPCA:

b̂i = βibi

βi = λi/(λi + σ)

X̂SPCA = Φb̂

(13)

where bi is the i-th element of b, λi is the eigenvalue of i-th
principal component, and σ is the sum of residual energy. βi

is the shrinkage coefficient that controls the feasible range
of i-th component; a significant component has larger vari-
ation range while a less significant one has smaller range.

To measure the error, X , X ′, and X̂s are all projected
to a 640 × 480 image. Three errors are computed, average
pixel displacement per point, largest pixel distance among
all landmark points, and percentage of points within 2 pix-
els, all measured with respect to the projected position of
ground truth. The quantitative evaluation is reported in fig-
ure 7. “Initial” indicates the error of initial observation X ′,
and we include it here as the baseline. “Tensor Voting” is
the proposed nonlinear manifold approach based on Ten-
sor Voting. “NPCA” and “SPCA” stand for naive PCA and
shrinkage PCA, respectively. The attached number 90%,
85%, and 75% is the energy of selected principal compo-
nents. The low-energy PCA has higher error than high-
energy PCA in low noise level, while has lower error in
the high noise level. This confirms our understanding of
PCA, since decreasing the energy means sacrificing the de-
tails, but less sensitive to the noise and outliers. Note that,
the SPCA is slightly better than NPCA in this evaluation.
Among all cases, the proposed approach is consistently bet-
ter than other approaches, especially in the high noise level.
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Figure 7. Quantitative evaluation of our proposed method

5.2. Tracking and Synthesis

Figure 8 shows tracking results from our proposed
method. In test sequences, the subject starts from a neu-
tral expression at frontal pose, and performs multiple ex-
pressions. The tracker is initialized by an automatic 2D
ASM fitting. In figure 8, the first row shows the tracking re-
sults. Green arrow indicates the estimated head pose and red
points represent the tracked landmark points. We can see
that even with out-of-plane rotation, the proposed method
still tracks well. Some subtle deformations, such as blink-
ing, can be identified by the proposed algorithm. The sec-
ond row shows the reprojection of estimated 3D shapes in
frontal pose. The last row shows the estimated probability
of each expression. There are 8 modes of expression: from
left to right is surprise, anger, joy, disgust, sadness, close
and open eyes, left-eye blinking, and right eye-blinking.

Probing deeper, figure 9 shows the interplay between
the probability and manifold coordinate. “Prob.” and
“L” are the estimated probability and manifold coordinate
of “Surprise”, respectively. The bottom row shows the
tracked landmarks and example frames, whose index is
0, 5, 10, . . . , 35, 40, of this expression. All of them are the
output of proposed tracker. “L” is also properly scaled into
[0, 1] interval by the maximum value in the training set. It
is clear that L can represent the activation level of this ex-
pression, which agrees with our interpretation. Besides, the
tracker assigns low probability to the correct expression in
the onset and offset, since the expression is close to neu-
tral. As the expression starts to activate, the ambiguity de-
creases and the probability of “Surprise” increases. Figure
10 shows another results from a segment of smile.

The proposed method can be used to generate expres-
sion sequences. Figure 11 shows a synthesized sequence
of a left-eye blinking expression. The sequence is gener-
ated from neutral to the apex of this mode, as we control the
manifold coordinate L. We use algorithm 1 to map L to X̂
and project them into the 2D image plane.

6. Conclusions and Discussions

We have proposed a new deformable face model based
on nonlinear manifolds for 3D facial expressions. The 3D
facial deformation model is a combination of several 1D
manifolds and each manifold represents a mode of expres-
sion. We apply Tensor Voting to learn these nonlinear de-
formation manifolds. Tensor voting estimates local tangent
hyperplane and it provides us a robust estimation tool for
unseen, noisy input data. An iterative algorithm is proposed
to infer the 3D head pose, 3D deformations, expression
class, and manifold coordinate, which indicates the activa-
tion level of an expression. Thus, the output of our tracker
is a rich representation of the current status of the face.

In the future, we plan to improve the proposed method
in several directions. Currently, we are learning person-
dependent manifolds. The deformation manifold of each
expression should exhibit invariants across different sub-
jects. Investigating this direction will extend the proposed
approach be person-independent. The current tracker does
not address occlusion explicitly. Including a mechanism to
deal with occlusions will make the tracker more robust.
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