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Abstract

This paper focuses on hallucinating a facial shape from
a low-resolution 3D facial shape. Firstly, we give a con-
strained conformal embedding of 3D shape in R2, which
establishes an isomorphic mapping between curved facial
surface and 2D planar domain. With such conformal em-
bedding, two planar representations of 3D shapes are pro-
posed: Gaussian curvature image (GCI) for a facial sur-
face, and surface displacement image (SDI) for a pair of
facial surfaces. The conformal planar representation re-
duces the data complexity from 3D irregular curved surface
to 2D regular grid while preserving the necessary infor-
mation for hallucination. Then, hallucinating a low reso-
lution facial shape is formalized as inference of SDI from
GCIs by modeling the relationship between GCI and SDI
by RBF regression. The experiments on USF HumanID
3D face database demonstrate the effectiveness of the ap-
proach. Our method can be easily extended to hallucinate
those category-specific 3D surfaces sharing with similar ge-
ometric structures.

1. Introduction

Super-resolution is a technique which infers high reso-
lution (hi-res) data from low resolution (low-res) data. The
data could be images, videos, 3D models, audios, etc. In
some references, it also is called hallucination[2]. It has
various applications such as video surveillance, audio-video
communication, object recognition, data compression, dig-
ital games. There have been a lot of methods presented in
the recent decade [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15].
However, most of the previous work focuses on data of im-
ages and videos. Super-resolution of 3D data is little ad-
dressed.

With the fast development of 3D scanning technology,
utilization of 3D models is becoming ubiquitous. Benefits
of 3D super-resolution are in many aspects:

• It may overcome the limits of environments, devices
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and subjects that lead to reduction of data resolution
during the capture of 3D data, for example, captur-
ing only at a distance allowed, capturing the not-well-
cooperative subjects. Besides, the data acquired by
economic 3D scanners and fast capturing systems are
usually of relatively low resolution. Thus, there are
many cases that only low resolution data are available,
where hallucination of low-res data is very helpful.

• It reduces 3D data volume. 3D data are usually of large
size due to one more dimension than images. In addi-
tion to mesh compression[16], super-resolution of 3D
data offers an alternative way to reduce data volume.
In the case of transmission over Internet, we can de-
liver only a simplified version of the original data and
rebuild the high resolution version at remote end.

This paper takes 3D human face as a typical 3D object
category, and mainly focuses on hallucination of 3D facial
shapes.

1.1. Previous Work

It is a challenging task to discover the high resolution
data from a low resolution input. Most of previous work are
on images or videos. For generic image super-resolution,
the homogeneous Markov random field (MRF) has been
widely adopted for modeling images [1, 3, 4, 6]. This kind
of methods do the local feature inference on low-level vi-
sion. At a higher level, e.g. Sun et al. used a primal sketch
estimated from the low resolution image to guide the edge
finding[7], Dai et al employed edge smooth prior for alpha
channel super-resolution [13].

The methods for generic images often do not work well
in hallucinating structural visual patterns, e.g. human faces,
because they ignored the special property of face images.
The pioneering work on face hallucination was done by
Baker et al [2]. They presented a face hallucinating algo-
rithm using a number of training pairs to learn the statistics
between the hi-res and low-res images in a nonparametric
way. The hi-res features are inferred from parent struc-
ture by nearest neighbor searching. Wang et al developed
a eigentransformation-based face hallucination approach,
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which used principal component analysis to fit the input im-
age as a linear combination of the low-res face images in
the training set, and then the hi-res image was constructed
by replacing the low-res eigen-subspace’s basis with the hi-
res eigen-subspace’s basis while keeping the combination
weights unchanged. This method is easy to manipulate but
it has the defect of missing local details. To enhance facial
local details, a two-step statistical approach was proposed
by Liu et al [5]. It integrated a global parametric model
and a local nonparametric model. Recently they improved
it for practical application purpose [15]. With inspiration
by Liu’s effective work of two-step modeling, W.Liu et al
[9] and Zhuang et al [14] presented face hallucination ap-
proaches both in the two-step framework: firstly, a global
face image with main characteristics of hi-res was obtained
which looks smooth and lacks some detailed features. Sec-
ondly, an optimal residue face image containing more hi-res
information was added.

However, there is little work on 3D data hallucination.
Peng et al first extended Baker’s image-based face halluci-
nation approach [2] to 3D facial shape. Pan et al [11] pre-
sented a progressive resolution chain (PRC) model for 3D
face shapes, then developed a 3D face super-resolution ap-
proach in a MAP framework. Yang et al.[12] proposed a
new post-processing step to enhance the spatial and depth
resolution of low-quality and highly quantized range maps
using a registered high-quality texture color image as refer-
ence. Actually it is an enhancing of 3D using 2D, while our
goal is to enhance 3D using 3D.

2. Conformal Planar Representations of Facial
Shapes

Due to irregularity of curved surface in 3D spatial space,
it is a great difficulty to analyze and model 3D triangular
mesh directly using their vertices, edges and triangles. Our
idea is to unfold a facial surface onto a planar domain, thus
we can represent a surface with a regular grid, like raster-
ized images. Meanwhile, we hope this representation could
reduce deformation variation over different facial shapes
and align their geometric structures.

This section presents two planar representations: GCI
for a facial shape, SDI for a pair of facial shapes, both of
which are built on constrained conformal unfolding of the
facial surfaces.

2.1. Surface Unfolding with Constrained Confor-
mal Embedding

According to conformal geometry theory, a 3D surface
with disk topology can been isomorphically mapped to a
2D domain through a global optimization [17]. This map-
ping could be one-to-one, onto, and conformal. With con-
formal mapping, each vertex on facial surface has a unique

corresponding point in the plane. The conformal param-
eterization have several good characteristics: 1) it is angle-
preserving, which keeps line elements unchanged except for
a local scaling factor. 2) it depends on the geometry itself,
not the triangulation of surfaces. 3) it is easy to control.

Here, we achieve the conformal mapping by harmonic
energy minimization [18]. For shape alignment purpose,
we use a base mesh as a constraint and fix a few keypoints
of facial mesh when performing conformal mapping. This
leads to the constrained conformal embedding for surface
unfolding.

For simplicity, we consider the 1-ring first. Let S
′

be
a simple mesh consisting of a 1-ring neighborhood in 3D
space, and let U

′
be an isomorph to S

′
, shown in Fig. 1.

Figure 1. 3D 1-ring unfolding

Given the fixed mapping boundary, the 2D 1-ring distor-
tion is only related to the center node ui. It has been shown
that Dirichlet energy is attained for angle-preserving, and
could be written as [19]:

EA =
∑

j∈N(i)

cotαij |ui − uj |2 (1)

where |ui−uj | is length of the edge (i, j) in U
′
, N(i) means

1-ring neighbor of node i, and αij is the angle shown in
Fig. 1. With ∂E/∂ui = 0, the following equation could be
derived:

∂E

∂ui
=

∑
j∈N(i)

(cotαij + cotβij)(ui − uj) = 0 (2)

For the whole facial mesh, from Equ.(2) it can be de-
duced that:

DU = 0 (3)

where U is the vector of 2D-coordinates in the planar do-
main, and D is a sparse matrix given by:

Dij =




cot(αij) + cot(βij) if j ∈ N(i)
−∑

k∈N(i) Dik if i = j

0 otherwise
(4)

For the alignment purpose, we define a 3D face base
mesh with 19 vertices to constrain the surface unfolding.
The base mesh is shown in Fig.2.



Given the mapped boundary and fixed points in the base
mesh, the unfolding system yields:

D̃U =
[ D
0 I

][Ufree

Uspec

]
=

[ 0
Cspec

]
(5)

where U is separated into free points Ufree and the speci-
fied points Uspec for convenience. This sparse linear system
could be efficiently solved using generalized minimal resid-
ual algorithm[20].

Figure 2. Three dimensional facial base mesh with 19 vertices.

(a) (b)
Figure 3. Illustration of surface unfolding by conformal embed-
ding. (a) The input face mesh. (b) surface unfolding result, which
builds a conformal isomorphic mapping between 3D face mesh
and planar unit square.

2.2. Gaussian Curvature Image (GCI)

Surface unfolding builds the one-to-one, onto mapping
between a facial shape and a planar region, for example, a
unit square. With this correspondence, if we specify an at-
tribute for vertices in the planar region, an attributed image
will be generated. This attribute should deliver some intrin-
sic information of the 3D surface.

Curvature is one of the most important property for
shape geometry, which is invariant to Euclidean transfor-
mation. According to differential geometry theory, the lo-
cal shape of a surface is completely specified by two of the
principal curvatures and their directions [21]. This theorem
reveals that curvature conveys intrinsic geometry informa-
tion of a curved surface.

There are four kinds of curvature: two principal curva-
tures, mean curvature, and Gaussian curvature. In this pa-
per, we employ Gaussian curvature as the local attribute for
surface’s vertex in the planar region. We only considers the
curvature magnitude, although it includes magnitude and
direction. The resulting planar attributed image is called
Gaussian Curvature Image (GCI).

Gaussian curvature is defined as production of two of the
principal curvatures:

K = kminkmax (6)

Given the first fundamental form and the second funda-
mental form of a local surface, Gaussian curvature can be
computed as [22]:

K =
eg − f2

EG − F 2
. (7)

where E,F,G are variables in the fist fundamental form of
the surface and e, f, g are in the second fundamental form.

In the discrete case, there are many approximate ap-
proach for curvature estimation over triangular mesh [23].
The Guass-Bonnet method is adopted in this paper for its
accuracy and robustness. It is roughly reviewed as follows.

Consider a vertex v and its immediate neighborhood
{vi}n−1

i=0 . Then, for i = 0, ..., n − 1, let αi =
∠(vi, v, v(i+1) mod n) be the angle at v between two suc-
cessive edges ei = −→vvi. The Gauss-Bonnet theorem can be
written as: ∫ ∫

A

KdA = 2π −
n−1∑
i=0

αi (8)

where A is the accumulated areas of triangles around v.
Gaussian curvature K is approximately constant in the local
neighborhood, and is then estimated as

K =
2π −

n−1∑
i=0

αi

1
3A

(9)

To cope with the distribution irregularity of surface ver-
tices in the unit square, the final GCI is obtained by re-
sampling into a regular planar grid by bilinear interpolation.
Figure 4 shows a GCI example.

2.3. Surface Displacement Image (SDI)

GCI gives a 2D representation for each 3D facial sur-
face. Similarly, this section introduces a 2D representation
for each pair of facial surfaces, named Surface Displace-
ment Image (SDI), which measures the spatial difference
between two facial shapes.

Suppose M1 and M2 are two facial meshes with fine reg-
istration, SDI from M1 to M2 is defined as

D(M1,M2) = M2 � M1 (10)



(a) (b)
Figure 4. Illustration of Gaussian Curvature Image (GCI). (a) The
input facial mesh. (b) The GCI of (a) after surface unfolding onto
a unit square.

Figure 5. Surface Displacement Images (SDIs). The third column
is the SDI of the first column and the second column. The first row
is the SDI of a hi-res face and its low-res face. The second row is
the SDI of two different individuals.

where � is the displacement operator. SDI is also an at-
tributed map whose attribute is the signed difference be-
tween two facial surfaces. The displacement operator is
described as follows. For each vertex mi

1 on M1, its cor-
responding vertex m

j(i)
2 on M2 is calculated as the point of

intersection of the line along its normal with the surface M2.
Then, for each vertex on M1, the displacement is obtained
by subtracting m

j(i)
2 from mi

1.
Similar to GCI, with the displacement as the vertex at-

tribute, an attributed image for M1, called SDI, can be gen-
erated by conformal unfolding of the surface M1 and resam-
pling in the resulting planar region. Prior to computation
of SDI, the facial shape pair are registered using Iterative
Closest Point(ICP) method [24] first. Figure 5 shows two
examples of SDIs: the first row is SDI between a high res-
olution mesh and the low resolution mesh of the same face,
the second row is SDI between two high resolution meshes
of different individuals.

3. Inference of SDI from GCI

We describe 3D facial shape hallucination problem as

Given n high resolution facial meshes {MH
i }n

i=1 and a
low resolution facial mesh X , how to infer a high res-

olution mesh of X from the training data {MH
i }n

i=1?

From the definition of SDI, the restoration of hi-res mesh
from low-res one can be written as

XH = XL ⊕ D(XL,XH) (11)

Let CL be the GCI of XL. Therefore, after representa-
tion of XL by CL, the hallucination problem is converted
to infer the SDI of XL from its GCI.

X̂H = XL ⊕ D̂(CL) (12)

As described in Sect.2, on the one hand, GCI conveys
the intrinsic geometric information of the low resolution
mesh, on the other hand, SDI encodes the knowledge of
difference between high resolution and low resolution fa-
cial meshes. If we appropriately model the relationship be-
tween GCI and SDI, the SDI may effectively be inferred
when GCI is known. In this section, we simply approxi-
mate the correlations of GCI and SDI linearly using a series
of basis functions of RBF kernel.

In order to make the GCI-driven SDI inference stronger
and more effective, it is necessary to highlight the intrinsic
features of GCI prior to the relationship modeling. Thus, a
subspace modeling of GCIs is performed in advance. We
adopt the locality preserving projections (LPP) [25] for its
simplicity and performance efficiency.

3.1. Modeling GCI Subspace by LPP

The locality preserving projections (LPP) [25] is a lin-
ear approximation of the non-linear Laplacian Eigenmap,
it builds a graph incorporating neighborhood information
of the data set and finds an optimal linear approximations
to eigenfunction of the Laplace Beltrami operator on man-
ifold. The advantages of LPP are: 1) it is linear, while it is
capable of finding the non-linear structure of the data man-
ifold. 2) it is defined everywhere in ambient space rather
than just on the training data points.

Let C = [C1, ..., Cn], where Ci is a vector representing
the GCI of ML

i . We perform LPP on C to obtain the trans-
formation matrix Q. With the matrix Q, each GCI can be
projected onto the subspace spanned by row vectors of Q.

C̃i = QCi, (13)

The transformation matrix Q is solved by four steps, as
described below.

1. Conduct PCA on C and obtain the eigensignals S =
[s1, ..., sn] where each si is a column vector of length
n. ( Assuming that dim(Ci) � n ).

2. Calculate the weight matrix W : for each si, find the
k nearest neighbors {si1 , ..., sik

}; for each neighbor
sj ∈ {si1 , ..., sik

}, set Wij = ‖si − sj‖2, otherwise
set Wij = 0.



3. Generate the Laplacian matrix L = A − W where
Aii =

∑
j Wji.

4. Perform PCA on the matrix SLST and select m eigen-
vectors according to the ascending order of eigenval-
ues to construct the transformation matrix Q.

3.2. Modeling Relationship between GCI and SDI

Let {(MH
i ,ML

i )}n
i=1 be high resolution and low resolu-

tion pairs, where ML
i denotes a low resolution version of

MH
i , and D = [D1, ...,Dn], where Di = D(ML

i ,MH
i ),

the SDI from low resolution mesh to high resolution mesh.
After the dimensionality reduction by LPP, we employ RBF
regress to build the relationship between GCI and SDI.

The RBF networks are able to model complex mappings
and have the advantage of being much simpler than percep-
trons while keeping the major property of universal approx-
imation of functions [26]. The RBF regression algorithm
is to firstly choose some proper data points as radial ba-
sis function centers and then use singular value decomposi-
tion to solve for the weights of the network [27]. The most
distinguishing feature of RBF functions is that they are lo-
cal, or at least their response decreases monotonically away
from a central point. RBF regression has been successfully
applied in image-based face hallucination [14].

The basic form of RBF is

Di =
n∑

j=1

wjk(C̃i, C̃j) (14)

where

k(C̃i, C̃j) = exp(
∥∥∥C̃i − C̃j

∥∥∥2

/2σ2) (15)

.
With Kij = k(C̃i, C̃j), the matrix form of RBF can be

written as
D = W ∗ K (16)

where
W = [w1, ..., wn] (17)

Given GCIs C and the corresponding SDIs D, we can
train the RBF transformation matrix W . When C̃L, LPP of
a probe CL, is as an input, the corresponding SDI D̂(CL)
can be obtained using the matrix W . From Equ.12, the hal-
lucinating hi-res version can be obtained.

3.3. Diagram of Hallucination Algorithm

The outline of our hallucination algorithm is shown in
Fig.6. In order to make the curvature and normal estima-
tion of low-res meshes more reasonable, Loop subdivision
method [28] is at first performed on each low resolution
mesh.

Figure 6. Algorithm outline. (1) Generation of low-res version of
hi-res training data. (2) Loop subdivision. (3) Computation of
GCIs. (4) Computing SDIs from hi-res meshes and their subdi-
vided meshed. (5) Training the relationship model. (6) Inference
of SDI from GCI. (7) Inverse displacement operation.

4. Experimental Results

4.1. Data and Preprocessing

We conducted the experiments using the USF Human
ID 3D face database[29], which consists of 136 individuals
with only one 3D model for each individual. These mod-
els are captured by Cyberware 3030PS laser scanner. There
are more than 90,000 vertices and 180,000 faces for each
model.

Original USF models include ear and neck parts. For the
experiments, we extract the region-of-interest (ROI), simi-
lar to the method in [30]. The fast marching method is used
to calculate each point’s geodesic distance to the nose tip.
We set a radius r = 100 and exclude those points whose
distance to nose tip is larger than r.

For computational efficiency, the progressive mesh
method [31] is adopted to simplify the ROI of each model
to 16,000 vertices as our dataset of high resolution 3D face
models, which preserves much details. For each obtained
mesh, base mesh is labeled manually.

We adopt the leave-one-out methodology to test the per-
formance of our algorithm, i.e., for each test, one model
is chosen from the dataset as the probe, and all the other
models act as the training set. Since each person has just
one model in the database, for each test, the person whose
model acts as the probe never appears in the corresponding
training set. There are two version of the probes: the hi-res
probe for the ground-truth, and the low-res one for the test



RMS avg. min. max.

|low-res − original| 1.408 0.851 1.847
|subdivided − original| 1.077 0.951 1.165
|hallucinated − original| 0.661 0.531 0.781

Table 1. Statistics of RMS measure for 136 models. The subdivi-
sion method uses Loop’s one[28].

input. Each low-res probe mesh contains 150 vertices and
about 260 triangles, simplified from hi-res probe by [31].

4.2. Hallucination Results

The number of LPP transformation vectors for GCI sub-
space modeling is set to 30 in our experiment. We adopt
the root-mean-square (RMS) to quantitatively measure the
effectiveness of the hallucination. RMS of two meshes X
and Y is defined as

RMS(X,Y ) = (Dist(X,Y ) + Dist(Y,X))/2 (18)

Dist(X Y ) =

√∑i<n
i=0 ‖ xi − yi ‖2

n
(19)

where n is the vertex number of X , xi is a vertex of X , and
yi is the vertex of Y with the minimum distance to xi.

Each test gets one RMS value. After each mode in the
data set acts as the probe once, statistics of RMS is shown
in Tab.1. Compared with the low-res data, average RMS
between the hallucinated and the hi-res mesh drops from
1.408 to 0.661. It also significantly outperforms subdivided
results.

Subdivision is the traditional resolution-enhancement
method in compute graphics community. Here we com-
pare our hallucinating results with those by two subdivision
methods, one is the Loop’s subdivision method [28], the
other is by 3D Max, a well-known commercial professional
software for 3D object modeling. Some results are shown
in Fig.7. From the figure, it obviously that our hallucinating
results much better than subdivision results.

5. Conclusion

In this paper, we propose a 3D face shape hallucination
method which can restore detailed information from a low
resolution input. For hallucination, we presented two pla-
nar representations: Gaussian curvature image (GCI) for a
facial surface, and surface displacement image (SDI) for a
pair facial surfaces. The former conveys intrinsic geomet-
ric information of the low resolution mesh, and the latter
encodes the knowledge of difference between high resolu-
tion and low resolution facial mesh. With the two planar
representations, the hallucination problem is converted to

inference of SDI from GCI. We model the relationship be-
tween SDI and GCI by RBF regression. The experimental
results on USF HumanID 3D face database, a public 3D
face database, demonstrate our approach is very promising.
Our framework is easily extended to hallucination of those
category-specific object shapes that shares similar geomet-
ric structures.

Acknowledgements

This work is partly supported by NSFC (60503019,
60525202), Key Program of NSFC(60533040) and PCSIRT
Program (IRT0652).

References

[1] W.Freeman, E.Pasztor, O.Carmichael. Learning low-level vi-
sion. IJCV, 40(1):25-47, 2000.

[2] S. Baker, T. Kanade, Hallucinating faces, IEEE FGR’00, pp.
83-88, 2000

[3] A.Hertzmann, C.Jacobs, N.Oliver , B.Curless, D.Salesin.
Image analogies. SIGGRAPH’01.

[4] A.Efros, W.Freeman. Quilting for texure synthesis and trans-
fer. SIGGRAPH’01.

[5] C. Liu, H. Shum, C. Zhang, A two-step approach to halluci-
nating faces: global parametric model and local nonparamet-
ric model, CVPR’01.

[6] W.Freeman, T.Jones, E.Pasztor. Example-based super-
resolution. IEEE Computer Graphics and Applications,
22(2):56-65, 2002.

[7] J. Sun, H. Tao, H.Shum. Image Hallunication with Primal
Sketch Priors. CVPR’03.

[8] X. Wang, X. Tang, Hallucinating face by eigentransforma-
tion, IEEE Trans. SMC-C, 35(3):425-434, 2005.

[9] W. Liu, D. Lin, X. Tang, Hallucinating faces: Tensor-
patch super-resolution and coupled residue compensation.
CVPR’05.

[10] S. Peng, G. Pan, Z. Wu, Learning-based Super-resolution
of 3D Face Model, IEEE ICIP’05, vol.2, pp.382-385, Italy,
September 11-14, 2005.

[11] G. Pan, S. Han, Z. Wu, Y. Wang, Super-Resolution of 3D
Face, ECCV’06, LNCS, vol. 3952, pp.389-401, 2006.

[12] Q. Yang, R. Yang, J. Davis, D. Nister. Spatial-depth super
resolution for range images. CVPR’07.

[13] S.Dai, M.Han, W.Xu, Y.Wu, Y.Gong, Soft Edge Smoothness
Prior for Alpha Channel Super Resolution, CVPR’07.

[14] Y. Zhuang, J. Zhang, F. Wu, Hallucinating faces: LPH super-
resolution and neighbor reconstruction for residue compen-
sation, Pattern Recognition, 40(11):3178-3194, 2007.

[15] C. Liu, H. Shum, W. Freeman, Face Hallucination: Theory
and Practice, IJCV, 75(1):115-134, 2007.

[16] J. Peng, C.S. Kim, C.C. Kuo, Technologies for 3D mesh
compression: A Survey, Journal of Visual Communication
and Image Representation, 16(6):688-733, Elsevier, 2005.

[17] A.Sheffer, E.Praun, K. Rose, Mesh parameterization meth-
ods and their applications, Foundations and Trends in Com-
puter Graphics and Vision, Vol.2, Issue 2, 2006



(a) (b) (c) (d) (e)
Figure 7. Hallucinating results and comparisons. (a) The input low resolution meshes, each with 150 vertices, (b) Loop’s subdivision, (c)
Subdivision by 3D Max, (d) Our hallucinating result, (e) The original high resolution meshes.



[18] M.Desbrun, M.Meyer, P.Alliez, Intrinsic Parameterizations
of Surface Meshes, EUROGRAPHICS’02.

[19] U. Pinkall, K. Polthier, Computing Discrete Minimal Sur-
faces and Their Conjugates, Experimental Mathematics,
2(1):15-36, 1993.

[20] Y.Saad, M.Schultz, GMRES: A Generalized Minimal Resid-
ual Algorithm for Solving Nonsymmetric Linear Systems,
SIAM Journal of Scientific and Statistical Computing,
7(3):856-869, 1986.

[21] E. Trucc, A. Verri, Introductory Techniques for 3D Computer
Vision, Prentice Hall, 1998.

[22] M. do Carmo, Differential Geometry of Curves and Surfaces.
Prentice Hall, 1976.

[23] T. Surazhsky, E. Magid, O. Soldea, G. Elber, E. Rivlin, A
comparison of Gaussian and Mean Curvatures Estimation
Methods on Triangular Meshes, Int’l Conf. on Robotics and
Automation, 2003.

[24] P. Besl, N. McKay, A method for registration of 3D shapes,
IEEE PAMI, Vol. 14, pp. 239-256, 1992.

[25] X. He, P. Niyogi, Locality preserving projections, NIPS’03.
[26] S. Chen, C. Cowan, P. Grant, Orthogonal least squares learn-

ing algorithm for radial basis function networks, IEEE Trans.
Neural Networks, 2(2):302-309, 1991.

[27] T. Poggio, F. Girosi, Networks for approximation and learn-
ing, Proceedings of the IEEE, vol.78, no.9, pp.1481-1497,
1990.

[28] C.Loop, Smooth subdivision surfaces based on triangles,
Master’s thesis, Department of Mathematics, University of
Utah, 1987

[29] V. Blanz, T. Vetter, Morphable model for the synthesis of 3D
faces, SIGGRAPH’99.

[30] Y. Wang, G. Pan, Z. Wu, 3D Face Recognition in the Pres-
ence of Expression: A Guidance-based Constraint Deforma-
tion Approach, CVPR’07.

[31] H.Hoppe, Progressive meshes, SIGGRAPH’96.


