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Abstract

Face recognition degrades when faces are of very low
resolution since many details about the difference between
one person and another can only be captured in images of
sufficient resolution. In this work, we propose a new pro-
cedure for recognition of low-resolution faces, when there
is a high-resolution training set available. Most previous
super-resolution approaches are aimed at reconstruction,
with recognition only as an after-thought. In contrast, in the
proposed method, face features, as they would be extracted
for a face recognition algorithm (e.g., eigenfaces, Fisher-
faces, etc.), are included in a super-resolution method as
prior information. This approach simultaneously provides
measures of fit of the super-resolution result, from both
reconstruction and recognition perspectives. This is dif-
ferent from the conventional paradigms of matching in a
low-resolution domain, or, alternatively, applying a super-
resolution algorithm to a low-resolution face and then clas-
sifying the super-resolution result. We show, for example,
that recognition of faces of as low as 6× 6 pixel size is con-
siderably improved compared to matching using a super-
resolution reconstruction followed by classification, and to
matching with a low-resolution training set.

1. Introduction

In many surveillance scenarios people may be far from
the camera and the images of their faces may be small in
the field of view. Such low resolution can seriously degrade
the performance of conventional face recognition systems.
Another similar scenario is when face recognition is used
to help automatically organize family photographs, where
often faces can be small.

In this paper we study the problem of matching a low-
resolution probe image to a high-resolution gallery of en-
rolled faces. There are two standard approaches to this
problem (see Figure 1): (1) Use super-resolution or inter-
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Figure 1. Standard approaches to matching a low resolution probe
to a high resolution gallery. (1) Upsampling the probe (interpo-
lation or super-resolution) and then matching. (2) Downsampling
the gallery and then matching. In this paper we propose an alter-
native algorithm that can outperform these two approaches.

polation to reconstruct a higher resolution version of the
low resolution probe and then perform matching in the usual
way at higher resolution. (2) Downsample the entire gallery
and then perform matching in low resolution.

Super-resolution methods produce a reconstructed high-
resolution image from a low-resolution one [2], or a se-
quence of images [7, 18], by making assumptions about the
image structure or content. An overview of super-resolution
is given in [8]. Even though super-resolution reconstruction
can be visually appealing, most super-resolution methods
are not designed for face recognition, even the ones with
face priors, such as in [2, 5, 12]. Recently proposed, the
approach in [1], requires a video sequence at enrollment, so
is not suited for current face recognition demands [14].

In this paper, we propose a new approach for recogni-
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Figure 2. Proposed procedure for recognition of low-resolution
face images using standard feature extraction and classification
with super-resolution methods.

tion of low-resolution faces. We assume super-resolution
and face recognition algorithms have been selected in ad-
vance (referred herein as the base super-resolution algo-
rithm and the base classifier). Our algorithm then uses face
features, as would be used by the base classifier, and super-
resolution priors of the base super-resolution algorithm, to
extract a high-resolution template that simultaneously fits
both, super-resolution and face-features constraints. From
this template a new set of distortion-based (quality-of-fit)
features are computed for recognition (see Fig. 2).

Our approach is fundamentally different from that in [10]
because their approach is not simultaneous, but sequential:
first, compute high-resolution tensor space parameters from
low-resolution ones, and then perform recognition or super-
resolution. We do not perform super-resolution in the MSE
sense, but use super-resolution models as constraints simul-
taneously with face-features constraints. Moreover, our ap-
proach is more general because it is not limited to a genera-
tive multi-factor model, but can also be discriminative.

We show that our algorithm performs far better than
first upsampling the image with super-resolution and then
matching (Figure 1, path 1). In a database of 224 dif-
ferent faces with illumination variations we obtain 80.7%
rank-1 identification accuracy (IDA) while Tikhonov super-
resolution [18] gives 54.2%. We also show that the pro-
posed algorithm performs better than matching in low reso-
lution (Figure 1, path 2). In the same example above, using
a low-resolution training set yields 72.9% IDA.

One of the key questions underlying our algorithm is
whether it is better to match in the low-resolution domain or
using the training set at the base resolution (the resolution
of the base classifier). This suggest the possibility of using
the training set at both low and base resolutions. Interme-
diate resolutions could potentially be used too. We show in
Section 4 that our algorithm can facilitate this. Empirical
evidence suggests that in some cases matching in multiple
resolutions can give lower error rates outperforming even
the matching with probe images at base resolution (which
in reality are not available).

2. Problem Statement
Face features can be linear or non-linear, however, in this

work we use only linear features, such as eigenfaces and
Fisherfaces [17, 4]. In our notation we write Fxv = fv , us-
ing the feature matrix F, where v is either g or p for gallery
or probe1. Thus, fv is the feature vector that represents xv .
If necessary, a superscript (k) is used to indicate the class.

Face recognition can refer to face verification or face
identification. In practice, face verification algorithms can
be thought of as computing a distance metric D(·, ·) and
comparing it to a threshold, τ :

D(Fx(k)
g ,Fxp) = D(f (k)

g , fp) ≶ τ, (1)

where f
(k)
g is a feature vector derived from a gallery image

that represents class k, and fp is the feature vector of the
input probe face.

In face identification (rank-1), a class-label is produced
by computing

arg min
k

D(f (k)
g , fp) k = 1, . . . ,K (2)

when there are K classes enrolled in the gallery set.
In reality, some times the ideal probe xp is not available.

Instead, we may have a lower resolution version, yp, and we
cannot compute fp directly using F and yp because of the
difference in dimensionality between xp and yp. Then, the
standard procedures illustrated by the two paths in Figure 1
are intuitive algorithms to recognize yp. We show, however,
that the proposed method can be a better alternative.

2.1. Baseline Algorithms

A standard approach to classify yp is to produce an esti-
mate x̃p of the desired xp from yp, and apply F to compute
D(Fxg,Fx̃p). This is super-resolution or interpolation fol-
lowed by classification.

Because of its mathematical simplicity and to show the
effectiveness of the proposed approach, we use Tikhonov
regularization (see, for example, [18]) as the base super-
resolution in the proposed algorithm. Tikhonov regulariza-
tion obtains x̃p by minimizing the objective function

‖Bx− yp‖2 + α2‖Lx‖2, (3)

where matrix B is the linear model for converting high-
resolution image x to its low-resolution version y. Our
model takes into account a decoupled point spread function
(PSF) of the camera as in [3, 2], i.e., a Gaussian kernel is
used as the lens PSF and an averaging kernel for the sen-
sor PSF. Here, Lx is a vector of edge values which may be

1The gallery is the set containing face images enrolled in a face recog-
nition system, while the probe set contains images of these faces unseen
by the system at enrollment, and is used for evaluation.



obtained with first or second derivative approximations, or
other kernels, leading to different instances of L. The scalar
α is a regularization parameter [18].

Another baseline alternative to classify yp is to down-
sample xg to obtain yg , with the same resolution as of yp.
This requires downsampling the training images and com-
puting a new feature matrix FL (in the low-resolution do-
main). Then D(FLyg,FLyp) can be computed and recog-
nition is carried out in the usual manner, as illustrated in
Figure 1, path 2. Matching with low-resolution faces, how-
ever, is undesirable since we assume that xg and the whole
training set are at an optimal resolution for classification,
and that reducing the resolution will degrade the recogni-
tion performance.

3. Proposed Algorithm: S2R2

In this work we propose to classify the low-resolution yp

while using the high-resolution training set (F) in a frame-
work that includes the classifier’s metric. In this paper we
assume a metric of the form

D(Fx,Fx(k)
g ) = ‖Fx− f (k)

g ‖2, (4)

which can be seen as a function of x with parameter k,
the claimed or assumed class. Our framework can be ex-
tended to use other distance functions, but this is left as fu-
ture work.

If we look closely at what a classifier is trying to do [6],
we know that a good classifier design ideally achieves the
following for all the probe and galley images, xp, xg:

D(Fxp,Fxg) should be small if Ω(xp) = Ω(xg)
D(Fxp,Fxg) should be large if Ω(xp) 6= Ω(xg)

(5)
where Ω(u) denotes the class of u.

This suggests performing a super-resolution procedure
by using Eqs. 3 and 4 jointly in a regularized fashion, and
using the training set to find the regularization parameters.
Furthermore, a new set of features can be defined using
the norms in these equations since we would expect all the
norms to be small when Ω(yp) = Ω(xg), but large other-
wise, thus giving cues for recognition. This is the intuition
behind the proposed new algorithm, which we call simulta-
neous super-resolution and recognition (S2R2).

3.1. Simultaneous Super-Resolution & Recognition

Face identification and face verification share the first
step in the proposed approach as follows. Assume that for
a given low-resolution probe face, yp, the kth class was
claimed and we can either compute or look up the features
f

(k)
g = Fxg using the gallery. The first step of our algo-

rithm is to find the minimizer, x̂
(k)
p , of

‖Bx− yp‖2 + α2‖Lx‖2 + β2‖Fx− f (k)
g ‖2, (6)

where B, L and α are defined as in Eq. 3, and β is an
additional regularization parameter. The third term in Eq.
6 is a measure of the difference between ideal features for
the claimed class and the features that would be produced
by the super-resolution result.

Then, with the resulting x̂
(k)
p , for the case of face verifi-

cation we can produce a binary decision with

w · q(x̂(k)
p ) → accept/reject (7)

where q(x̂(k)
p ) is a vector of measures of fit, defined here

as the residual norm on each set of model assumptions, and
can be written as

q(x̂(k)
p ) =

 ‖Bx̂
(k)
p − yp‖2

‖Lx̂
(k)
p ‖2

‖Fx̂
(k)
p − f

(k)
g ‖2

 . (8)

The dot in Eq. 7 represents an inner-product, and in this
work, the vector w is a linear discriminant, but other clas-
sifiers may be used in general. Although, q(x̂(k)

p ) is a re-
duced feature vector we use for convenience, x̂

(k)
p defines a

domain where other features can also be extracted. In Eq. 8,
the first component measures the fit between the observed
low-resolution probe image and the low-resolution version
of the resulting super-resolved image. The second compo-
nent measures the smoothness of the super-resolution re-
sult, and the third component measures the difference be-
tween the features derived from high-resolution gallery im-
ages and those obtained from the super-resolved image.

For the case of identification, we can use Eq. 6 to com-
pute the template x̂

(k)
p for each of the K classes in the

gallery set. Then, we produce the class-label for yp by com-
puting

arg min
k

w · q(x̂(k)
p ) k = 1, . . . ,K. (9)

Eqs. 7 and 9 are analogous to Eqs. 1 and 2, respectively.

3.2. Multiple Resolutions

In Section 5 (specifically, Fig. 6), we observe that face
images at lower resolutions than that of the base resolution
do have some discriminative information. Since we have the
training set and gallery available we could, if we wanted,
use it at different resolutions. This leads us to question if
we can match simultaneously in both, base and probe res-
olutions, or even using other intermediate resolutions. Our
algorithm can be easily adapted to multiple resolutions. We
even show in Section 5 that with multiple resolutions it is
possible in some cases to outperform matching with train-
ing and evaluation sets at the base resolution.

Using two resolutions, S2R2 consists of minimizing

‖Bx−yp‖2+α2‖Lx‖2+β2‖Fx−f (k)‖2+γ2‖FLBx−f
(k)
L ‖2

(10)



where we have dropped the subscript g, and FL is the
feature extraction matrix computed with the low-resolution
training set, such that FLyg = FLBxg = f

(k)
L . Then, with

the resulting minimizer, we compute the model norms in
Eq. 10 and modify Eq. 8 to define a 4D feature vector
accordingly. Recognition involves using a classifier in this
new 4D feature space.

In general, for P resolutions, S2R2 is implemented with
the generalization of Eq. 10 to

‖Bx− yp‖2 +α2‖Lx‖2 +
P∑

j=1

γ2
j ‖FjDjx− f

(k)
j ‖2, (11)

where again we dropped the subscript g and use the sub-
script j to indicate the resolution of the training set.
For every resolution, Dj is a formation matrix necessary
to compute the corresponding gallery features f

(k)
j , and

α, γ1, . . . , γP are regularization parameters. The feature
vector q, in this case, will have P + 2 residual values.

4. Implementation
To implement the proposed method, outlined in Sections

3.1 and 3.2 and Eqs. 6 to 11, what is needed is: (1) learn
the classifier w on the space of predefined residuals, and (2)
learn the regularization parameters. We now describe each
of these in turn. We also describe how the optimization of
equations of the form of Eq. 11 can be computed efficiently.

4.1. Learning the Classifier w

Assume for now that the regularization parameters (α, β,
γ) are known. We use a generic training set disjoint from
the gallery. For the purposes of learning w, we separate this
generic training set into disjoint gallery and probe sets, and
we compute a set of q(x̂(k)

p ) features as described above for
all the classes available in this training set. Depending on
the recognition task, the equal error rate (EER) or the iden-
tification accuracy (IDA) are used to score the performance
of a candidate w. In this work, to show the effectiveness
of the proposed approach, we define w as a linear discrim-
inant. We select w out of a collection of discriminants as
follows.

Consider that, as explained above, q(x̂(k)
p ) is the vector

of residuals that represents yp when class k was claimed out
of K classes, such that for every yp we can have one true
claim and K − 1 false claims. For all images in the probe
set we can generate in this manner a set of authentic vectors
q(x̂(k)

p )’s and a set of impostor vectors.
We begin with the Fisher linear discriminant of this two-

class classification task using all the probe set. And we
compute its EER or IDA. We then process each class in
turn. Take the q(x̂(k)

p )’s of probe images, yp’s, from the

first class in the probe set, and compute the Fisher discrim-
inant that ideally will separate these q(x̂(k)

p )’s into true and
false claims. And again assign its EER or IDA as a score
(using all the probe set to compute this score as well). We
repeat this process for the rest of the classes in the probe
set. Finally, we also compute the average vector of these
probe-class discriminants and score it. Then, the discrimi-
nant with the best score is selected. To assign the final w,
we search close to the selected discriminant to find a better
vector (if possible), since the distributions of q(x̂(k)

p ) are not
necessarily Gaussian and there may be a better discriminant
than Fisher’s. Figure 3 illustrates this procedure.

4.2. Learning Regularization Parameters

To select the regularization parameters we implemented
a parameter search using Powell’s enhanced method [15],
since it allows us to find minima of functions for which
derivatives are not available. We learn the regularization
parameters using the same generic training data used in Sec-
tion 4.1 (divided the same way into probe and gallery). For
every vector of parameters sampled by the search, we fol-
low the process of finding w explained above. Once we
have the optimal w, its EER or IDA, which we have com-
puted with the generic training set, is saved as a score for
this parameter set. Figure 4 shows an example IDA surface
sampled with a sparse (2D) grid search for the case of α
and β in Eq. 6. With Powell’s method we are able to find
parameters more efficiently.

4.3. Computational Speed-Ups

Face identification in large databases requires fast com-
putations. Finding the minimum of Eqs. 6, 10 and 11
needs to be computationally efficient because the optimiza-
tion procedure is performed for every probe, for every avail-
able class in the gallery set. Although, gradient descent
methods can be relatively fast, they are not fast enough here
when the number of comparisons is large. The following
singular value decomposition (SVD)-based method results
in a faster implementation.

Let’s take the case of S2R2 with multiple resolutions.
Define the composite matrix and composite vector, respec-
tively, as

G =


B
αL

γ1F1D1

...
γP FP DP

 d =


yp

0
γ1f

(k)
1
...

γP f
(k)
P

 (12)

such that finding the minimizer of Eq. 11 is equivalent to
finding the least-squares solution of Gx = d. Using SVD



Figure 3. Training the classifier w: For a given α, β pair in Eq. 6, residual vectors q(x̂
(k)
p ) are computed from a training set (left) and sepa-

rated into authentic (blue) and impostors (red) in different manners (see text). For each of these two-class problems, the Fisher discriminant
is scored by computing it’s IDA (or EER). The discriminant with the best score is selected and a search around it’s neighborhood further
adjusts the vector to select the best w (middle). If the search were conducted exhaustively, in the case of using Eqs. 6 and 8, a sphere’s
surface will be spanned (right). The color at every point in the surface is the training identification accuracy achieved by w, defined as the
vector from the origin to that point in the sphere. In this figure, red represents higher accuracy while blue represents lower accuracies. The
regularization parameters used are α = 0.1 and β = 0.5.

to write G = USVH , then

x̂(k)
p = VS−1UHd = G†d. (13)

If we split the pseudo-inverse G† by groups of columns:

G† = [G†
y G†

0 G†
1 · · · G†

P ], (14)

then, we can write

x̂(k)
p = G†

yyp + m(k) (15)

where the class-specific vector m(k) =
∑P

j=1 γjG
†
jf

(k)
j

can be computed beforehand in the training stage. Thus, for
an input probe yp and one class comparison, computing the
template x̂

(k)
p requires a single matrix-vector multiplication

and one addition. Furthermore, it has complexity O(plph),
pl and ph being the number of pixels of the low-resolution
probe image yp and images in the base-resolution training
set, respectively; this is regardless of the number of linear
constraints in Eq. 11, i.e., regardless of the number of fea-
tures used in the base classifier.

5. Experiments and Results
The main motivation of this work is low-resolution face

recognition. We show how the proposed algorithm com-
pares to the baselines in standard single-frame face recog-
nition. We use the Multi-PIE [9], FERET [13], and FRGC
[14] databases and use standard feature extraction algo-
rithms, such as Fisherfaces [4] and Eigenfaces [17]. We also
implement features using class-dependence feature analy-
sis (CFA) [11], which have been recently proposed for face
recognition. In all the experiments shown here, the only im-
age processing performed on the faces is normalization for
zero mean and unit energy, besides alignment of the eyes to
a common reference.

Figure 4. Grid search example for scoring values of α and β in Eq.
6. The color is red for high IDA and blue for low IDA. The value
at each point is the one obtained with w (i.e. the one learnt using
the procedure in Sec. 4.1, Fig. 3). Instead of using an exhaustive
grid search, similar to the one shown here, we implement Powell’s
enhanced method.

5.1. Multi-PIE

The Multi-PIE database [9] is a recent extension of the
PIE database [16]. It has a total of 337 subjects (compared
to 68 of PIE) that attended from one to four different record-
ing sessions, each separated by at least a month (unlike PIE,
where all images of each subject are captured on the same
day in a single session). As in PIE, different face poses,
expressions and illumination variations due to flashes from
different angles were recorded. Here we use all the subjects
available, and we present results using frontal images of
neutral expressions with different illuminations. A generic
set of 73 subjects is sequestered to compute 25 Fisherfaces
for F, and 40 sequestered subjects are used for learning reg-
ularization parameters and w. For evaluation (gallery and
probe) we use 224 classes, which is the rest of the classes
in the database. In our Multi-PIE experiment we have used
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Figure 5. Sample images from the Multi-PIE database [9].

only one image with no flash illumination as gallery, while
the probe set contains all the images with flash illumination
from all horizontal angles (13 images per subject). Figure
5 is an example for one subject, showing the gallery image
and selected probe images at different resolutions. In total,
the probe set has 2912 images, which gives 2912 true-class
comparisons and 649,376 false-class comparisons.

It is important to note that in this work we assume that in
a training set and in the gallery, faces have a resolution that
is optimal for classification using F. For example, Figure 6
shows the identification accuracy (IDA) of Fisherfaces us-
ing Multi-PIE. It is clear from this result that, after some
point, higher resolutions produce practically no improve-
ment for Fisherfaces. Then, considering performance and
computational complexity we can define for this case that
the optimal resolution of the training set (and the gallery) is
24× 24 pixel size.

Using the results of Fig. 6, we downsample the training
set to a base resolution of 24×24 pixel size because standard
classification performance did not improve considerably at
higher resolutions. Thus we define as oracle recognition
the ideal case of having the probe faces at this high base
resolution (shown as HR in the figures of results). This is
the resolution in the images of the first row of Fig. 5. We
test magnification factors M = 2 and M = 4 with one and
two resolutions in the training set, i.e., using Eq. 6 and Eq.
10, respectively, for the S2R2 algorithm.

At all resolutions, we choose F to represent 25 Fisher-
faces (those with the largest eigenvalues).

5.1.1 Basic S2R2

In this case the proposed algorithm uses Eq. 6, M = 2
with the probe images of size 12 × 12. Results are shown
in Fig. 7. In the left panel we have the IDA. The oracle per-
formance is 87.2% while matching with the training set at
resolution of the probe set (shown in the figure under LR) is
72.9%. The proposed algorithm (denoted S2R2s in the fig-
ure) achieves an IDA of 80.7%, clearly outperforming LR.

Figure 6. Identification accuracy (IDA) with different number of
Fisherfaces. At 6 × 6 and 8 × 8, the bars not shown correspond
to amounts of Fisherfaces that can’t be computed due to the low
resolution of the faces [4].

Figure 7. Recognition results with 224 subjects from the Multi-
PIE database. (Left) Identification accuracy. (Right) Equal error
rate. From left to right: matching at base-resolution (HR), using
the proposed algorithm (Eq. 6, S2R2s), matching at the resolu-
tion of the probe (LR), performing bilinear interpolation and then
classifying (Bil), and using Tikhonov super-resolution and then
classifying (Tik). The probe images are 12× 12 pixels.

It is interesting to see how even at small magnification fac-
tors both bilinear interpolation, as well as Tikhonov super-
resolution perform considerably worse. S2R2 outperforms
by more than 50% the case of bilinear interpolation and by
more than 25% IDA the case of Tikhonov2.

In the right sub-figure of Fig. 7, the EERs are shown for
all algorithms. The trend of performance is similar as in
the case of IDA. S2R2 is only 0.98% worse in EER than
the oracle matching, while the next baseline, matching at
low-resolution, is 2.61% worse than S2R2.

This results show that the most basic implementation
of our algorithm can give better results than standard ap-
proaches.

5.1.2 Multiple-Resolutions S2R2

In this case, we use both the base-resoluion and low-
resolution versions of the gallery, and the multiple resolu-
tion algorithm defined by Eq. 11. From Fig. 8, we see
that in IDA performance, the proposed algorithm (shown
as S2R2m in the figures) is only about 3% below the or-
acle baseline, while the other algorithms are substantially

2We also compared with hallucinating faces [2]. Hallucination per-
forms worse than bilinear interpolation and so the results are omitted.



Figure 8. Recognition results with 224 subjects from the Multi-PIE
database. (Left panel) IDA. (Right panel) EER. Bar labels as Fig.
7. Here the proposed algorithm using Eq. 10 is shown (S2R2m).
Probe images are 12× 12 (magnification factor of 2).

Figure 9. Same as Fig. 8, but for probe images 6× 6 (M = 4).

worse. But the interesting case is in the EER performance.
The proposed algorithm S2R2(4.74% EER) has performed
better than the oracle matching (5.08% EER). While it may
be surprising that S2R2 can beat classification in the base
resolution, note that S2R2 uses Fisherfaces computed at
both 24× 24 and 12× 12 pixels.

Our last result with the Multi-PIE database shows the
case of S2R2 with multiple resolutions for the harder case
of a magnification factor of M = 4, i.e. the probe im-
ages have 6× 6 pixel size. Again, the trend in performance
is similar to the case of M = 2. While at M = 4 the
super-resolution algorithms perform far worse than match-
ing in low resolution, S2R2 still significantly outperforms
matching in low-resolution. One may think that at this point
there is no hope for super-resolution algorithms, still our
approach can make use of them to produce a better result
than matching at low-resolution. In the case of IDA, S2R2

obtains 62.8% accuracy while matching in low-resolution
gives 47.1%. Furthermore, at rank-3 IDA, i.e., when a list
of the top-3 possible identities of the probe are produced,
S2R2 performs with 81% IDA. Fig. 10, shows this result
in an cumulative matching characteristic (CMC) curve.

5.2. FERET

We also evaluated our algorithm with the FERET
database [13] FA and FB images, using eigenfaces to show
a different feature set. There are 1206 FA images and 1201
FB images for a total of 865 different subjects. We use 400

HR

LR

Figure 10. Recognition results with 224 subjects from the Multi-
PIE database. Cumulative Matching Characteristic (CMC) curve
showing rank-k IDA (percent). Probe images are 6 × 6 (magnifi-
cation factor of 4).

classes as a generic set, randomly sampled with replace-
ment, similar to the FERET comptetition. An additional 50
classes were used for the process of finding the regulariza-
tion parameters. We use 80 eigenfaces at the resolution of
the base classifier (HR), and 15 eigenfaces at the resolution
of the probes (LR). Figure 11 shows the CMC curve.

We see that the S2R2 again outperforms all the base-
line algorithms (of course, not counting matching with the
probes at the base resolution), although the improvement is
not as much as for Fisherfaces relative to LR. This happens
in the case of eigenfaces since blurring helps (the already
poor features) by smoothing out other distortions, then the
search of parameters in S2R2 selects a higher α which
translates into less distortion-rich templates. Still, S2R2

is able to achieve an improvement at such low resolution.

5.3. FRGC Experiment 1

Finally, we also show results obtained with the FRGC
database [14], and evaluate S2R2 with another set of fea-
tures. We use a subset of Experiment 1 images with 300
subjects in the gallery and probe sets. Only 1 gallery im-
age is used for each subject, and a total of 5120 probe im-
ages, 20 per class if available. We use class-dependence
feature analysis (CFA) [11] to extract features, and use 180
features at the resolution of the base classifier (HR), and
30 features at the resolution of the probes (LR). From the
database’s generic set, 180 classes are used to train CFA,
while 42 for learning regularization parameters. Figure 12
shows the CMC curve.

We see that S2R2 is able to outperform LR match-
ing by more than 10% rank-1 IDA. The performance of
Tikhonov super-resolution and bilinear interpolation is con-
siderably poor. This is because CFA features capture a large
amount of detail from faces (high-frequency content) [11],
and Tikhonov super-resolution and interpolation produce
images that are overly smooth for CFA.
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LR

Figure 11. Recognition results with FERET database. Cumulative
Matching Characteristic (CMC) curve showing rank-k IDA (per-
cent). Probe images are 6× 6 (magnification factor of 4).

HR

LR

Figure 12. Recognition results with FRGC Experiment 1 database.
Cumulative Matching Characteristic (CMC) curve showing rank-k
IDA (percent). Probe images are 6× 6 (magnification factor of 4).

6. Conclusions
This work effectively gives super-resolution the objec-

tive of recognition, rather than just reconstruction. We have
proposed an approach for recognition of low-resolution
faces that uses super-resolution models together with face
recognition features by including them in a regularization
framework with the use of the classifier’s distance metric.
By finding a high-resolution template that fits simultane-
ously into the available models and features under an as-
sumed class membership, we can extract new features for
recognition. Our results show that simple linear discrim-
inants using these features produce better recognition per-
formance than standard approaches.

Our formulation can be easily expanded or generalized.
It starts from two basic blocks, a super-resolution algorithm
and a classification algorithm, and it can include multiple
sets of features, and combine super-resolution priors. The
application of S2R2 to video can be done similarly as in [7]
by rewriting Eq. 6 to include multiple input frames. Future
work will include an evaluation of S2R2 on recognition of
faces in video as well as studying sensibility to B.

The extension of S2R2 to non-linear features only needs
the use of an appropriate non-linear optimization algorithm
to minimize Eq. 6. These features may be adapted for spe-
cific super-resolution priors.
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