
Precise Detailed Detection of Faces and Facial Features

Liya Ding and Aleix M. Martinez
Dept. Electrical and Computer Engineering

The Ohio State University, Columbus, OH 43210
{dingl, aleix}@ece.osu.edu

Abstract

Face detection has advanced dramatically over the past
three decades. Algorithms can now quite reliably detect
faces in clutter in or near real time. However, much still
needs to be done to provide an accurate and detailed de-
scription of external and internal features. This paper
presents an approach to achieve this goal. Previous learn-
ing algorithms have had limited success on this task be-
cause the shape and texture of facial features varies widely
under changing expression, pose and illumination. We ad-
dress this problem with the use of subclass divisions. In
this approach, we use an algorithm to automatically di-
vide the training samples of each facial feature into a set of
subclasses, each representing a distinct construction of the
same facial component (e.g., close versus open eye lids).
The key idea used to achieve accurate detections is to not
only learn the textural information of the facial feature to
be detected but that of its context (i.e., surroundings). This
process permits a precise detection of key facial features.
We then combine this approach with edge and color seg-
mentation to provide an accurate and detailed detection of
the shape of the major facial features (brows, eyes, nose,
mouth and chin). We use this face detection algorithm to
obtain precise descriptions of the facial features in video
sequences of American Sign Language (ASL) sentences,
where the variability in expressions can be extreme. Ex-
tensive experimental validation demonstrates our method is
almost as precise as manual detection, ∼ 2% error.

1. Introduction

Face detection has received considerably attention dur-
ing the past several years [16]. By face detection we gen-
erally mean that a bounding box (or an ellipsoid) enclosing
the face (or faces) in an image at approximately the correct
scale needs be specified. Several of these methods include
an estimate detection of the eyes and mouth centers [10],
with a few detectors able to estimate the position of sev-
eral other features such as eye and mouth corners [5, 15].

This additional information is essential in many applica-
tions as, for example, in the warping of the texture map of
frontal faces before these can be correctly used within the
appearance-based framework [7].

In many other applications, however, this face detection
process does not suffice and a very accurate and detailed
detection of the shape of the major facial features, as that
shown in Fig. 1, is needed. This is needed if we are to
do recognition of faces using shape information [1, 2] or to
correctly warp a face to its shape-free representation. Accu-
rate and detailed facial feature detection is also necessary in
the analysis of facial expressions with FACS (Facial Action
Coding System) [4, 11] and in the analysis of non-manuals
in American Sign Language (ASL) [9]. ASL non-manuals
are facial expressions that convey grammatical information
in a signed sentence. Another important application of ac-
curate and precise face detection is in the construction of
active shape models [2] and shape analysis [6], which re-
quire of labeled data during training.

In the present paper, we derive an approach that achieves
the precise face detection of facial features illustrated in the
first row in Fig. 1. The proposed approach has an average
accuracy of 6.2 pixels, which is around 2% in terms of the
size of the face. This error is compared with a manual de-
tection. For manual detection we asked several people to
manually delineate the contours of the same facial compo-
nents detected by our algorithm. Exact instructions on how
to do the marking were given to each participant. One such
detection is shown in the second row in Fig. 1. The variabil-
ity (or error) among these manual markings was around 4.2
(or ∼ 1.5%), only slightly better than that of our algorithm.
One can thus conclude that the detection obtained with the
proposed algorithm is detailed and accurate.

We still talk of face (and facial feature) detection, rather
than shape modeling, because the algorithms developed
herein correspond to this category. Furthermore, our algo-
rithm does not make use of any learned model as in [2, 12].
Instead, our algorithm is based on the generic training of
classifiers robust to shape and texture variations due to ex-
pression, pose and illumination changes. The training of
such classifiers has proven difficult in the past. This is

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

Figure 1. Shown here is an example of accurate and detailed face detection in each of the frames over a video sequences of an ASL
sentence. The top row shows the automatic detection obtained with the algorithm defined in this paper. The bottom row provides a manual
detection for comparison.

due to the nature of each facial feature. For example, an
eye can be open or close, and when open the iris may be
looking at different directions. Add illumination changes
to this generative process, and the task of detecting eyes
becomes extremely challenging. Indeed several algorithms
have been designed to specifically address this single issue
[10]. Here, we take a different view. First, to detect each fa-
cial feature (herein referred as class) under varying genera-
tive condition, we employ an algorithm that learns to divide
the data into an appropriate number of subclasses. Each
of these subclasses will represent a distinct image condi-
tion that cannot be learned in conjunction with the others
when using the learning methods of choice. This process
facilitates the detection even under extreme conditions, yet
may not guarantee accurate detection. To provide precise
detections, we learn to discriminate between the surround-
ings of each facial feature from itself. This prevents detec-
tions in areas around the actual feature and improves accu-
racy. Once a large number of such classifiers provide a pre-
detection of the facial features, we employ edge detection
and color to find the connecting path between them. This
results in the final detection shown in Fig. 1. We provide
experimental results on the detection of these facial features
over video sequences of ASL sentences (such as that in the
figure) where the expression, pose, and illumination over
the facial features vary substantially. Our videos also in-
clude some partial occlusions, but we do not consider rota-
tions beyond 25o in each direction since this would result in
large self-occlusions.

2. Face Detection in Video

Before we can do facial feature detection, we need to find
where the faces are in the image. Many algorithms already
exist for this. A fast and reliable algorithm for this purpose
is the cascade-based face detection algorithm of Viola and
Jones [14]. A face detection example obtained with this
algorithm is given in the top row in Fig. 2. As any other
detector, Viola and Jones algorithm will sometimes detect
the same face twice at different scales or will detect faces
where there are none. These two cases are depicted in the
examples shown in the first row in Fig. 2. Errors such as

these can be readily detected in video sequences using a
Gaussian model.

Figure 2. 1st row: Original detection of three consecutive frames
using the algorithm of [14]. 2nd row: Corrected results using a
Gaussian model.

Let f t = (x, y, s)T , where (x, y) is the detected face
center, s the scale, and t the frame number. We now fit
a Gaussian model over the face detection in all frames,
N(µf ,Σf), with µf = (µx, µy, µs)T the mean and Σf =
diag(σx, σy, σs) the variances. If several faces are de-
tected in each image, they can be described as fti =
(xti, yti, rti)T , where the maximum of i may vary as t in-
creases. The Mahalanobis distance,

(fti − µf)
T Σ−1

f (fti − µf)

provides a simple measure to detect outliers. In our experi-
ments, we consider distances larger than 1 to correspond to
false detections. This value has been found to be adequate
on the training images.

The process described in the preceding paragraph will
provide the number of faces detected over the video se-
quence. If a frame has one or more of these faces miss-
ing (false negative), this will be directly specified by the
different values that i takes at that frame. The location of
the missed faces can be estimated using the same Gaussian
model presented above, since this will provide a smooth
transition between frames. It is worth mentioning here that
we only considered a face has been missed when the num-
ber of frames where the maximum of i is smaller than their
neighbors is 2. This allows faces to appear and disappear

at any time, although this is not the case in the video se-
quences we will use in this paper. An example of this pro-
cess is shown in Fig. 2, where the bottom row shows the
corrected detection over the same three frames shown in the
top row.

3. Eyes Detection

After (holistic) face detection, eyes are the facial feature
to have received the largest attention, mostly because these
play a major role in face recognition and human-computer
interaction problems. Unfortunately, accurate detection of
the eye centers has been difficult to achieve, in many occa-
sions being required to resort to highly sophisticated meth-
ods to achieve this goal [10].

A major reason behind the difficulty of precise eye cent-
ner detection is the high variability of these. Although most
eyes may seem quite the same at first, closer analysis of a
set of cropped eyes (i.e., in isolation) revels a different pic-
ture. Eyes may have very distinct shapes (mostly across
ethnicity and race, but not exclusively), pupil size, and col-
ors. Furthermore, cast shadows, glasses, and lighting have
a strong influence on how eyes are seen in an image. On top
of it all, eyes can be open, close or any way in between, and
the iris may be pointing at any direction. For now we are
interested in finding the center of the eye, regardless of the
position of the iris, as well as the bounding box of the eye
region (similar to that used to delineate the face). This can
be considered as a first crude detection of the eye.

The common approach to building a classifier that learns
this high variability of eyes has met with difficulties, even
when powerful non-linear algorithms and thousands of
training examples have been used. A second problem is
that the resulting classifier may be able to give an estimate
over the position of the eye’s location, but fail to provide
an accurate detection of its center. To resolve these issues
without resorting to complex algorithms, we will use the
idea of Subclass Discriminant Analysis (SDA) [17]. In the
2-class classification problem, the goal of SDA is to learn
to discriminate between the samples in the two classes by
dividing these into a set of subclasses. The algorithm starts
with a single subclass per class. If this is not sufficient to
successfully separate the training sample in the two speci-
fied classes, the algorithm divides each class into two sub-
classes. This process is repeated until the training samples
are correctly classified or until a stability criterion of the
generalized eigenvalue decomposition equation is attained
[17]. Here, we use this main idea but provide a slightly dif-
ferent formulation. In our approach, each class is divided
into a number of subclasses using the well-known K-means
clustering algorithm because this permits to model the many
non-linearities of the training data efficiently. As to how
many subclasses, the stability criterion of [8] is utilized,
which (in our experiments) provided a value of K = 15.
This addresses the first of the issues mentioned at the begin-

ning of this paragraph. The second problem, that of provid-
ing a precise detection of the eye center, can now be nicely
addressed using the same formulation. Note that we are yet
to define what the two classes of our algorithm are. One is
the eye itself, and we can use thousands of images of eyes
to train the classifier. The other class is key for the accurate
detection of the first class. This is defined next.

We note that when a classifier does not precisely detect
the facial feature it has been trained on, it usually provides
a close estimate. This is because cast shadows, eyeglasses
and others will make a neighboring area look more like an
eye to the classifier. To resolve this, we can train the classi-
fier to discriminate between eyes and their neighboring ar-
eas. This will create a pulling effect toward the desirable lo-
cation. Similar ideas have been successfully used for (holis-
tic) face detection [13]. For eye detection, the first class will
be the eyes, represented by 941 images of cropped eyes,
while the second class will correspond to copped images of
the same size (24×30 pixels) located in the neighboring ar-
eas of the eye. Fig. 3 shows how the eye window is centered
(class 1) while the eight accompanying background win-
dows (class 2) are located off center. This yields a total of
7, 528 background images. To increase robustness to scale
and rotation, we expanded the training set by including the
images obtained when re-scaling the original training im-
ages from .9 to 1.1 at intervals of .1, and by adding random
rotated versions of them within the range of −15◦ to 15◦.
Images are mean- and norm-normalized to make them in-
variant to the intensity of the light source. We also trained
two independent classifiers, one for the left eye and another
for the right. In each case, we obtained a subspace represen-
tation, V, where the discrimination between the two classes
is maximized [17].

Figure 3. The red star in the figure corresponds to the center for the
eye window, used to generate the training data for eyes. The blue
dots represent the window centers for the background samples.
The distance from the eye center and the background window is
set to 24 pixels.

To detect the eyes in a new image, we do an exhaustive
search in a pre-specified region within the face detection
box. This potential eye regions were obtained from a statis-
tical analysis of the eye location over the manually detected
eyes previously used to train our classifiers. The goal is
to establish where the eyes are with respect to the bound-
ing box found by the holistic face detector used. These re-
gions are shown in Fig. 4. In actuality, in the figure, we
show two eye regions per eye. To detect the eye centers in

a previously unseen face, we first search for them within
the smaller green region (since this includes ∼ 90% of the
eye centers in our training set). If the eye’s centers are not
successfully located in this region, we move our search to
the wider blue region (which includes 100% of the training
cases). These regions are in effect the priors of our classi-
fier, and although one could also estimate the distribution
within them, a simple uniform probability provides the re-
sults we need. Note that these search regions are not only
tuned to the classifiers previously defined, they also make
the search much faster and robust.

As in training, the test image is also re-scaled at s =
{1.1, 1, 0.9}. At each scale, each of the cropped images
xsj , of 24×30 pixels and centered at the jth pixel within the
eye-search region, is compared to the learned subclasses,

arg min
i

(VT xsj − VT µi)T VT Σ−1
i V(VT xsj − VT µi),

where (µi,Σi) are the mean and covariance matrix of the
ith subclass, with subclasses 1 through K representing the
first class (eye) and subclasses K + 1 to 2K the second
class (background). As mentioned earlier, subclass discrim-
ination analysis is computed in a subspace defined by the
projection matrix V [17]. The minimum of these distances
gives the class label of the jth position at scale s within the
eye region shown in Fig. 4(a). Let us denote this class label
as D(usj , vsj , s), where (usj , vsj)T is the center opossi-
tion of the window image xsj , and s is the scale. The re-
sults obtained at different scales are normalized and added,
D(uj , vj , 1) =

∑
s D(usj/s, vsj/s, s/s). This provides a

voting over each location. Two examples are shown in Fig.
4(b). Detected eye regions having a small overlap with the
top voted region are reclassified as background. The final
estimation of the eye position (center and bounding box) is
given by the mean of all resulting overlaps, Fig. 4(c).

If a video sequence is available, as it is the case in our
application, we can further refine the detection as we did in
Section 2 for faces. Here, we use a similar Gaussian model
to that employed earlier. The only difference is that this
modeling includes the positions of the two eyes as well as
the angle θ defined between the horizontal and the line con-
necting the two eye centers. Detected outliers (i.e., false de-
tections) are eliminated and substituted by an interpolation
between the previous and subsequent frames with correct
detection.

4. Detecting the Eye Shape

With the face and eyes detected, we can move to the next
phase of extracting the detailed information we need. The
very first thing we need to do is to provide the left and right
margins for each eye. This we can do if we successfully
detect the eye corners. To achieve this, we repeat the ex-
act same process defined in Section 3 for detecting the eye
centers but apply it to the detection of corners. The same

(a)

(b)

Scale 1.1

100 200 300 400

50

100

150

200

250

Scale 1.0

100 200 300

50

100

150

200

250

Scale 0.9

100 200 300

50

100

150

200

Voting

100 200 300

50

100

150

200

250

Scale 1.1

100 200 300 400 500

100

200

300

Scale 1.0

100 200 300 400

100

200

300

Scale 0.9

100 200 300 400

50

100

150

200

250

Voting

100 200 300 400

100

200

300

(c)
Figure 4. (a) Priors: region where the eye centers are in the training
images. (b) Voting: results of the detection of the eye centers at
different scales and positions. (c) Final detection of the eye region
and center.

process is needed here because eye corners also conform to
a large variety of shapes, textures and colors (makeup and
eyeglasses being a major problem that needs to be learned).
We build two detectors: one to detect inner corners and an-
other for the outer. We train on the left eye and apply it to
detect both. To detect the corners of the right eye we sim-
ply flipped the image (i.e., mirror image). An eye corner
detection is shown in Fig. 5.

The next step is to delineate the iris region. In grayscale,
the iris is almost always the darkest area within the eye de-
tected region (regardless of eye color). The iris is thus read-
ily detected as the minimum of all the average circle areas,
which can be defined as a convolution,

ImP = conv(Im,H)

(up, vp) = arg min
u,v

ImP(u, v),

where Im is the normalized grayscale images and H is a
circle mask of radius rI . The iris radius rI is learned (inde-
pendently) for each subject as the one that gives the highest
average gradient in ImP. This method could have false de-
tection if the image included heavy shadows or dark makeup
around the eye area. To prevent these false detections, we
first obtain all local minima and then select the one that
has the largest gradient between each detected local mini-
mum and the eye. The highest gradient will be given when
moving from the darkness of the iris to the whiteness of the
conjunctiva, making it a robust detector. Fig. 5 shows the
detected iris as a circle.

While the iris region is dark, the eye lids are of skin color.
This is especially true for the lower lid, since this has a very
limited mobility and is not highly affected by deformations,

shadows and others. However, the lids need closer analysis
becuase makeup and small occlusions (such as eyeglasses)
may cause problems. To address this, we test the correlation
of the lid with various line orientations θ. The one that gives
the highest average gradient in its normal direction is cho-
sen as the best match. Having the eye corners and points
for each of the lids, the contours can be build by fitting a
cubic spline through the detected points. The final result is
illustrated in Fig. 5.

Figure 5. Eye corners are represented with an asterisk. The iris is
shown as a circle, of which, the red part is the visible component.
The upper and lower contours of the shape of the eye are shown in
blue.

5. Detection of Other Facial Features

The approach defined above can now be used to detect
the remaining of the facial features. Moreover, with a good
detection of the face and the eyes, the location of the rest
of features is already approximately known. The easiest of
these are the nose and the eyebrows. For example, the x
position of the eyebrows is very restrictive, while their y
position cannot vary much. Since the eyebrows are either
darker or lighter than the skin, it is easy to detect these by
searching for non-skin color in the region above the eyes.

To model skin color, we use a Gaussian model de-
fined in the HSV color space, N(µc,Σc), with µc =
(µH , µS , µV)T and Σc = diag(σH , σS , σV). Over 3 mil-
lion skin-color sample points were used to train this model.
The pixels above the eye regions that do not fit to the color
model N(µc,Σc) are eliminated first. A Laplacian operator
is then applied to the grayscale image above the eyes. From
the remaining of the pixels, the ones with highest gradient
in each column are kept as potential descriptors of the eye-
brows. A binary image morphology is applied to the result
so as to obtain a uniform region. Only the largest, continu-
ous region is kept. Two results are shown in Fig. 6.

(a)

(b)
Figure 6. Two examples of eyebrow detection. (a) Binary descrip-
tion of the brow region. (b) Final contur detection.

The position of the nose is arguably the easiest to esti-
mate, because contrary to other features such as the eyes,

brows and mouth, the nose cannot undergo large deforma-
tions. However, extracting the contour of the nose is very
challenging, since this is highly influenced by cast shadows
or unclear texture. Cast shadows are especially strong for
caucasians, who have larger noses. Smoothness of texture
is more typical of Asian faces, making it difficult to specify
where the nose ends (even during manual detection). What
we do know is that the nose should be within the two eyes
about the x axis and below these about the y axis. The nose
region is thus defined as that below the lower eye lid and
between the two eye centers.

We train a nose classifier following the exact same pro-
cedure detailed in Section 3. This provides a bounding box
describing the location of the nose, Fig. 7(a). To extract
the nose contour, we calculate the gradient of the image and
generate its projection onto the x and y axes, Fig. 7(b).
This gives us two histograms of the shape, Gx and Gy . To
eliminate outliers, such as shadows and makeup, we find
the bounding box containing max(Gx)/2 and max(Gy)/2.
This provides a tighter, more precise estimate of the loca-
tion of the nose. The nostrils are detected as the two dark-
est (i.e., two minima in graylevel) points within this tighter
bounding box, Fig. 7(b). The outer gradient curve of this
new bounding box is considered the nose edge. To improve
accuracy, we also impose the nose curve to move around
the pixels with lowest graylevel value within this detected
gradient region/trajectory. The final result is shown in Fig.
7(b).

Scale 1.1 Scale 1.0

Scale 0.9 Voting

20 40 60 80

5

10

15

20

25

30
0 0.02 0.04 0.06 0.08

5

10

15

20

25

30

20 40 60 80
0

0.02

0.04

0.06

0.08

(a) (b)
Figure 7. (a) Shown here is an example of nose detection using the
subclass classifier defined in this paper. Refinement is done with a
voting approach over various scales. (b) From left to right and top
to bottom: gradient of the nose region found in (a), y projection
of the gradient, x projection, and final detection of the nose shape
and nostrils.

The mouth is highly deformable, making an accurate
and precise detection challenging. Sophisticated algorithms
have been recently defined to address this problem [3].
Here, we use our methodology to derive a fast, accurate and
detailed detection without the need to resort to complex or
time consuming tasks. To this end, a mouth corner detec-
tor is defined using the subclass-based classifier presented
in Section 3. We only train a left mouth classifier. To de-
tect the right corners, we create mirror images of the testing
windows. An example is given in Fig. 8(a). The bounding

box of the mouth is obtained following the same procedure
described above for the nose, Fig. 8(b). Mouths are rich
in color, which makes the final process of delineating them
feasible. Here, we use a similar process to that employed
earlier: skin color and Laplacian edge detection. In partic-
ular, we extract three features, given by saturation, hue, and
Laplacian edges. Each of these masks are threshold at val-
ues Ts, Th and Tg before being combine into a single mask
response. Ts is set as the average saturation value in our
color model. Th is set as the mean hue minus one third of
the standard deviation. Tg is the mean of the gradient. An
example result is shown in Fig. 8(b). The final extraction of
the contour of the upper and lower lips are given in by the
outer contour of the mouth mask, Fig. 8(b).

Scale 1.1 Scale 1.0

Scale 0.9 Voting

20 40 60 80 100 120

10

20

30

40

50
0 0.05 0.1 0.15 0.2

10

20

30

40

50

20 40 60 80 100
0

0.02

0.04

0.06

(a) (b)
Figure 8. (a) Mouth corner detection. (b) Gradient of the mouth
window, its x and y projection, and the final result.

To conclude, we only need to delineate the bottom limit
of the face, i.e., the chin. The chin is generally given by a
slightly curve edge below the mouth. However, this can be
easily occluded by cast shadows or, in ASL, by the hand. To
address this issue, we first extract the edges from a bound-
ing box located immediately below the mouth and then find
the best match between the edge points and a quadratic
(ellipsoidal-like) curve. The shortest distances from the
points to the best fit, d, are calculated and assigned positive
or negative labels depending on whether these are above
or beneath the current best fit. A Gaussian model is fitted
to this result, N(µd, σd). The edge points with distance |d|
larger than Td pixels are eliminated, with Td being the larger
one of 10 and 2σd. The fitting process is repeated over the
remaining points. The process is reiterated until no points
are excluded. The remaining of the points corresponds to
the detection of the chin. Examples of the final fit were
given in Fig. 1. Three examples with occlusions are now
shown in Fig. 9.

Figure 9. A few examples of chin detection with partial occlusions.

6. Experimental Results

As promised, we now illustrate the uses of the proposed
approach on a set of video sequences of ASL sentences,
where the facial expression plays a major role. We used
ten video sequences of approximately 76 frames, each se-
quence corresponding to one of 10 different ASL signers.
This provides us with a total of 766 frames. Each face is
enclosed in a window of approximately 300 × 300 pixels.
We want to see how our face detection compares to that of
manual detection.

To properly compare our results with those obtained with
manual detection, we need to have a representation that is
common to both. For this, we first used the method defined
in this paper to find the shape (contours) for each of the
internal facial features and the chin. We then resample these
curves with a total of 98 equally distanced feature points.
The corner points specify the beginning and end of a curve
and facilitate comparison with a manual marking result. To
be robust to temporary occlusions and noise, a Kalman filter
is utilized, which takes into account the motion continuity
in the video sequence. An example was shown in Fig. 1.
We now show five additional examples in Fig. 10.

To perform a fair comparison with a manual detection
result, we provided three “judges” with specific instructions
on how to mark 139 feature points around the same facial
features detected by our algorithm. The judges had the op-
tion of magnifying the images at each location to facilitate
accurate detections. After marking each image, the facial
feature contours were obtained with a least-squares fit. Here
too, each resulting curve was resampled with a total of 98
feature points following the same procedure defined in the
preceding paragraph. A result is shown in the second row
in Fig. 1.

The process of resampling the manual and automatic
detections with the same facial features provides a simple
mechanism to calculate their difference. A comparison over
the 700 frames used gives a mean error (i.e., the difference
between the two) of 6.23 pixels and a standard deviation
of 1.52 pixels. In terms of face size, we can estimate the
percentage of error as E = e

2r , where e is the error in pix-
els and r the radius of the face (also in pixels). Using this
equation, the percentage of error of our automatic estimate
is 2.1%.

To determine how accurate this result is, we want to
know what is the average difference between manual mark-
ings. That is, when different judges do the marking, the
final result varies. We want to know what is the usual (ac-
ceptable) variability. A comparison among judges resulted
in an average difference of 4.2 pixels with a standard devi-
ation of 1 pixel. This corresponds to a percentage of error
of 1.5%, which is only slightly better to that given by our
automatic detection. We can hence conclude that the pro-
posed algorithm provides a very good estimate on the video
sequences used here.

Figure 10. Shown here are five examples of the automatic detection of faces and facial features as given by the proposed approach.

7. Conclusion

Considerable advances have been recently registered in
the area of face detection. However, few address the is-
sue of detailed and accurate facial feature detection. In this
paper we have presented an approach to remedy this short-
coming. Our method is based on learning to discriminate
between features and their surroundings and on a voting
strategy over different scales. Facial features are then de-
lineated using gradient and color information. Results on
700 frames show that the proposed algorithm is comparable
to manual marking.

Acknowledgments

This research was partially supported by NSF grant
0713055 and NIH grant R01 DC 005241.

References

[1] R. Brunelli and T. Poggio, “Face recognition: features versus
templates,” PAMI 15:1042-1053, 1993. 1

[2] T.F. Cootes, C.J. Taylor, D.H. Cooper and J Graham, “Active
shape models – their training and application,” CVIU 61:38-
59, 1995. 1

[3] F. De la Torre, J. Campoy, Z. Ambadar and J.F. Cohn, “Tem-
poral Segmentation of Facial Behavior,” ICCV, 2007. 5

[4] P. Ekman and W.V. Friesen, “The Facial Action Coding Sys-
tem: A Technique For The Measurement of Facial Move-
ment,” Consulting Psychologists Press, 1978. 1

[5] B. Heisele, T. Serre, M. Pontil and T. Poogio “Component-
based Face Detection,” CVPR, pp. I.657 -662, 2001. 1

[6] I.L. Dryden and K.V. Mardia, “Statistical Shape Analysis,”
John Wiley, 1998. 1

[7] A.M. Martinez, “Recognizing Imprecisely Localized, Par-
tially Occluded and Expression Variant Faces from a Single
Sample per Class,” PAMI 24:748-763, 2002. 1

[8] A.M. Martinez and M. Zhu, “Where are linear feature extrac-
tion methods applicable?,” PAMI 27:1934-1944, 2005. 3

[9] M.S. Messing and R. Campbell, “Gesture, Speech, and Sign,”
Oxford University Press, 1999. 1

[10] T. Moriyama, T. Kanade, J. Xiao and J.F. Cohn, “Metic-
ulously Detailed Eye Region Model and Its Application to
Analysis of Facial Images,” PAMI 28:738-752, 2006. 1, 2,
3

[11] M. Pantic and L.J.M. Rothkrantz, “Automatic analysis of
facial expressions: the state of the art,” PAMI 22:1424-1445,
2000. 1

[12] S. Romdhani and T. Vetter, “3D Probabilistic Feature Point
Model for Object Detection and Recognition,” CVPR, 2007.
1

[13] K. Sung and T. Poggio, “Example-based learning for view-
based human face detection,” PAMI 20:39-51, 1998. 3

[14] P. Viola and M. Jones, “Rapid Object Detection using a
Boosted Cascade of Simple Features,” CVPR, pp. I. 511-518,
2001. 2

[15] D. Vukadinovic and M. Pantic, “Fully automatic facial fea-
ture point detection using Gabor feature based boosted classi-
fiers,” SMC, pp.1692-1698, 2005. 1

[16] M. Yang, D.J. Kriegman, and N. Ahuja, “Detecting Faces in
Images: A Survey,” PAMI 24:34-58, 2002. 1

[17] M. Zhu and A.M. Martinez, “Subclass Discriminant Analy-
sis,” PAMI 28:1274-1286, 2006. 3, 4

