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Abstract

This paper addresses the limitation of current multilin-
ear techniques (multilinear PCA, multilinear ICA) when ap-
plied to face recognition for handling faces in unseen illu-
mination and viewpoints. We propose a new recognition
method, exploiting the interaction of all the subspaces re-
sulting from multilinear decomposition (for both multilinear
PCA and ICA), to produce a new basis called multilinear-
eigenmodes. This basis offers the flexibility to handle face
images at unseen illumination or viewpoints. Experiments
on benchmarked datasets yield superior performance in
terms of both accuracy and computational cost.

1. Introduction
In biometric based security applications, facial images

are an important modality for identification. In order to
be robust, face recognition algorithms must correctly rec-
ognize a face irrespective of variations in facial expression,
viewpoint or lighting condition. Popular face recognition
algorithms such as the Eigenfaces [14] and Fisherface [5],
are only suitable for situations when the identity of the per-
son is the only factor being considered, encountering diffi-
culty when there are variations in lighting, expression etc.
This is because these linear models are not intrinsically
equipped to deal with variations in more than one factor.
Attempts have been made to overcome limitations imposed
by linear models by introducing non-linearity in the clas-
sification stage, but this incurs higher computational costs
[12].

Recently, multilinear models [17] have been proposed
as an alternative to accommodate variations across multi-
ple factors in a natural way. Facial images are organised as
a data tensor, with different factors of variation modelled
as different modes of the data tensor. Subsequent appli-
cation of Higher Order SVD, a generalisation of SVD for
higher order matrices, generates subspaces related to every
factor of variation. The power of such modelling lies in
that it enables us to construct effective representations, de-

pending on the variations observed in each subspace and
the importance given to the associated factor [17]. The ef-
fectiveness of such a representation results in better face
recognition performance than the linear models, as reported
by Vasilescu et.al. in [16]. However, in their approach,
only the person-mode decomposition is used for recogni-
tion, whilst other mode decompositions are used optionally
to reduce the dimensionality of associated vector-spaces
(e.g. removing the dimensions with low variance). More
precisely, if we want to identify persons when the facial im-
ages are only subjected to varying lighting and viewpoints,
a set of eigenmodes are calculated for each combination of
lighting and viewpoint. These eigenmodes are similar to
eigenfaces, however, whilst eigenfaces capture variations
over all the images, eigenmodes capture variations over im-
ages at particular combinations of lighting and viewpoint.
These eigenmodes constitute the basis of each vector space,
and thus there is a separate vector space for each combina-
tion of lighting and viewpoint. The notion of multilinearity
implies that for training images, each person is defined by
the same coefficient vector across all the bases. A test image
is projected on every basis and a set of candidate coefficient
vectors is generated. The set is then compared pair-wise
to the set of stored person-specific combination vectors and
the best match is found.

A similar approach has also been used in [18] for ex-
pression invariant face recognition, in [9] for simultaneous
super-resolution and recognition and in [10] for gait recog-
nition. A similar recognition approach has also been used
for Multilinear ICA decomposition [15]. An analysis of
these approaches reveals the following shortcomings:

1. Though multilinear decomposition is used, essentially
they compute a set of coupled bases, based only on
person-mode decomposition. This, we believe, is a
severe under-utilisation of the multilinear decompo-
sition, which provides a mechanism to unearth the
hidden multilinear relationship between all factors of
variations (i.e. person, lighting and viewpoint)

2. The recognition procedures in [16] [18] need to per-
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form linear projections at each lighting-viewpoint
combination, increasing computational cost with in-
crease in the number of lighting-viewpoint combina-
tions.

3. Testing images at novel lighting or viewpoints has not
been investigated well, as the projection bases do not
contain any information regarding variations in these
factors.

Based on these observations and motivated to fully use the
information of multilinear relations between the factors, we
propose a recognition approach overcoming the shortcom-
ings outlined above. In particular, we base our approach
on the core tensor, which represents how the various factors
interact with each other in a multilinear way to create an im-
age. When the core tensor is multiplied by the pixel space
eigenvectors (i.e. eigenimages), it transforms the eigenim-
ages into eigenmodes. Contrary to the previous person-
specific eigenmodes, these multilinear eigenmodes are the
result of interaction between eigen-persons, eigen-lightings
and eigen-viewpoints and used as the projection basis in the
proposed method. Also the proposed basis contains infor-
mation on the variations of all the factors, thereby rendering
itself suitable to handle unseen variation in factors. A lin-
ear projection operator is then defined over this basis, giv-
ing a joint person-lighting-viewpoint description for a facial
image. Further, we provide a mechanism to compute the
description vectors for the training set in an efficient way
directly from the decomposition result. We store the de-
scription vectors for all the training images along with the
projection operator. Given a test image, we find the descrip-
tion vector by employing the projection operator and then
identify the closest matching training image as the identity
of the test image.

Extensive experimentation comparing our proposed
method with the existing tensor based methods[16] shows
that the proposed method has two distinct advantages. First,
our proposed approach performs much better than the exist-
ing approaches in terms of correctly identifying persons in
the novel scenarios proving that our method, based on the
multilinear relations between all the factors is more flexible
in dealing with unseen variations. Second, in most of the
experiments our proposed approach took less time to test
an image than the existing approach. This is because, we
exploit the fact that in some situations, even if there is a
huge number of actual lighting or viewpoint instances, few
eigenlightings and eigenviewpoints can capture most of the
variations and thus the method lends itself to an effective
computation. We note that current tensor approaches con-
centrate in the decomposition of the tensor [13], whilst we
focus in exploiting the decomposition in a novel way for
recognition.

2. Background
In this section we review multilinear PCA and ICA, as

well as existing approaches for facial recognition in multi-
linear frameworks.

2.1. Multilinear PCA

PCA of an ensemble of images is performed by comput-
ing SVD of the image data matrix, D ∈ RI1×I2 , whose
columns contain zero-mean vectored images of size I2.
SVD orthogonalizes the two associated vector spaces of the
two mode matrix D and decomposes the matrix as,

D = UΣV T (2.1)

where Σ is a diagonal matrix containing ordered eigenval-
ues and U is a orthonormal matrix containing ordered prin-
cipal direction of variation (principal components) in its
columns. Similarly, N-mode SVD, a generalization of the
SVD for higher order matrices [6], orthogonalizes “N” as-
sociated vector spaces of an N-way matrix (or N’th order
tensor). If D is a n’th order tensor and D ∈ RI1×I2×...×In ,
application of n-mode SVD orthogonalizes “n” associated
vector spaces of D and decomposes the tensor as,

D = S ×1 U1 ×2 ...×k Uk...×n Un (2.2)

where, ×k denotes mode-k product and the orthonormal
matrix, Uk contains ordered principal components for the
k’th mode. S is called the core tensor. For higher order
cases (n > 2), S is not guaranteed to be diagonal, though
there is an ordering in the subtensors of S and the subten-
sors are mutually orthogonal 1. The decomposition algo-
rithm is as follows:

1. For k = 1, ..., n, compute matrix Uk by computing
SVD on the mode-k flattening of the tensor D and set
the left singular matrix as Uk.

2. Compute core tensor S as,

S = D ×1 U1T

×2 ...×k UkT

...×n UnT

(2.3)

2.2. Multilinear ICA

ICA is a generalisation of PCA, in the sense that, while
PCA only decorrelates the data, ICA seeks to make the data
as independent as possible. ICA can be applied in two dif-
ferent ways [4]. In Architecture I, ICA is applied to DT

to generate a set of independent components. Essentially,
ICA starts with the PCA decomposition of (2.1) and rotates

1A subtensor Sin=α for S ∈ RI1×I2×...×In is obtained by fixing
the n’th index to α. Orthogonality implies 〈Sin=α, Sin=β〉 = 0 for
α 6= β and ordering implies ||Si1 || ≥ ||Si2 || ≥ ... ≥ ||Sin ||



the principal components such that they become statistically
independent [3]. The rotation is performed as,

DT = V ΣUT

= (V ΣW−1)(WUT )
= KT CT

(2.4)

where W is an invertible transformation computed by the
ICA algorithm and C = UWT contains the set of indepen-
dent components in its columns. The rotation matrix W can
be computed by first setting an objective function that holds
the notion of the specific form of statistical independence
we are seeking and then by optimizing the objective func-
tion [1]. Dimensionality reduction is usually performed in
the PCA stage. In Architecture II, ICA is applied to D to
generate a set of independent coefficients for the data. ICA
is applied after PCA, to rotate the principal components in
such a way that the coefficients become statistically inde-
pendent (the component vectors need not be). Starting from
(2.1) the rotation is performed as,

D = UΣV T

= (UW−1)(WΣV T )
= CK

(2.5)

where C = UW−1 is the basis matrix. Again, W is an
invertible matrix that is computed by the ICA algorithm.
Similar to the multilinear PCA, multilinear ICA is com-
puted by performing ICA and calculating the basis matrix
at each mode [15]. Decomposition by multilinear ICA is
represented as,

D = Z ×1 C1 ×2 ...×k Ck...×n Cn (2.6)

where, Z is called the core tensor and Ck is the basis matrix
for k’th mode. The algorithm for multilinear ICA decom-
position is as follows,

1. For k = 1, ..., n, compute matrix Uk and W k by com-
puting ICA on the mode-k flattening of the tensor D
and set,

(a) Ck = UkW kT

for multilinear Architecture I

(b) Ck = UkW k−1
for multilinear Architecture II

2. Compute core tensor S as,

S = D ×1 C1+
×2 ...×k Ck+

...×n Cn+
(2.7)

where, Ck+
implies pseudoinverse of the matrix Ck.

2.3. Tensor Model for Face Recognition

Let us assume that our database contains images of per-
sons with variations in lighting and viewpoint only. The
tensor representation of the database is given by,

T (ip, il, iv) = IPip ,Lil
,Viv

(2.8)

where, IPip ,Lil
,Viv

is the image vector of ip’th person at
il’th lighting and iv’th viewpoint. T is a tensor of order 4
and,

T ∈ RNp×Nl×Nv×Nx

where, Np is the number of persons, Nl & Nv represent
the number of lighting and viewpoint instances respectively
and Nx is the size of the image vector. This tensor can
be decomposed using either Multilinear PCA, or Multilin-
ear ICA. Multilinear PCA yields four orthogonal subspaces,
wherein each subspace corresponds to one mode of varia-
tion. This is represented as follows:

T = S ×1 UP ×2 UL ×3 UV ×4 UX (2.9)

S is called the core tensor and the columns of UP , UL, UV

and UX define the person, lighting, viewpoint and the
pixel subspaces respectively. The columns in UX rep-
resent traditional eigenfaces and the columns of UP , UL

and UV , represent the N ′
p(N

′
p ≤ Np), N ′

l (N
′
l ≤ Nl)

and N ′
v(N ′

v ≤ Nv) dominant eigenvectors (or the princi-
ple axes of variation) of the person, lighting and viewpoint
subspaces respectively. We refer to these axes of variation
as eigen-person, eigen-lighting and eigen-viewpoint respec-
tively. The core tensor, S ∈ RN ′

p×N ′
l×N ′

v×N ′
x , controls the

mutual interaction between the person, lighting, viewpoint
and pixel subspaces. Multilinear ICA analysis of T pro-
vides us a set of four independent components, related to
each mode of variation as follows,

T = Z ×1 CP ×2 CL ×3 CV ×4 CX (2.10)

where Z is the core tensor and the columns of CP , CL, CV

and CX define independent components related to the per-
son, lighting, viewpoint and pixels respectively.

2.3.1 Existing recognition approach

In the Multilinear ICA(MICA) framework[15], recognition
uses the statistical independence property of ICA to
simultaneously recognise person, lighting and viewpoint.
However, if we are only interested in identifying person,
the recognition processes for MICA and Multilinear
PCA(MPCA)[16] are the same. Hence, we elaborate on the
recognition approach using Multilinear PCA decomposi-
tion, keeping in mind the differences for Multilinear ICA
that the core matrix S, and the subspace matrices should
be replaced by the core matrix Z, and corresponding ICA
basis matrices.

We start with the Multilinear decomposition of the
tensor T as defined in (2.9), from which we define , B as,

B = S ×2 UL ×3 UV ×4 UX (2.11)



Therefore, B ∈ RN ′
p×Nl×Nv×Nx . If Bperson denotes the

unfolding of the tensor B in the person mode, then

Bperson =


IP e

1 L1V1 IP e
1 L2V1 .. IP e

1 LNl
VNv

IP e
2 L1V1 IP e

2 L2V1 .. ..
.. .. .. ..
.. .. .. ..

IP e
N′

p
L1V1 .. .. IP e

N′
p

LNl
VNv


(2.12)

where, IP e
ip

Lil
Viv

is the image of ip’th eigenperson for the
il’th lighting and iv’th viewpoint. This can be rewritten as:

Bperson =
[

B(1,1) B(2,1) .... B(Nl,Nv)

]
(2.13)

where,

B(il,iv) =


IP e

1 Lil
Viv

IP e
2 Lil

Viv

....

....
IP e

N′
p

Lil
Viv

 (2.14)

B(il,iv) is used as the projection basis for the (il, iv)’th com-
bination. This results in Nl×Nv number of distinct projec-
tion bases. It is also evident from (2.11) and (2.9) that,

T = B ×1 UP

or, T(il,iv) = UP × B(il,iv)

or, IPk,Lil
,Viv

= ck × B(il,iv)

(2.15)

where, ck is the k’th row of the matrix UP and it is specific
to the k’th person. The recognition algorithm is based on
(2.15). A test image is projected on the basis of B(il,iv),
for all il and iv to generate a set of candidate coefficient
vectors {cil,iv

}. The best matching cpm
(i.e. that minimizes

||cp− cil,iv
||, for all il, iv and p) identifies the test image as

that of the person pm.

3. Proposed Recognition Approach

Motivated by our desire to exploit the multilinear rela-
tions amongst the factors, we present a new recognition ap-
proach using the information in the core tensor. We derive
the recognition scheme for the Multilinear PCA decompo-
sition. For recognition using Multilinear ICA, the core ma-
trix, S and the subspace matrices should be replaced by
the core matrix, Z and corresponding component matrices.
Starting from (2.9) we define A as,

A = S ×4 UX (3.1)

LetAperson denote the unfolding of the tensorA in the per-
son mode, then

Aperson =


IP e

1 Le
1V e

1
IP e

1 Le
2V e

1
.. IP e

1 Le
N′

l
V e

N′
v

IP e
2 Le

1V e
1

IP e
2 Le

2V e
1

.. ..
.. .. .. ..
.. .. .. ..

IP e
N′

p
Le

1V e
1

.. .. IP e
N′

p
Le

N′
l
V e

N′
v


(3.2)

where, IP e
ip

Le
il

V e
iv

is the image of ip’th eigenperson for il’th
eigen-lighting and iv’th eigen-viewpoint. Further, Aperson

can be rewritten as,

Aperson =
[

A(1,1) A(2,1) .... A(N ′
l ,N ′

v)

]
(3.3)

where,

A(il,iv) =


IP e

1 Le
il

V e
iv

IP e
2 Le

il
V e

iv

....

....
IP e

N′
p

Le
il

V e
iv

 (3.4)

We define a multilinear eigen-space as,

Ã =


A(1,1)

A(2,1)

....

....
A(N ′

l ,N ′
v)

 (3.5)

Ã constitutes a vector space spanned by the rows of Ã. The
N ′

p × N ′
l × N ′

v rows combine elements of eigen-person,
eigen-lighting and eigen-viewpoint and form the basis of
this vector space. We call this basis multilinear eigenmodes
and use it to derive a description for a facial image. The
proposed basis has two distinct advantages. First, compared
to the conventional tensor based method, the proposed
basis involves eigenmodes across person as well as all the
factors of variation, thereby truly exploiting the multilinear
relations obtained from the multilinear decompositions.
Second, like PCA and unlike the conventional tensor based
method, the proposed method defines a unified basis for
projection. However, our proposed basis is physically more
interpretable than that of the PCA, in case of multi-factor
variation in the dataset.

The projection matrix, P for the basis Ã is,

P = Ã+ (3.6)

where, Ã+ is the Moore-Penrose pseudoinverse of Ã. Next
we will show that the coefficient vector of training images
for the projection matrix in (3.6) can be directly calculated
from the matrices UP , UL and UV in an efficient way.



Definition 1. Let us define UP as,

UP =


UP 0 0 0
0 UP 0 0
.... .... .... ....
.... .... .... ....
0 0 0 UP

 (3.7)

here, UP is repeated diagonally for Nl ×Nv times.

Let us define UL as,

UL =


UL 0 0 0
0 UL 0 0
.... .... .... ....
.... .... .... ....
0 0 0 UL

 (3.8)

here, UL is repeated diagonally for Nv times and it’s de-
fined as,

UL =



UL(1, 1)
UL(2, 1)

....
UL(N ′

p, 2)
UL(1, 2)

....

....
UL(N ′

p, Nl)


(3.9)

where UL(i, j) is a row vector of size N ′
p ×N ′

l defined as,

UL(i, j)(i+N ′
p×(k−1)) =

{
UL(j, k) for k = 1, ..., N ′

l

0 otherwise
(3.10)

Let us define UV as,

UV =



UV (1, 1)
UV (2, 1)

....
UV (N ′

p ×N ′
l , 1)

UV (1, 2)
....
....

UV (N ′
p ×N ′

l , Nv)


(3.11)

where UV (i, j) is a row vector of size N ′
p×N ′

l×N ′
v defined

as,

UV (i, j)(i+N ′
p×N ′

l (k−1)) =

{
UV (j, k) for k = 1, .., N ′

v

0 otherwise
(3.12)

Theorem 1. Let M = UP × UL × UV . If mk is the k’th
row of the matrix M then,

mk = IPipLil
Viv

× P (3.13)

where, ip = ((k− 1) mod Np +1), il = ((d k
Np
e− 1) mod

Nl + 1) and iv = ((d k
Np×Nl

e − 1) mod Nv + 1).

Proof. See Appendix A for the proof.

It follows from the above theorem that matrix M =
UP×UL×UV contains the coefficients of projection of all
the training images for the projection matrix P and thus pro-
vides an efficient way to compute the coefficient set. Fur-
ther it also provides insights on how the decomposition, pro-
jection matrix and the coefficients are related to each other.
Each row mk of the matrix M refers to a training image,
whose person, lighting and viewpoint indices are provided
by the above theorem. For testing we need to store the pro-
jection matrix, P and the coefficient matrix, M. The algo-
rithm for testing is given in the Algorithm 1.

Algorithm 1 Testing algorithm for the Proposed method

1. Given the test image IT , find the corresponding de-
scription vector mT as,

mT = IT × P

2. Use a Nearest Neighbour classifier to find the best
matching description vector mb i.e. that minimizes,

min
k
||mT −mk|| for k = 1, ..., (Np ×Nl ×Nv)

where, mk is the k’th row of the matrix M. The dis-
tance measure we use is the cosine distance. For two
vectors a and b the cosine distance between them is
defined as,

cosine dist(a, b) =
〈a , b〉
||a|| ||b||

3. The person identity, pT for the test image is the person
identity of the best matching vector mb and it is given
by,

pT = ((mb − 1) mod Np + 1)

As our method uses joint person-factor space descrip-
tion for recognition, we will refer to it as MPCA-JS or
MICA-JS, depending on the specific multilinear decompo-
sition used.



4. Experiments, Analysis and Evaluation

We used the Extended YaleB and PEAL databases in our
experiments. The Extended YaleB database contains im-
ages of 38 persons at 64 different illumination conditions
and at 9 different viewpoints for each illumination condition
[8] [11]. The PEAL database contains images of Chinese
nationals at different pose, expression and illumination[7].
For our experiments we have only chosen frontal images of
20 persons at 20 different illuminations. Prior to the ex-
periments, all the images were cropped and their eye-points
were manually aligned. Then all the image vectors were
normalized to unity. For HOSVD and other tensor opera-
tions, we used the tensor toolbox developed by Kolda et. al.
in MATLABTM [2]. FastICA c© package was used for ICA
and Multilinear ICA computation. For the PEAL dataset,
four set of experiments were performed with 5, 7, 9 & 11
lighting conditions as training while the rest were used for
testing. For experiments on the Extended YaleB database
30 lighting conditions at 5 viewpoints are used for training
and the rest for testing. Thus in the PEAL database, the test
images were at unseen lightings and in the Extended YaleB
database, the test images were at unseen lighting and view-
points. Each set of experiments was repeated 10 times on 10
random partitions of the database and average of the results
are reported. The performance of our proposed recognition
procedure is compared with the PCA[14], ICA[4], conven-
tional MPCA[16] and conventional MICA[15] methods of
face recognition.

Traditionally, when PCA is used for recognition, the
last few eigenvectors are removed to improve performance.
Here we used energy thresholding to retain top-k eigenvec-
tors such that,

min
k

∑k
j=1 λj∑n
j=1 λj

≥ thresh (4.1)

where, λj is the eigenvalue corresponding to the j′th eigen-
vector and λj−1 ≥ λj , n is the total number of eigenvectors
and thresh is the user specified threshold. In the case of
Multilinear PCA, the same energy thresholding was used
to select the “k” in each mode. In our experiments we set
0.96 as the threshold for the PCA based method, 0.96 as
the threshold for Multilinear PCA in pixel mode and 1.0 in
other modes. In the case of ICA and Multilinear ICA, we
maintained the same dimensionality as those of respective
PCA and Multilinear PCA and basis matrices were com-
puted using ICA-Architecture II. While PCA and ICA based
recognition methods used the Euclidian distance for com-
parison, multilinear based methods used Cosine distance,
which was used in previous research papers [16]. Table 1
and 2 show the results of experiments on PEAL and Ex-
tended YaleB databases respectively.

Accuracy (%)
Recognition
method

5 train 7 train 9 train 11 train

PCA 69.47 72.96 75.59 74.44
ICA 74.63 77.92 80.19 79.39
MPCA 73.23 78.42 81.14 77.39
MPCA-JS 86.20 90.58 93.50 93.67
MICA 74.26 80.46 81.23 79.50
MICA-JS 84.90 88.23 92.55 92.33

Table 1. Experimental results on PEAL lighting variation dataset.

As the Table 1 shows, our proposed recognition approach
improves the recognition performance significantly over the
conventional multilinear based approaches. While the con-
ventional MPCA is slightly better than PCA, our method,
MPCA-JS provides much better performance. This is also
the case with ICA, where conventional MICA outperforms
ICA and our method, MICA-JS, outperforms conventional
MICA. The best performance on this database is given by
MPCA-JS.

Recognition
method

PCA MPCA MPCA-JS

Accuracy (%) 72.45 38.70 85.45

Recognition
method

ICA MICA MICA-JS

Accuracy (%) 73.15 38.85 85.45

Table 2. Experimental results on Extended YaleB dataset.

Table 2 provides a set of results that is worth noting.
Specifically, MPCA and MICA actually fared significantly
worse compared with PCA and ICA, which is surprising.
However, the conventional multilinear methods only use
person-mode decomposition for recognition and hence they
are not able to truly realize the power of multilinear anal-
ysis. Our proposed method, which meaningfully uses de-
composition in all the modes, shows a much improved per-
formance when compared with the linear methods.

Test time for 100 test cases (sec.)
Recognition
method

5 train 7 train 9 train 11 train

PCA 0.14 0.17 0.22 0.26
MPCA 0.92 1.50 2.11 2.65
MPCA-JS 0.24 0.39 0.50 0.59

Table 3. Test time for 100 test cases on PEAL lighting variation
dataset.



Table 3 shows the time taken in testing by PCA, MPCA
and MPCA-JS respectively on the PEAL lighting variation
dataset. All the timings are for Matlab code running on a
Pentium dual core 1.86GHz system, having 2GB RAM. It
shows that MPCA-JS is more efficient for testing than the
existing multilinear recognition method.

5. Conclusions and Future Work
In this paper we exploited the interaction of subspaces,

resulting from multilinear analysis, to propose a novel face
recognition method capable of handling unseen variations
in images. Experimental results on both PEAL and Ex-
tended YaleB show the superiority of our proposed recog-
nition method over the conventional multilinear recognition
methods, whilst in some situations conventional multilin-
ear methods performed worse than the linear methods, our
proposed method consistently outperformed linear meth-
ods. Possible future works include understanding of the
proposed multilinear eigenmode space and exploiting any
structure therein to further improve the recognition perfor-
mance.
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A. Proof of the Theorem 1
Proof. Let us refer to Ã in (3.5), which is,

Ã =


A(1,1)

A(2,1)

....

....
A(N ′

l ,N ′
v)

 (A.1)

From the definition of A(il,iv) (3.4) we can observe that Ã
contains images of interaction between N ′

p eigen-persons,
N ′

l eigen-lightings and N ′
v eigen-viewpoints. The images

in Ã are organized in such a way that, the index for the
eigen-persons varies the fastest followed by the index of the
eigen-lightings and the index for the eigen-viewpoints varies
slowest. This structure implies that the image of interac-
tion between the i′p’th eigen-person, i′l’th eigen-lighting and
i′v’th eigen-viewpoint, IP e

i′p
Le

i′
l
V e

i′v
, can be found at the

(N ′
p ×N ′

l × (i′v − 1) + N ′
l × (i′l − 1) + i′p)’th row of Ã

We know that the image due to the interaction between
the i′p’th eigen-person, i′l’th eigen-lighting and iv’th actual
viewpoint, IP e

i′p
Le

i′
l
Viv

, can be calculated as,

IP e
i′p

Le
i′
l
Viv

=
N ′

v∑
i′v=1

UV (iv, i′v)× IP e
i′p

Le
i′
l
V e

i′v

=
N ′

v∑
i′v=1

{UV (iv, i′v)× (N ′
p ×N ′

l × (i′v − 1)

+N ′
l × (i′l − 1) + i′p)’th row of Ã}

= [iv’th row of UV ]× Y × Ã
(A.2)

where, Y is a selection matrix of size N ′
v×(N ′

p×N ′
l ×N ′

v)
whose i′v’th row is defined as,

Yi′v,k =


1 if k = {(N ′

p ×N ′
l × (i′v − 1)+

N ′
l × (i′l − 1) + i′p)}

0 otherwise
(A.3)

Clearly, the first row of Y has entry 1 at the (N ′
l × (i′l −

1) + i′p)’th position and the rest are zero, the second row
has entry 1 at (N ′

p ×N ′
l + N ′

l × (i′l − 1) + i′p)’th position
and the rest are zero, the third row has an entry 1 at (N ′

p ×
N ′

l × 2 + N ′
l × (i′l − 1) + i′p)’th position and the rest are

zero and so on. Hence if,

Z = [iv’th row of UV ]× Y (A.4)

then,

Z(i+N ′
p×N ′

l (k−1)) =

{
UV (iv, k) for k = 1, .., N ′

v

0 otherwise
(A.5)

where i = N ′
l × (i′l−1)+ i′p and Z is same as the definition

of UV (i, iv) in (3.12). Therefore, from (A.2) and (A.4),

IP e
i′p

Le
i′
l
Viv

= Z × Ã
= UV (N ′

p ×N ′
l (k − 1), iv)× Ã

(A.6)

Let us denote,
B = UV × Ã (A.7)

where UV is as defined in (3.11). From (3.11) and (A.6) it is
easy to see that UV transforms the images of Ã into the im-
ages, which are due to the interaction of N ′

p eigen-persons
and N ′

l eigen-lightings at Nv actual viewpoints. The orga-
nization of the images in B is similar to Ã. Now we can for-
mulate a similar argument to prove that pre-multiplication
of B by UL generates images of N ′

p eigen-persons at Nl ac-
tual lightings and Nv actual viewpoints. Let C = UL × B
then consequently pre-multiplication of C by UP generates
images of Np actual persons at Nl actual lightings and Nv

actual viewpoints. Let

D = UP × C
= UP × UL × B
= UP × UL × UV × Ã

(A.8)

The structure of D is again similar to Ã and the image of
ip’th person at il’th lighting and at iv’th viewpoint can be
found at,

(Np×Nl×(iv−1)+Nl×(il−1)+ip)’th row of D (A.9)

Let us define M = UP × UL × UV , then from (A.8) we
obtain,

D = M× Ã
=⇒ M = D × Ã+

= D × P

(A.10)

where P = Ã+. From (A.9) and from (A.10) we observe
that (Np × Nl × (iv − 1) + Nl × (il − 1) + ip)’th row of
M contains the coefficient of projection of the ip’th person
at il’th lighting and at iv’th viewpoint (IPipLil

Viv
), for the

projection matrix P . That implies that if mk is the k’th row
of the matrix M then,

mk = IPip Lil
Viv

× P (A.11)

where,

k = (Np ×Nl × (iv − 1) + Nl × (il − 1) + ip) (A.12)

Solving (A.12) for ip, il and iv we obtain, ip = ((k −
1) mod Np + 1), il = ((d k

Np
e − 1) mod Nl + 1) and

iv = ((d k
Np×Nl

e − 1) mod Nv + 1).


