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Abstract

We present a method for learning discriminative lin-
ear feature extraction using independent tasks. More con-
cretely, given a target classification task, we consider a
complementary classification task that is independent of the
target one. For example, in face classification field, sub-
ject recognition can be a target task while facial expression
classification can be a complementary task. Then, we use
labels of the complementary task in order to obtain a more
robust feature extraction, being the new feature space less
sensitive to the complementary classification. To learn the
proposed feature extraction we use the mutual information
measure between the projected data and both labels from
the target and the complementary tasks. In our experiments,
this framework has been applied to a face recognition prob-
lem, in order to inhibit this classification task from envi-
ronmental artifacts, and to mitigate the effects of the small
sample size problem. Our classification experiments show
an improved feature extraction process using the proposed
method.

1. Introduction

The task of a classification method is to automatically
learn a correspondence between a training data set (numeric
or symbolic) and a predefined set of discrete labels. The
goal is the optimal identification of new unseen samples us-
ing a classifier that is learned by minimizing some defined
empirical loss function. The empirical nature of this opti-
mization problem has been usually approached by making
use of the training data set and, moreover, incorporating any

available prior knowledge as an additional term in the loss
function.

During the past decades different classification algo-
rithms have been developed and successfully applied in
many situations. However, one of the main drawbacks of
visual data classification is the small sample size problem,
what makes difficult the generalization capability of any
classifier. For instance, in face recognition field, the iden-
tity of a set of subjects is modelled using a training set that
is, in theory, a sufficient sample of the full data set [14].
Nevertheless, training face sets often suffer from lack of
data [11], and this fact is even worse if we consider the full
range of possible appearance variations for a face: non uni-
form illumination, facial expression effects or even partial
occlusions. In that case, when the training data set is small,
the robustness of the learned classifier will be poor as well
as the capability of successful recognition in non-controlled
environments. This phenomenon has been mitigated with
the use of dimensionality reduction techniques to extract
relevant and discriminant information [5, 3].

In real world applications related to classification prob-
lems, we often have at our disposal additional information
about the problem domain that is usually neglected in the
classic pattern recognition field. This information might
be independent from the original classification task, but it
can be helpful if it is complementarily used in the learning
process. For example, in the case of face recognition men-
tioned above, faces can be labelled according to the subject
that appears in the image or according to the conditions of
acquisition. In that case, this second categorization can be
used as complementary information during the training pro-
cess of subject recognition task.

In this paper we propose a new use of systematic appear-
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ance variations to learn a more robust feature extraction for
subject recognition. The idea is to consider these effects
as a new classification problem (for example, to classify
the dominant illumination in a face image, or to classify
the facial expression) that can be seen as an independent
task. In this way, this extra face classification task can be
used to inhibit the confusion caused by these artifacts, that
can be consequence of non-controlled environment’s con-
ditions. More concretely, the extracted features keep the
information from the original data that is useful to perform
the subject recognition task and, moreover, this new feature
space does not preserve the information that allows the clas-
sification according the systematic appearance variations.

The outline of the paper is as follows: section 2 includes
a brief review of related work, while section 3 introduces
formally the problem and the notation. In section 4 we de-
scribe in detail the proposed feature extraction method. Af-
ter that, section 5 shows the performed performed and dis-
cuss the obtained results, and, finally, section 5 concludes
this work.

2. Related Work

A topic that is closely related to the proposed feature ex-
traction method is Multi-Task Learning (MTL). The MTL
approach is a new classifying methodology based on jointly
training multiple related tasks taking advantage of its rela-
tionship to improve the learning process of the individual
classification tasks. The previous works on MTL show in-
teresting improvements at two different levels: the accura-
cies of the methods increase (parallel transfer) when prob-
lems are jointly trained, and the number of samples needed
to train reliable classifiers decreases (sequential transfer).
The advantages of MTL have been experimentally validated
in the first works of Thrun [10] and Baxter [6]. Two differ-
ent approaches to MTL can be identified in the recent liter-
ature: (i) a functional approach, where the tasks share the
hypothesis space [2] and (ii) a structural approach, where
the representation of the data is supposed to share a com-
mon generative process, that can be used in the hypothesis
selection [4].

The MTL paradigm applied to feature extraction can be
a useful tool to focus the projection vectors on the general
recognition task, discarding the intra-variations due to il-
lumination or other artifacts. In this context, the proposed
method can be seen as a functional MTL approach to learn
a new faces feature space that keeps subjects identity in-
formation being as less sensitive as possible to illumination
changes and partial occlusions.

3. Problem Statement

Let be X = {x1, ..., xi, ..., xN} a data set in R
D. Con-

sider a target classification task TT , and the corresponding

labels CT (X), {c1, ..., cN}, according to TT , where each
ci ∈ {1, ..., NT }.

Let be T ′ another classification task for the elements in
X and suppose that we have the labels of the elements in X
according this task, C ′(X), {c′1, ..., c′N}, where each c′i ∈
{1, ..., N ′

T }.
Definition: TT and T ′ are independent tasks if CT and

C ′ are independent random variables. That is, if

P ((CT (x) = c) ∩ (C ′(x) = c′)) = (1)

= P (CT (x) = c)P (C ′(x) = c′) (2)

for all x ∈ X , c ∈ {1, ..., NT } and c′ ∈ {1, ..., N ′
T }.

A task T ′ that is independent of the target class will be de-
noted as TI . On the other hand, we denote as PT the data
partition according to TT in classes {c1, ..., cN}, while the
independent partition of the data according TI will be de-
noted by PI .

Independent tasks examples can be found in real prob-
lems of computer vision. For instance, a set of manuscript
symbols can be partitioned according to which symbol ap-
pears in the image or according to the person who drew it.
In that case, these two tasks are independent if we assume
that the probability of writing a concrete symbol is the same
for all of the authors. On the other hand, considering a set of
face images having some kind of expression (smile, anger,
scream or neutral) we can divide the set according to the
subject that is in the image or according to the expression.
Then, supposing that the expression do not depend on the
subject, we have also two independent classification tasks.

In several real situations, a task TT should be learned
from a reduced set of training samples, where the variabil-
ity according an independent task TI is not represented. For
instance, in face classification field, we can consider the tar-
get task of subject recognition. In most of these cases, we
will have just a few number of training samples per class.
Moreover, in real situations, these images will be captured
in controlled environments, appearing poor local changes
in the illumination and no representations of the subject
with partial occlusions. However, the goal will be in gen-
eral to recognize this person in any uncontrolled condition,
although our training set X do not allow us to model the
independent partition PI of the faces set according the con-
ditions of the image acquisition (for instance highlight in
a particular faces part, or partial occlusion of a face frag-
ment).

Suppose, in this framework, that we have another faces
set X ′, where the partition PI is well represented, but
X

⋂
X ′ = C(X)

⋂
C(X ′) = ∅. In that case, we can learn

from X ′ and the labels C ′ to be poorly sensitive to the par-
tition PI , finding a feature space where this variability is as
irrelevant as possible.



In this paper we propose a linear feature extrac-
tion method based on mutual information that uses both
(X ′, C ′) and (X,C) to learn an appropriate feature space
for the task TT of recognizing the subjects in X . We will
consider the case where all the elements in X belong to
a same class c′ ∈ {1, .., NI}. The idea is to use (X,C)
for learning the target task properly and, moreover, to use
(X ′, C ′) to find a feature space where the variabilities ap-
pearing in this second set are not represented.

4. Linear Feature Extraction for Independent
Tasks

Given the framework presented above, we propose to
find a linear projection W : R

D → R
d, d < D, such that:

(i) the new feature space has high mutual information be-
tween the projected data Y = WX and the class labels C
and (ii) at a time, it has as low information as possible be-
tween Y and C ′. That is, we seek the linear projection

W = arg max
A

Jλ(A) (3)

Jλ(A) := I(AX,C) − λI(AX,C ′) (4)

where λ is a positive weight. However, given that C ′ can
not be modelled from X (we are supposing all the elements
of X in the same class c′ ∈ {1, .., NI}), we will use Y ′ =
WX ′ to approximate this value.

Given that Shannon’s mutual information between data
and labels is difficult to estimate, we use in this work the
Quadratic Mutual Information proposed by Torkkola [13].
The main idea is to use Renyi quadratic entropy instead of
Shannon’s definition of entropy. In that case, the Renyi
quadratic entropy can be estimated as a sum of local interac-
tions if the density functions of the variables are estimated
using Parzen window method. [9]. That is, the probability
distribution function of Y will be represented by

p(y) =
1
N

N∑

i=1

G(y − yi, σI) (5)

where I is the d × d identity matrix and G is a d-
dimensional Gaussian kernel,

G(y,Σ) =
1

(2π)
d
2 det(Σ)

1
2

exp(−1
2
yT Σ−1y) (6)

for a covariance matrix Σ.
Moreover, to take benefit from the kernel properties in

the mutual information estimation, Torkkola uses as diver-
gence measure a functional proposed by Kapur [7], instead

of the Kullbach-Leibler divergence. Thus, after some ma-
nipulations, the quadratic mutual information between the
continuous valued Y and discrete C is expressed as

I(Y,C) = VIN + VALL − 2VBTW (7)

computing each term from the data as follows

VIN =
1

N2

NT∑

c=1

Nc∑

j=1

Nc∑

k=1

G(ycj − yck, 2σ2I) (8)

VALL =
1

N2
(

NT∑

c=1

(
Nc

N
)2)

N∑

j=1

N∑

k=1

G(yj − yk, 2σ2I) (9)

VBTW =
1

N2

NT∑

c=1

Nc

N

Nc∑

j=1

N∑

k=1

G(ycj − yk, 2σ2I) (10)

where a sample is denoted by one index yi, i ∈ {1, .., N}
if the class is irrelevant, and it is denoted by two indexes
ycj when its class is relevant. In this second case c ∈
{1, .., NT } represents the class index and j ∈ {1, .., Nc}
represents the within-class index, being Nc the number of
elements in class c.

On the other hand, given that

∂

∂yi
G(yi − yj) = G(yi − yj , 2σ2I)

(yj − yi)
2σ2

(11)

the corresponding derivatives ∂VIN

∂yci
, ∂VALL

∂yci
and ∂VBT W

∂yci

are respectively

∑Nc

j=1 G(ycj − yci, 2σ2I)(ycj − yci)
N2σ2

(12)

(
∑NT

r=1(
Nr

N )2)
∑N

j=1 G(yj − yci, 2σ2I)(yj − yi)
N2σ2

(13)
∑NT

r=1
Nr+Nc

2N

∑Nr

j=1 G(yrj − yci, 2σ2I)(yrj − yci)
N2σ2

(14)

what allows the use of gradient ascent techniques to op-
timize the criterion of the expression 4.

We use in this work a two-sample stochastic gradient as-
cent to learn the projection W , given that a classical gra-
dient ascent procedure is not computationally feasible for
large sets of high dimensional data. It is specially appropri-
ated the use of two-sample subsets to approximate Jλ and
their derivatives because of the expressions’ simplification.

The actualization of this gradient ascent is performed by

Wt+1 = Wt + ξ
∂Jλ

∂W
(15)

where ∂Jλ/∂W is approximated at each iteration using
a predetermined number Q of sample pairs. Thus, let be



Z = {X,X ′} and S = {Y, Y ′}. Given Z̃ = {z1, z2} ⊂ Z
and the respective S̃ = {si = Wzi} ,

∂Jλ

∂W
=

2∑

i=1

∂Jλ

∂si

∂si

∂W
=

2∑

i=1

∂Jλ

∂si
zT
i (16)

and

∂Jλ

∂si
=

∂I(S̃, C)
∂si

− λ
I(S̃, C ′)

∂si
(17)

From equations 10, we have

I(S̃, C) =
1
4
(G(0, 2σ2I) − G(s1 − s2, 2σ2I)) (18)

if c(s1) �= c(s2) and I(S̃, C) = 0 otherwise, and

∂I(S̃, C)
∂s1

= −∂I(S̃, C)
∂s2

= − 1
8σ2

G(s1−s2, 2σ2I)(s2−s1))

(19)

if c(s1) �= c(s2), and ∂I(S̃,C)
∂s1

= ∂I(S̃,C)
∂s2

= 0 otherwise.
The same expressions can be applied to compute

I(S̃, C ′) and the partial derivatives. For more details of
these derivations see [12]. The stochastic gradient ascent
to optimize Jλ is shown in table 1.

Notice that essential points in this procedure are: (i) to
decide whether two elements x ∈ X and x′ ∈ X ′ are or not
in the same class according partitions PI , and (ii) the use of
the labels C(X ′) in the algorithm. Both points should be
considered and appropriately approached depending on the
tasks and the data sets.

5. Experiments

We use in our experiments the publicly available ARFace
database [8] and the subset of FRGC [1] database composed
by the images acquired in non-controlled environments.

ARFace database is composed by face images from 126
different subjects (70 men and 56 women). The database
has from each person 2 sets of images, acquired in two
different sessions, with the structure detailed in figure 2.
On the other hand, the mentioned FRGC database subset is
composed by 1886 images from 275 subjects, having from
2 to 16 images per person. Figure 3 shows some examples
of these images.

We have aligned all the images according to the eyes and
we have used in our experiments just the internal part of the
face, in a resolution of 36 × 33 pixels.

In all the experiments we consider subject recognition as
a target task TT and image type classification as an indepen-
dent task TI . (The independence assumption between these
two tasks has been discussed in section 3). We have in all
the cases a set X and a set X ′. The set X is always split

• Initialize W0 (randomly, by PCA or by LDA, using
(X, C))

• Set Y = W0X and Y ′ = W0X
′

• σ = σ(Y ) (for example, maximum distance between
samples / 2)

• while σ < σf (for example, mean distance between
samples)

– repeat

∗ draw Q sample pairs {S̃1, .., S̃Q} from S =
{Y, Y ′} at random

∗ approximate Jλ as the mean of all Jλ(S̃q),
q = 1, .., Q, J̃λ

∗ approximate the gradient ∂(Jλ)/∂W as the
mean of ∂(Jλ(S̃q)/∂W , ∂(J̃λ)/∂W

∗ actualize Wt+1 = Wt + ξ∂(J̃λ)/∂W

∗ project the data in the new space, Y =
Wt+1X and Y ′ = Wt+1X

′

– until J̃λ does not decrease

• end while

Figure 1. Algorithm pseudocode

Figure 2. One sample from each of the image types in AR Face
Database. The image types are the following: (1) neutral expres-
sion, (2) smile, (3) anger, (4) scream, (5) left light on, (6) right
light on, (7) all side lights on, (8) wearing sun glasses, (9) wearing
sun glasses and left light on, (10) wearing sun glasses and right
light on, (11) wearing scarf, (12) wearing scarf and left light on,
(13) wearing scarf and right light on.

in two subsets: Xtrain and Xtest. Then, we learn the linear
feature extraction matrix W using Xtrain and compute the
classification accuracy of Xtest using the Nearest Neighbor
Classifier (NN ) in the new feature space.

In all the test we show the obtained classification accura-



Figure 3. Examples of images included on the FRGC database ac-
quired in uncontrolled scenes.

cies using the following features: (i) original feature space
(NN ), (ii) feature extraction using PCA (PCA+NN ) (iii)
feature extraction using FLD (FLD +NN ), (iv) the max-
imization of I(WX,C) (J0 + NN ), and (v) the proposed
Jλ, for λ > 0, (Jλ + NN ).

5.1. Subject Recognition with the ARFace database

Here we test the proposed method making a subject
recognition experiment using the ARFace database. In this
experiment we will use a reduced training set composed of
two (expression and illumination) neutral faces per person
corresponding to type 1 ARFace database images. The tar-
get task will be their recognition under the other imaging
conditions (ARFace types 2 to 13). The complementary
task will be based on the classification of the different imag-
ing artifacts (corresponding to ARFace types 1 to 13) for a
non overlapping set of subjects.

The total number of subjects have been split in 5 sub-
sets of 17 persons. We perform the experiments according
the following protocol: for all the possible subsets combi-
nations,

• X is composed of 3 of these subsets (51 subjects),
while the other 2 belong to X ′ (34 subjects).

• Xtrain include just images of type 1 (neutral expres-
sions) and the rest are included in Xtest.

In this case, elements in Xtrain are labelled according
to both TT and TI . On the other hand, given that the target
task is to recognize the 51 subjects that compose Xtrain, we
decided to label X ′ as C(X ′) = 52. Then, when I(WZ,C)
is computed, we take into account just the pairs of elements
in Xtrain belonging to a different class, or the pairs com-
posed of one element in Xtrain and the other in X ′. This
is a way of ignoring the discriminant information related to
the subjects in X ′, that we actually do not need to model.
However, notice that all the samples in Z = {Xtrain,X ′}
are used to estimate I(WZ,C ′).

Table 5.1 includes the mean accuracies and the confi-
dence intervals obtained in this experiment.

Table 1. Subject recognition using the ARFace database (51
subjects), using 2 neutral frontal images per subject in the
training set and testing with images having expressions, high
local changes in the illumination and partial occlusions.

Method Accuracy
NN 32.43% ± 3.84%

PCA + NN 31.45% ± 3.58%
FLD + NN 31.94% ± 3.31%
J0 + NN 40.66% ± 3.62%
J1 + NN 51.94% ± 2.62%

Table 2. Subject recognition using the FRGC database (166
subjects), where images are acquired in uncontrolled envi-
ronments.

Method Accuracy
NN 44.01% ± 3.90%

PCA + NN 41.37% ± 3.84%
FLD + NN 46.28% ± 4.01%
J0 + NN 67.67% ± 4.50%
J0.5 + NN 78.93% ± 3.09%

5.2. Subject Recognition with the FRGC database
using the ARFace as a Complementary Set

In this experiment, the set X is composed by images
from the 166 subjects having more than 4 samples. The
training set is composed of subject faces acquired in non
controlled environments. The target task is their recognition
in the same kind of scenarios. The complementary task in
this experiment is based on face images belonging to a dif-
ferent database, and its objective is the classification of the
different imaging artifacts (corresponding to ARFace types
1 to 7). In this case we expect that the complementary task
can inhibit the feature extraction task from systematic imag-
ing conditions, even when using a different database.

We perform 10 experiments rounds according the fol-
lowing protocol:

• Xtrain is composed by 50% the images per subject
randomly selected and the rest of images are included
in the test set, Xtest.

• X ′ is composed by all the images in the ARFace
database belonging to image types from 1 to 7.

Here, elements in X are labelled just according to TT .
Given that they are not labelled according to TI , we have
supposed that none of them cannot be univocally identified
with any concrete image types (from 1 to 7) of TI . For this
reason we label them as C ′(Xtrain) = 8. Moreover, as in
the experiment presented above we use C(X ′) = 167.

The obtained results and the confidence intervals are
shown in table 5.2.



5.3. Discussion

We can see that in both experiments the best accuracy is
obtained by the proposed feature extraction method.

In the first experiment the training set is composed of just
2 neutral frontal images per subject. In that case, we obtain
the same results using NN in the original space, PCA +
NN and FLD + NN . This indicates that the principal
variance of the data set is represented by the variability of
the different subjects. For this reason, PCA is able to keep
the relevant information of the original space, while FLD is
not able to improve PCA, given that there is no information
about the within class variability, and mean class samples
are poorly estimated.

On the other hand, the criteria J0 that maximizes the
mutual information between the extracted features and the
target labels improves the other feature extraction systems.
Moreover, the proposed method J1 is able to learn a feature
space that is less sensitive to the appearance variation. This
is because it can extrapolate the information about the data
variability from the complementary set, although the real
within class variability of the target subjects is not actually
represented.

In the second experiment the training set is composed of
50% of the images per subject, which are acquired in non-
controlled environments. In this situation, we have some
within class variability represented in the training set. For
this reason we can see that FLD + NN improves both
PCA + NN and NN in the original space. Nevertheless,
once again the criterion J0 that maximizes the mutual in-
formation between the new features and the target labels
improve FLD+NN . On the other hand, the proposed fea-
ture extraction method J0.5 outperforms again the criterion
J0. In that case, the extra information is obtained from a
complementary set belonging to a different database.

6. Conclusions and Future Work

In this paper we propose a linear feature extraction al-
gorithm based on considering independent complementary
classification tasks. The mutual information statistic is used
for this purpose. Given a principal classification problem,
we seek for the linear feature extraction that maximizes the
mutual information between the data and the target labels,
simultaneously minimizing the mutual information with the
complementary task. The framework can be applied to
many real world problems, such as handwritten letter recog-
nition, speech, audio or automatic text classification. In this
paper, the method has been applied to the face recognition
field, in order to: (i) mitigate the effects of the small sam-
ple size problem, being the method able to extract from the
complementary tasks useful subspace information for the
main classification problem, and (ii) inhibit the feature ex-
traction task from known environmental artifacts that can be

incorporated as prior knowledge.
We plan as a future work the study of alternative crite-

ria Jλ to add the complementary tasks. More sophisticated
expressions could be used, at the expense of increasing the
optimization problems complexity. Also, the addition of
sparsity priors could benefit the isolation of features focused
only on the main classification problem. The optimal initial-
ization of the matrix W and possible non linear extensions
of the method are also subjects of further development.
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