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Abstract

Traditional face recognition systems attempt to achieve

a high recognition accuracy, which implicitly assumes that

the losses of all misclassifications are the same. However,

in many real-world tasks this assumption is not always rea-

sonable. For example, it will be troublesome if a face-

recognition-based door-locker misclassifies a family mem-

ber as a stranger such that s/he were not allowed to enter

the house; but it will be a much more serious disaster if

a stranger were misclassified as a family member and al-

lowed to enter the house. In this paper, we propose a frame-

work which formulates the problem as a multi-class cost-

sensitive learning task, and propose a theoretically sound

method based on Bayes decision theory to solve this prob-

lem. Experimental results demonstrate the effectiveness and

efficiency of the proposed method.

1. Introduction

Face recognition has attracted much research effort for

many years and many successful face recognition systems

emerge [15, 3, 13]. To the best of our knowledge, most

of those face recognition systems try to pursue high ac-

curacy, which implicitly assumes that any misclassification

will cause the same amount of loss since they simply try to

minimize the number of mistakes. However, for many real-

world applications, such assumption is not always reason-

able. For example, considering a face recognition system-

based door-locker for a certain group (e.g., a group of fam-

ily members or roommates, etc.), there are four different

types of recognition errors: 1) mis-recognizing a stranger

as a group member, 2) mis-recognizing a group member

as a stranger, 3) mis-recognizing between two group mem-

bers and 4) mis-recognizing between two strangers. In tra-

ditional face recognition systems, these errors are treated

equally. However, it is evident that these errors will cause
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different losses. When the second error occurs, a group

member is mistakenly rejected, which is troublesome. But

compared with the first error, the second one is not so se-

rious, since it may be a disaster if a stranger is mistakenly

allowed to enter the house. The third error also causes some

trouble since in the house members may have different pri-

vate rooms, but such an error is obviously much less serious

than the first and the second ones. The last error is negligi-

ble since strangers are not allowed to enter the house, no

matter who the stranger is. In particular, it is not possible to

provide the system the face images of all possible strangers,

so it is almost inevitable that an unseen stranger might be

recognized as another stranger. But since both strangers

should be rejected, the system does not lose anything if such

error occurs. Therefore, those four types of errors are quite

different and simply taking accuracy as the measure of the

performance is not a good choice.

In the machine learning and data mining community, a

kind of classification algorithms called cost-sensitive learn-

ing has been studied for years [2, 4, 6, 9, 16]. Under that

framework, ‘cost’ information is introduced to measure the

loss of misclassification and different costs reflect different

types of losses. The purpose of cost-sensitive learning is

to minimize the total cost. There are two kinds of cost-

sensitive problems, i.e., problems with class-dependent

cost [4, 6, 9, 16] and problems with example-dependent

cost [2]. When cost is class-dependent, cost is determined

by error type. That is, misclassifying any example of ith
class as jth class will always have the same cost while mis-

classifying an example as different classes may have dif-

ferent costs. When cost is example-dependent, examples’

misclassification costs are different from each other, even

when the error type is the same.

Inspired by cost-sensitive learning, we can formulate the

face recognition problem mentioned above as a multi-class

cost-sensitive learning problem. In this paper, we consider

a situation that, letting any stranger in will lead to the same

loss and misclassifying a group member as another group

member or a stranger will have different losses. So our

problem is a class-dependent class-sensitive problem. Then
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we try to minimize the total cost instead of error rate as

in conventional face recognition systems, aiming to prevent

disasters caused by mistakes with large costs. Since exist-

ing methods could not handle the problem well, we propose

a new method called mcKLR which is derived from Bayes

decision theory. Experimental results validate the effective-

ness and efficiency of our method.

The rest of this paper is organized as follows. In Sec-

tion 2 we formulate cost-sensitive face recognition prob-

lem. In Section 3 we briefly introduce some existing multi-

class cost-sensitive learning methods. Then we propose the

mcKLR method in Section 4 and report on the experiments

in Section 5. Finally, we conclude the paper in Section 6.

2. Problem Formulation

Denote a face image by x and y for its label. Consid-

ering that there are N ‘in-group’ people and many (say,

M 1) ‘out-group’ people, denoted by y = G1, . . . , GN and

O1, . . . , OM , respectively. Conventional face recognition

systems try to generate a hypothesis φ(x) minimizing the

expectation error rate: Err = Ex,y

(

I(φ(x) 6= y)
)

, where

I is indicator function: 1 when φ(x) 6= y and 0 otherwise.

It means that they implicitly assume the costs of all kinds of

mistakes are the same. However, as mentioned before, such

assumption is not always reasonable and different mistakes

are associated with different costs. Given a cost matrix C2

as shown in Table 1, Cij indicates the cost of misclassify-

ing the ith person as the jth. It is an (N+M )-class cost-

sensitive learning problem and the hypothesis φ(x) should

minimize the expectation cost: Cost = Ex,y(Cyφ(x)). Be-

cause Ex,y(Cyφ(x)) = Ex

(

Ey|x(Cyφ(x)|x)
)

, minimizing

Ex,y(Cyφ(x)) is equivalent to minimizing Ey|x(Cyφ(x)|x)
on every x. Therefore we can define the expectation loss of

predicting x by φ(x) as: loss
(

x, φ(x)
)

= Ey|x(Cyφ(x)|x).
For our problem, we have

loss
(

x, φ(x)
)

=







































N
∑

n=1
n6=k

P(Gn|x)CGnGk
+

M
∑

m=1
P(Om|x)COmGk

if φ(x) = Gk
N
∑

n=1
P(Gn|x)CGnOk

+
M
∑

m=1
m6=k

P(Om|x)COmOk

if φ(x) = Ok

(1)

1
M need not be specified since the method should be able to deal with

strangers who do not appear in training set.
2Here we assume that there is a cost matrix given by user. Usually it

is easy for a user to specify which kind of mistake is with a higher cost

and which is with a lower cost. In this paper we only study how to make

the face recognition system behaves well given a cost matrix. Refining the

cost matrix given by the user or automatically learning a cost matrix from

the data will be studied in the future.

Table 1: The cost matrix for cost-sensitive face recognition

G1 . . . GN O1 . . . OM

G1 0 . . . CG1GN
CG1O1

. . . CG1OM

. . . . . . . . . . . . . . . . . . . . .

GN CGN G1
. . . 0 CGN O1

. . . CGN OM

O1 CO1G1
. . . CO1GN

0 . . . CO1OM

. . . . . . . . . . . . . . . . . . . . .

OM COM G1
. . . COM GN

COM O1
. . . 0

Table 2: The reduced cost matrix

G1 . . . Gn O

G1 0 . . . CGG CGO

. . . . . . . . . . . . . . .

Gn CGG . . . 0 CGO

O COG . . . COG 0

where we denote P(y = Gn|x) and P(y = Om|x) as

P(Gn|x) and P(Om|x), respectively, for simplicity. There-

fore, in order to minimize the total cost, the optimal predic-

tion of x should be

φ∗(x) = arg min
φ(x)∈{G1,...,GN ,O1...,OM}

loss
(

x, φ(x)
)

(2)

Here we can categorize the costs into four types: 1) cost

of misclassifying an ‘out-group’ person as ‘in-group’, COG;

2) cost of misclassifying an ‘in-group’ person as ‘out-

group’, CGO; 3) cost of misclassification between two ‘in-

group’ persons, CGG; and 4) cost of misclassification be-

tween two ‘out-group’ persons, COO . According to our dis-

cussion above, it is evident that COG ≫ CGO > CGG >
COO = 0. We can consider all the ‘out-group’ people as

belonging to a meta-class O, where y = O ⇐⇒ ∃m y =
Om. So P(O|x) =

∑M

m=1 P (Om|x). Then the two parts

of (1) can be rewritten as:

loss(x, Gk) =

N
∑

n=1
n6=k

P(Gn|x)CGG +

M
∑

m=1

P(Om|x)COG

=
N
∑

n=1
n6=k

P(Gn|x)CGG + P(O|x)COG (3)

and

loss(x, O) =

N
∑

n=1

P(Gn|x)CGO +

M
∑

m=1
m6=k

P(Om|x)COO

=

N
∑

n=1

P(Gn|x)CGO (4)



Therefore it is equivalent to an (N+1)-class cost-sensitive

problem and the cost matrix C can be reduced to the one

shown in Table 2. We can use multi-class cost-sensitive

learning algorithms to solve this problem.

3. Multi-Class Cost-Sensitive Learning

3.1. Rescaling

Rescaling [6, 16] is a general approach which can be

used to make any cost-blind learning algorithms cost-

sensitive. The principle is to enable the influences of

the higher-cost classes be bigger than that of the lower-

cost classes. The rescaling approach can be realized in

many ways, such as assigning training examples of different

classes with different weights, sampling the classes accord-

ing to their costs, or threshold-moving [6, 5]. This approach

is effective in dealing with binary-class problems. Zhou and

Liu [16] indicated that it is still helpful to multi-class prob-

lem only when all the classes can be rescaled simultane-

ously. They also revealed that for an (N+1)-class problem,

if each class can be assigned with an optimal weight wn

(1 6 n 6 N + 1, wn > 0) after rescaling simultaneously,

w = [w1, w2, . . . , wN+1]
T must be the non-trivial solution

of a linear equations system with the coefficient matrix:

























C21 −C12 0 . . . 0
C31 0 −C13 . . . 0
. . . . . . . . . . . . 0

C(N+1)1 0 0 . . . −C1(N+1)

0 C32 −C23 . . . 0
. . . . . . . . . . . . 0
0 C(N+1)2 0 . . . −C2(N+1)

0 0 0 . . . −CN(N+1)

























(5)

It is equivalent to require the coefficient matrix (5) have a

rank smaller than N+1. In our cost-sensitive face recog-

nition task, the coefficient matrix’s rank is N . Therefore

theoretically we can use rescaling to solve this problem.

Another popular method, MetaCost [4], can also be con-

sidered as rescaling, since it relabels training examples to

minimize Bayesian risk by threshold moving.

However, our experimental results reveal that rescaling

methods do not work well on our cost-sensitive face recog-

nition task and the reason will be explained in section 5.

3.2. Multi-Class Cost-Sensitive SVM (mcSVM)

Support vector machines (SVM) have been success-

fully applied to face recognition [7, 10]. Since SVM is

originally designed for binary classification and our cost-

sensitive face recognition task is a multi-class problem,

we need to extend it to multi-class case. The one-vs-one

and the one-vs-all strategies are popular in decomposing

a multi-class problem into a series of binary-class prob-

lems. However, these approaches may fail under various

circumstances [9, 10]. Lee et al. [9] derived a multi-class

cost-sensitive SVM, i.e. mcSVM. In this method, for an

(N+1)-class classification problem, the instance x’s label

y is extended to an (N+1)-dimensional label vector, de-

noted by y. y takes 1 on the yth coordinate and −1/N
on the others. Accordingly, an (N+1)-tuple of separating

functions f(x) =
(

f1(x), . . . , fN+1(x)
)

is defined, where

fn(x) = hn(x) + bn, hn ∈ HK and bn ∈ R. HK is a re-

producing kernel Hilbert space (RKHS) with the reproduc-

ing kernel function K(·, ·). f(x) is with the sum-to-zero

constraint
∑N+1

n=1 fn(x) = 0 for any x.

Define the loss function for mcSVM as L
(

x, f(x), y
)

=

C(y) ·
(

f(x) − y
)

+
, where C(y) is the yth

row of the cost matrix C and
(

f(x) − y
)

+
is

(

(f1(x) − y1)+, . . . , (fN+1(x) − y(N+1))+
)

. Lee et

al. [9] proved that the minimizer of expected risk

Ex,y

(

L(x, f(x), y)
)

under the sum-to-zero constraint is

f∗(x) =
(

f∗
1 (x), . . . , f∗

N+1(x)
)

with

f∗
k (x) =

{

1 if k = arg min
n=1,...,N+1

loss(x, n)

−1/N otherwise.

(6)

Here loss(x, n) =
∑N+1

m=1 P(m|x)Cmn as defined in Sec-

tion 2. It means that the best predicted label of the new

instance x under Bayes decision rule is the subscript of the

maximum of separating functions.

On the finite case D = {(xi, yi)}
|D|
i=1, the expected risk

is replaced by the empirical risk. Considering structure risk,

the optimization object can be written as:

1

|D|

|D|
∑

i=1

C(yi) ·
(

f(xi) − yi

)

+
+

1

2
λ

N+1
∑

n=1

‖fn‖
2
HK

(7)

We find in our experiments that the performance of

mcSVM is better than cost-blind methods. However, it is

far from a ‘good enough’ method and the method described

in the next section is superior to it on the cost-sensitive face

recognition task.

4. Our Method

4.1. Derivation

Similar to O, we can define another meta-class G as y =
G ⇐⇒ ∃n y = Gn and P(G|x) =

∑N

n=1 P(Gn|x). So

from (3) we have

loss(x, Gk) =

N
∑

n=1
n6=k

P(Gn|x)CGG + P(O|x)COG

= (P(G|x) − P(Gk|x))CGG + P(O|x)COG

= P(G|x)CGG + P(O|x)COG − P(Gk|x)CGG

(8)



As x can be labeled as either G or O, we have P(G|x) +
P(O|x) = 1. So (8) becomes

loss(x, Gk) =
(

1 − P(O|x)
)

CGG + P(O|x)COG

− P(Gk|x)CGG

=CGG + P(O|x)(COG − CGG)

− P(Gk|x)CGG

(9)

And (4) becomes

loss(x, O) =

N
∑

n=1

P(Gn|x)CGO = P(G|x)CGO (10)

To minimize the loss, we should choose the minimum

from the n + 1 items below:


















CGG + P(O|x)(COG − CGG) − P(G1|x)CGG

...

CGG + P(O|x)(COG − CGG) − P(GN |x)CGG

P(G|x)CGO

(11)

Subtract CGG + P(O|x)(COG − CGG) from every item,

then the last item becomes

P(G|x)CGO − CGG − P(O|x)(COG − CGG)

=
(

1 − P(O|x)
)

CGO − CGG − P(O|x)(COG − CGG)

= −P(O|x)(CGO + COG − CGG) + (CGO − CGG)

So we have an equivalent problem of choosing the mini-

mum from below:


















−P(G1|x)CGG

...

−P(GN |x)CGG

−P(O|x)(CGO + COG − CGG) + (CGO − CGG)

(12)

Divide −CGG from every item and denote β = (CGO +
COG − CGG)/CGG and ∆ = (CGO − CGG)/CGG. Then

the problem becomes choosing the maximum from


















P(G1|x)
...

P(GN |x)
βP(O|x) − ∆

(13)

4.2. Optimization

Define an N -tuple of separating functions f(x) =
(

f1(x), . . . , fN (x)
)

and loss function L
(

x, f(x), y
)

as

L
(

x, f(x), y
)

=

N
∑

k=1

(

− ln
efk(x)

1 +
∑N

n=1 efn(x)

)

I(y = Gk)

+

(

− ln
1

1 +
∑N

n=1 efn(x)

)

I(y = O)

(14)

On the (x, y) space with pdf p(x, y), the optimal separating

function f∗(x) is the minimizer of the expectation of L.

Because Ex,y(L) = Ex

(

Ey|x(L|x)
)

, in order to minimize

Ex,y(L) we can minimize Ey|x(L|x) on every x, where

Ey|x(L|x) =

N
∑

k=1

(

− ln
efk(x)

1 +
∑N

n=1 efn(x)

)

P(Gk|x)

+

(

− ln
1

1 +
∑N

n=1 efn(x)

)

P(O|x)

(15)

Set the partial derivative with respect to every fk to zero

and we get the minimizer

f∗
k (x) = ln

P(Gk|x)

P(O|x)
(16)

Through f∗
1 , . . . , f∗

N we construct a new function f∗
O:

f∗
O(x) = ln

βP(O|x) − ∆

P(O|x)

= ln

(

β − ∆

(

1 +

N
∑

k=1

ef∗
k
(x)

)

) (17)

Therefore, choosing the maximum from {f∗
1 (x), . . . ,

f∗
N(x), f∗

O(x)} is equivalent to choosing the maximum

from (13). That is, the optimal predicted label of x under

Bayes decision rule is

φ(x) =

{

Gk if f∗
k is the maximum

O if f∗
O is the maximum

On the finite case D = {(xi, yi)}
|D|
i=1, the expectation of

loss is replaced by empirical risk

L(D) =

|D|
∑

i=1

(

N
∑

k=1

(

− ln
efk(xi)

1 +
∑N

n=1 efn(xi)

)

I(yi = Gk)

+

(

− ln
1

1 +
∑N

n=1 efn(xi)

)

I(yi = O)

)

(18)

As did in mcSVM, assume fn(x) = hn(x)+ bn, hn ∈ HK

and bn ∈ R. The optimization object can be expressed as

L(D) +
1

2
λ

N
∑

n=1

‖fn‖
2
HK

(19)

Note that the optimization problem is similar to the op-

timization form of multi-class kernel logistic regression

(KLR) [17]. Therefore, we can use the similar optimiza-

tion technique of KLR to handle our problem and we call

our method mcKLR.



5. Experiments

5.1. Configuration

The AR [12], FERET [14], Extended YaleB [8] and

ORL [1] face databases are used in our experiments. In

the AR database, since our main purpose is to study cost-

sensitive face recognition and no specific steps are taken to

handle occlusions, the images without occlusions are used.

Every image is cropped by a 165 × 120 rectangular mask

and scaled so that the distances between the two eyes are

almost the same for all images. Then the images are grayed

and histogram equalized. In the FERET database we choose

images of frontal view with different expression and illu-

mination for our experiment. The preprocessing taken on

FERET images is similar to that on AR except that the mask

is 75 × 65. As for the YaleB database, we use the frontal

view images and a 32× 32 mask. As for the ORL database,

all images are used and cropped by a 32 × 32 mask3.

PCA is applied to the images. Then we randomly select

N subjects as ‘in-group’ and M subjects as ‘out-group’.

Only Mtrain among the M ‘out-group’ subjects appear in

the training set while the remaining M−Mtrain do not. We

set Mtrain ≪ M to simulate the true scenario that the face

recognition system could only get quite a little part of the

outside world and it should be able to classify unobserved

‘out-group’ people. Every experiment is repeated for 20

times and the average results are recorded.

We study four cost-blind methods, including nearest

neighbor (abbreviated as 1-NN), LDA+nearest neighbor

(abbreviated as LDA) and multi-class cost-blind SVM (ab-

breviated as mbSVM), multi-class cost-bind KLR (abbrevi-

ated as mbKLR) and four cost-sensitive methods, including

rescaling, MetaCost, mcSVM and our method mcKLR. As

for 1-NN, the gallery set is also the training set. As for

LDA, linear discriminant analysis is used first to find the

optimal linear subspace and then the nearest neighbor clas-

sifier is used to identify the probe image. For the rescal-

ing method, we first resample the training set and then train

mbSVM. For MetaCost, we resample 20 times with every

time 80% training data to estimate posterior probability and

mbSVM is used as its classifier. mbSVM is the cost-blind

version of mcSVM where all cost is the same. For mbSVM

, mbKLR, mcSVM and mcKLR, RBF kernel is used and

the width and the regulation coefficient are selected from

e5 to e−5 and from e0 to e−10, respectively, with a method

similar to five-fold cross-validation. In detail, we partition

the images of every ‘in-group’ subject and all ‘out-group’

subjects into five subsets. For ‘in-group’ subjects, typical

five-fold cross validation is used. But for ‘out-group’ sub-

jects, in each run we only put the images of one subset into

training set while the remaining four subsets into validation

3The cropped YaleB and ORL databases are obtained from

http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html

set. In this way, we simulate the true scenario where the

face recognition system should be able to deal with unseen

‘out-group’ people.

5.2. Results

We study these methods under three varying influence

factors: the number of ‘in-group’ subjects, the number of

unobserved ‘out-group’ subjects, and the cost ratio.

First we fix those influence factors. For every database,

each ‘out-group’ subject has one image for testing and

at most one image for training. The numbers of train-

ing images of ‘in-group’ subjects are different on differ-

ent databases. On AR, N=3, M=60, Mtrain=30, each

‘in-group’ subject has 7 images for training and 7 images

for testing; on FERET, N=4, M=600, Mtrain=50, each

‘in-group’ subject has 7 images for training and 3 images

for testing; on YaleB, N=4, M=30, Mtrain=10, each ‘in-

group’ subject has 5 images for training and 5 images for

testing; on ORL, N=4, M=35, Mtrain=10, each ‘in-group’

subject has 5 images for training and 5 images for test-

ing. The cost ratio CGG:CGO:COG is set to 1:4:200 on all

databases. We compare the total cost, total error rate (err),

error rate of misclassifying ‘out-group’ subjects as ‘in-

group’ (errOG) and error rate of misclassifying ‘in-group’

subjects as ‘out-group’ (errGO). The results are shown in

Table 3.

The results of rescaling and MetaCost are not presented

in the table since they simply predict every image as ‘out-

group’ and such prediction is of no use. We believe that

the reason of its failure is that there are much more images

of the ‘out-group’ class (as there may be tens of subjects)

than that of every ‘in-group’ class (as there is only one sub-

ject). Thus there exists class imbalance. In fact, Liu and

Zhou [11] has studied this problem and indicated that if

class imbalance and cost-sensitive occur simultaneously, to

rescale the classes in proportion to the cost ratio is no more

optimal. However, determining the optimal rescaling ratio

in this case is still an open problem.

From Table 3 we can find that the cost-sensitive meth-

ods have much smaller total cost than cost-blind meth-

ods although the total error rate may not be lower. It is

evident that the cost-sensitive methods implement this by

preventing high-cost errors while slightly increasing low-

cost errors, which can be observed by comparing the per-

formance of mbSVM and mcSVM. It is impressive that

mcKLR achieves the smallest total cost on all the databases.

Then, we study the performance of the compared meth-

ods with different number of ‘in-group’ subjects, i.e., with

varying N . For FERET, N varies from 2 to 6; for AR,

YaleB, and ORL, N varies from 2 to 5. The results are

shown in Figure 1. Generally the performance of cost-

sensitive methods are superior to cost-blind methods, al-

though there are cases where LDA is better than mcSVM.



Table 3: Comparison on total cost, total error rate (err), high-cost error rate (errOG), and low-cost error rate(errGO)

Cost-blind methods Cost-sensitive methods

Database 1-NN LDA mbSVM mbKLR mcSVM mcKLR

cost 6026.5 2352.8 2292.0 583.0 309.0 102.8

errOG(%) 5.00 1.96 1.89 0.47 0.22 0.07
FERET

errGO(%) 55.00 5.83 45.83 47.92 56.25 47.50

err(%) 6.00 2.03 2.75 1.40 1.32 1.00

cost 1132.6 875.5 1179.8 1809.7 567.5 156.5

errOG(%) 6.88 5.38 7.00 11.06 3.13 0.63
AR errGO(%) 38.33 18.33 70.95 47.14 80.00 70.71

err(%) 13.81 8.12 20.50 18.61 19.36 15.25

cost 1131.0 872.5 1821.2 727.2 255.3 63.6

errOG(%) 18.67 14.50 29.80 12.00 3.33 0.50
YaleB

errGO(%) 13.00 3.00 37.75 8.50 68.50 42.00

err(%) 17.50 10.00 35.00 11.30 30.40 17.10

cost 1525.2 1202.1 575.4 1533.5 189.0 113.6

errOG(%) 21.57 17.14 7.86 21.86 2.14 1.29
ORL errGO(%) 17.75 0.82 31.75 4.25 48.75 29.50

err(%) 22.00 12.27 16.55 15.64 19.09 11.55
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Figure 1: Comparing the methods with different number of ‘in-group’ subjects
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Figure 2: Comparing the methods with different number of ‘out-group’ subjects unobserved in training set

It can be found that on all databases and under all the N
values the performance of mcKLR is always the best.

We also study the influence of the number of unobserved

‘out-group’ subjects on the performance of the compared

methods. Here we fix Mtrain but vary M − Mtrain. For

AR, M − Mtrain varies from 0 to 50, with Mtrain=30; for

FERET, M−Mtrain varies from 50 to 550 with Mtrain=50;

for YaleB, M−Mtrain varies from 0 to 20 with Mtrain=10;

for ORL, M −Mtrain varies from 0 to 25 with Mtrain=10.

The results are presented in Figure 2. Again, it can be found
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Figure 3: Comparing the methods under different COG/CGO
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Figure 4: Comparing the methods under different CGO/CGG

that the performance of cost-sensitive methods are better

than that of cost-blind methods. In particular, as the num-

ber of unobserved ‘out-group’ subjects increases, the gap

between the performance of cost-sensitive and cost-blind

methods tends to increase. The performance of mcKLR is

always the best on all databases and with all number ‘out-

group’ subjects. On FERET and ORL the performance of

mcSVM is quite good, but still slightly worse than that

of mcKLR. Moreover, in the task studied in this paper,

the errors which often occur are the misclassifications of

‘out-group’ subjects to ‘in-group’ subjects, especially when

there are a lot of unobserved ‘out-group’ subjects. While by

incorporating costs to prevent high-cost errors, the misclas-

sifications of ‘out-group’ subjects to ‘in-group’ subjects can

be significantly reduced, and therefore the total error rate

may be able to decrease. This suggests that mcKLR is also

a good choice even if we use accuracy as the performance

measure as in traditional face recognition systems.

Note that the cost ratios reflect the desirable tradeoff be-

tween different kinds of errors. For example, if the user

thought that one false positive is more serious than 49 false

negatives, s/he could set CGO:COG = 1 : 50; while if s/he

thought that one false positive is just more serious than 19

false negatives, s/he could set CGO:COG = 1 : 20. It is

necessary to compare the methods under different cost ra-

tios to see whether the methods can adapt to different sce-

narios well. Here, we split CGG:CGO:COG into 2 parts:

CGO/CGG and COG/CGO. CGG is always set as 1. First

we fix CGO/CGG = 4 and vary COG/CGO from 10 to

100. Then we fix COG/CGO = 50 and vary CGO/CGG

from 2 to 10. The results are shown in Figure 3 and 4, re-

spectively. For cost-blind methods, the total cost is linear to

the cost ratio for the change of cost ratio has no effect on

their predictions. Similarly to the previous experiment, the

performance of cost-sensitive methods are better than that

of cost-blind methods and mcKLR is always the best.

Overall, the above experiments show that mcKLR

achieves the best performance on all databases, under all

number of ‘in-group’ subjects, all number of unobserved

‘out-group’ subjects, all cost ratios. It is clear that from the

view of recognition result, mcKLR is the best choice among

the compared methods.

It has been proved in [9] that when the optimal solution is

obtained, the objective function of mcSVM is equivalent to

Bayes decision rule with unequal costs. Since the objective

function of mcKLR was directly derived from Bayes deci-

sion rule with unequal costs, it is not strange that mcKLR

can outperform mcSVM. Actually, we have also compared

mcKLR and mcSVM on problems other than face recogni-

tion, such as on UCI data sets, and also found that mcKLR

outperforms mcSVM. Those results will be reported in a

longer version of the paper.

We also compare the computational costs of the cost-

sensitive methods mcSVM and mcKLR. We record the av-

erage training and test time costs in Table 4. The experi-

ments are conducted on a PC with CPU 2.66GHz(×64) and



Table 4: Comparing the training/test time costs (in seconds)

mcSVM mcKLR

train 10.58 0.252
FERET test 1.07 1.13

train 1.35 0.107
AR test 0.0889 0.0897

train 0.993 0.0841
YaleB test 0.0295 0.0308

train 0.666 0.0408
ORL test 0.0316 0.0337

2G memory. We can see that the test time cost of mcKLR

is almost as same as that of mcSVM, but its training time

cost is much smaller than that of mcSVM, especially on the

larger databases FERET and AR.

6. Conclusion

To the best of our knowledge, this paper presents the first

study on cost-sensitive face recognition. We formulate this

task as a multi-class cost-sensitive learning task, and pro-

pose the mcKLR method to solve this problem. Our ex-

periments show that on all experimental settings the perfor-

mance of mcKLR is always better than cost-blind methods

and another cost-sensitive method, mcSVM. Moreover, the

efficiency of mcKLR is better than mcSVM.

In this paper we assume that the cost matrix was given

by user. Refining the cost matrix given by user or learn-

ing a cost matrix from the data automatically are interesting

future issues. Studying cost-sensitive face recognition with

serious class-imbalance problem is another interesting fu-

ture work. In this paper we simply apply PCA to the face

images before classification. To get a better performance,

more careful preprocessing may be helpful. Applying our

method to face images with occlusion or other complicated

situations is also an interesting future issue.
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