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Abstract

In this paper, we address the pair-activity classification
problem, which explores the relationship between two ac-
tive objects based on their motion information. Our con-
tributions are three-fold. First, we design a set of fea-
tures, e.g., causality ratio and feedback ratio based on
the Granger Causality Test (GCT), for describing the pair-
activities encoded as trajectory pairs. These features along
with conventional velocity and position features are essen-
tially of multi-modalities, and may be greatly different in
scale and importance. To make full use of them, we then
present a novel feature normalization procedure to learn the
coefficients for weighting these features by maximizing the
discriminating power measured by weighted correlation.
Finally, we collected a pair-activity database of five cate-
gories, each of which consists of about 170 instances. The
extensive experiments on this database validate the effec-
tiveness of the designed features for pair-activity represen-
tation, and also demonstrate that the proposed feature nor-
malization procedure greatly boosts the pair-activity classi-
fication accuracy.

1. Introduction
Computer vision research has experienced increasing

passions on activity analysis in the past few years. Previ-

ous research devoted to the activity analysis problem can be

roughly divided into two categories: parametric approaches

and non-parametric ones. For parametric approaches [8],

the activity models are explicitly built based on the vi-

sual features, such as position, velocity, and appearance,

extracted by certain object detection and tracking algo-

rithms [7][16][17]. These models are either rule-based

or learnt using supervised learning techniques, e.g., prob-

abilistic graphical models [10][3][11]. Non-parametric ap-

proaches, on the other hand, do not explicitly define the ac-

tivity/event models, instead they learn the activity patterns

from the statistical properties of the observed data. In [14],

joint co-occurrence statistics of the object trajectories over

a codebook are accumulated, and the hierarchical classifi-

cation method is applied to identify the activities. Zhong et
al. [19] proposed an unsupervised technique for detecting

unusual activity in a large video set using many simple fea-

tures. Zhou et al. [20] used motion trajectory similarity to

detect anomalous events. Boiman and Irani [2] proposed

to determine the video regularity by its probability to be

composed from reasonably large chunks of spatial-temporal

data.

Most previous research on activity analysis stems from

the low-level visual information. Those harnessing the

middle-level visual information emphasized on the scenar-

ios with only a single active object and focused on the

single-role activities. Recently, Wu et al. [18] proposed an

algorithm to classify the activity of one object with the inter-

actions with the circumambient appliances or articles, e.g.,
microwave, coffee maker, and cups. Besides the single-role

activities, many activities existing in real life involve two

or even more active objects, e.g., chasing and working to-

gether, and these activities are much more complicated than

single-role activities. The analysis of these activities is crit-

ical for practical video surveillance systems. In this work,

we focus on the pair-activities, which describe the relation-

ship between two active objects, but all the techniques dis-

cussed in this work can be easily extended for group-activity

analysis with multiple active objects.

The study of the pair-activities is new for the computer

vision research community although a large portion of the

activities existing in real life belong to this type. In this

paper, we contribute to this problem from the following as-

pects. First, we design a set of features to characterize these

pair-activities. More specifically, we first encode the each

pair-activity example as two trajectories, referred to as bi-

trajectory in this work, extracted from the mean-shift track-

ing algorithm [5][4]. Then a set of features, e.g., causality

ratio and feedback ratio, are derived by the Granger Causal-

ity Test (GCT) [6] based on the bi-trajectories, and finally

the length-variable pair-activity instance is represented by

these features along with the velocity and distance features

conventionally used for single-trajectory analysis. It is ob-

served that the extracted features are of multi-modalities,

and often greatly different in scales and importance. How
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(a) Chasing (b) Following (c) Independent (d) Meeting (e) Together

Figure 1. Examples of pair-activities. From left to right: (a) chasing, (b) following, (c) independent, (d) meeting, and (e) together. Note

that for each example, the trajectories of two objects are obtained from the object tracking algorithm, and the multiple instances of one

object in the image are obtained by background substraction and object superposition. The two trajectory segments (one thick and another

thin) with the same color correspond to the motion trajectories of two objects within the same time period.

to weight and normalize these features is crucial for the

subsequent classification step, since different weights will

result in different margins and the separation hyperplane

will also be changed. Thus we then present a novel feature

normalization/weighting procedure to learn the coefficients

for weighting different features such that the normalized

data will be good at discriminating power measured by the

correlation similarity. Finally, we collected a par-activity

database with five categories of pair-activities, namely chas-

ing, following, independent, meeting and together, each of

which consists of averagely 170 instances. The extensive

experiments on this database validate the effectiveness of

the designed features as well as the proposed feature nor-

malization procedure.

The rest of the paper is organized as follows. Sec-

tion 2 introduces the details of features extraction from the

Granger Causality Test for pair-activity representation. The

procedure to learn the feature weighting coefficients for en-

hancing the feature discriminating power is described in

Section 3. Section 4 provides the details on database collec-

tion and the comparison experiments on pair-activity clas-

sification. The concluding remarks are given in Section 5.

2. Representation by Bi-trajectory Analysis
The success of a solution to a particular classification

task generally relies on two aspects: 1) how to represent the

samples, and 2) how to measure the similarity between the

sample pair. In this work, we discuss these two problems

for the concerned pair-activity classification problem. The

first problem is discussed in this section, and we discuss the

second problem in the next section.

2.1. Pair-Activity Encoded as Bi-Trajectory

For a video with two active objects, there exist multiple

levels of information for characterizing the involved activ-

ity. The low-level information, e.g., color and local motion

information, is useful for describing single active object,

yet insufficient to reveal the contextual information between

two active objects. The high-level information, e.g., gender

and identity information, also generally characterizes single

object. Hence, in this work, we focus on the middle-level

information, namely bi-trajectories, for characterizing the

relationship between two active objects.

Motion trajectory has proved effective in sing-role ac-

tivity analysis [15]. Generally, the trajectory of a moving

object is obtained by certain object tracking algorithm. Fig-

ure 1 depicts five examples corresponding to five categories

of pair-activities, and the motion bi-trajectories are also im-

posed. From these bi-trajectories, we can intuitively ob-

serve that the shapes of the bi-trajectories of different cate-

gories are different, and the different is even greater if the

temporal information is also considered. Pair-activity be-

longs to high-level concept, and reflects both spatial and

temporal information of two active objects. Convention-

ally, each point on a motion trajectory is characterized by

its position, velocity and curvature features. These features

are useful for describing the activity of one object, but there

still exists a large gap between these middle-level informa-

tion and the high-level concept of pair-activity, which is

much more complicated than single-trajectory based activ-

ity. We introduce in the next subsection how to utilize the

Granger Causality Test for extracting semi-high-level fea-

tures to bridge this gap.

2.2. Features via Granger Causality Test

The Granger Causality Test (GCT) was originally pro-

posed for computing the relationship between certain eco-

nomical factors involving causality and feedback. GCT was

first proposed by Granger in [6] and then further popular-

ized by Sims in [13]. In the case with two variables/objects,

the GCT breaks the feedback mechanism into two causal



relations, and each is closely connected with one of the cau-

sations.

Before we formally introduce how to extract semi-high-

level features for describing the pair-activities, we first de-

fine some terminologies as follows.

1. Let At = (a0, a1, a2, , at) and Bt = (b0, b1, b2, , bt) be

two motion trajectories of two objects, where ai and bi

are tuples [x, y] of the object coordinates in 2D image

plane at time i. We assume that the interaction be-

tween two trajectories is a stationary process, i.e. the

prediction functions P (at|Bt−la) and P (bt|At−lb) do

not change within a short period of time.

2. Let P (at|Bt−l(k)) be the optimal predictor of at using

the information of Bt−l where Bt−l is the l-delayed in-

formation of trajectory Bt and l is a nonnegative num-

ber. The prediction function is estimated by using k
samples in Bt, namely, (bt−l, bt−l−1, · · · , bt−l−k+1).

3. The prediction error is assumed to of Gaussian noise

with standard deviation as δ(at|Bt−l(k)).

4. Let Ut−l be all the information accumulated from both

At and Bt before and at the time t−l, and Ut−l−Bt−l

be all the information except for Bt−l.

To model P (at|Bt−l(k)), we use the linear predictor

owing to its simplicity and efficiency in parameter estima-

tion. The optimal parameters of the prediction function can

be computed by Least Square Error (LSE) approach. The

GCT does not specify any particular prediction function for

computing the standard deviation, and hence more complex

prediction functions, e.g., polynomial function and logistic

function, can also be used for modeling P (at|Bt−l(k)).
From GCT, we can obtain a set of features for measuring

certain properties within the bi-trajectory as follows:

1. Causality - if the prediction error δ(at|Ut−l(k)) <
δ(at|Ut−l −Bt−l(k)), we say B is Granger causal for

A.

2. Feedback - if Bt is Granger causal for At and At is

Granger causal for Bt, we say At and Bt have feed-

back. However, they may have different causality time

lags.

3. Causality ratio - δ(at|Ut−l−Bt−l(k))/δ(at|Ut−l(k)),
which measures the relative strength of the causality,

and is more stable for measuring causality compared

the absolute causality value.

4. Feedback ratio - δ(bt|Ut−l −At−l(k))/δ(bt|Ut−l(k)),
which measures the relative strength of the feedback.

Intuitively, causality is an effective criteria in distin-

guishing different categories of pair-activities. For exam-

ple, for chasing, the causality exists for both active objects,

while for following, the following object will only have very

limited causality for the object who is being followed, and

hence the difference between feedback ratio and causality

ratio should be larger than that for the chasing case. In the

next subsection, we introduce the five categories of pair-

activities we concern in this work, and intuitively justify

how these pair-activities can be characterized by the above

features from GCT.

2.3. Pair-Activities vs. GCT Features

In this work, we are interested in five categories of pair-

activities as follows:

1. Chasing - One object tries to minimize the relative dis-

tance while the other object tries to maximize the rela-

tive distance. Hence they affect to each other, and in-

tuitively feedback ratio is high while the causality ratio

may also be high.

2. Following - One object tries to minimize the relative

distance while another object may not realize and ig-

nores the follower. In this case, the feedback ratio is

high, yet the casuality ratio is low.

3. Independent - Neither object is the causation of the

other. In this case, the causality ratio and feedback

ratio are both low.

4. Meeting - Both objects first try to minimize the rela-

tive distance, stay together for a while, and then depart.

The causality ratio and feedback ratio are both high in

the first stage, but are low in the third stage. In this

case, the relative position and velocity information of

the objects may also play important role in character-

izing the activity.

5. Together - The distance between two objects are small

or nearly constant at all the time. In this case, the

causality ratio and the feedback ratio are both low, and

the relative distance is useful for describing this activ-

ity.

As discussed above, the designed features from GCT

are effective in distinguishing different categories of pair-

activities, but not enough for differentiating all the pair-

activities concerned in this work, e.g., the pair-activities of

meeting and together heavily depend on the relative posi-

tions of two objects. Hence, the pair-activities are repre-

sented by the features from GCT along with the conven-

tional features, e.g., the velocity and relative distance fea-

tures.



Here, let {xi|xi ∈ R
m}N

i=1 be the pair-activity sam-

ple set, where xi is the feature vector which combines the

features from GCT and conventional velocity and position

features, and their corresponding class labels are {ci|ci ∈
{1, ..., Nc}}N

i=1, where Nc is the number of classes.

These m-dimensional vectors involve the features of dif-

ferent sources, and their scales may be dramatically differ-

ent, and also their contributions to the classification prob-

lem may also be different. The scales of these features di-

rectly determine the between-class margins, and hence are

important for the consequent pair-activity classification. As

above-mentioned, these features are proposed with different

purposes and of multi-modalities, and hence it is desirable

to have a procedure which can automatically determine the

weights for different features such that the final discrimi-

nating power is the best. Our procedure in the next section

for feature normalization based on weighted correlation is

proposed for such a purpose.

3. Classification by Feature Normalization
In this section, we study the underlying general ma-

chine learning problem on how to learn the coefficients for

weighting the features from GCT and conventional trajec-

tory representation so as to boost the discriminating power

of these features based on the weighted correlation.

3.1. Formulation for Feature Weighting

Correlation similarity (cosine distance) was reported to

be generally more robust and effective for classification

tasks compared with the conventional metrics such as L2

and L1 distances [9]. But most traditional algorithms for

feature extraction or feature selection are based on Eu-

clidean distances. In this subsection, we present a novel

supervised feature weighting algorithm which character-

izes discriminant power based on correlation similarity di-

rectly. The target is to search for a weighting vector

p ∈ R
m such that the weighted representation p � x =

(p1x1, p2x2, · · · , pmxm)T possesses boosted discriminat-

ing power.

To measure the discriminating power of the weighted

feature space, intra-class compactness and inter-class sep-

arability are two most used criteria. Here, we define them

based on the correlation similarity.

Intra-class Similarity: For a representation with good

discriminating power, it is desirable that the samples from

the same class are be close to each other as much as possi-

ble. On the other hand, it is often the case that there may

exist diverse variations within individual class, and hence

it is unnecessary that all sample pairs within certain class

are close to each other. A trade-off way is to ensure that

the neighboring samples of the same class are close to each

other. The neighborhood relationship can be defined from

the k̂-nearest neighbors or ε-ball criteria in the original fea-

ture space. In this work, we use the k̂-nearest neighbors

criteria for measuring the intra-class compactness as

Sc =
N∑

i=1

∑

j∈N+
k̂

(xi)

< p � xi, p � xj >

‖p � xi‖ ‖p � xj‖

=
N∑

i=1

∑

j∈N+
k̂

(xi)

∑m
k=1 p2

kxk
i xk

j√∑m
k=1 p2

kxk
i xk

i

√∑m
k=1 p2

kxk
j xk

j

, (1)

where N+

k̂
(xi) is the index set for all the k̂-nearest neigh-

bors of the sample xi and from the same class.

Inter-class Similarity: For good discriminating power,

the sample pair from different classes should be far away

to each other. Generally, the number of this kind of pairs

is huge even for a moderate size database. To alleviate the

computational cost, this kind of inhomogeneous pairs are

considered mainly for marginal pairs. In this paper, we also

use the k̂-nearest neighbors criteria for measuring the inter-

class separability as

Sp =
N∑

i=1

∑

j∈N−
k̂

(xi)

< p
⊙

xi, p
⊙

xj >

‖p ⊙
xi‖ ‖p

⊙
xj‖

=
N∑

i=1

∑

j∈N−
k̂

(xi)

∑m
k=1 p2

kxk
i xk

j√∑m
k=1 p2

kxk
i xk

i

√∑m
k=1 p2

kxk
j xk

j

, (2)

where N−
k̂

(xi) is the index set for all the k̂-nearest neigh-

bors of sample xi and from difference classes. In this work,

the k̂ is set as 10 for all the experiments.

The correlation similarity takes the value within [−1, 1],
and hence the relative larger (or smaller) term will not dom-

inate the value of Sc or Sp, which is the main superiority

of correlation similarity over the L2 and L1 distances for

measuring intra-class compactness and inter-class separa-

bility. Aiming at good classification capability, we maxi-

mize the intra-class similarity and at the same time mini-

mize the inter-class similarity, and consequently we have

the following objective function

max
p

{F (p) = Sc − Sp}. (3)

From (1) and (2), we can see that the Sc and Sp are in-

variant to the scaling of the weighting vector p. Hence, we

add the constraint ‖p‖ = 1 to the objective function and

this constraint can be easily satisfied by normalizing p after

each iteration in the learning process.

3.2. Parameter Optimization

The objective function of (3) is nonlinear, and hence we

use the iterative gradient descent approach for optimization.



Table 1. Details of the collected pair-activity database.

Chasing Following Together Meeting Independent In Total

Session Number 6 5 3 7 3 24

Total Clip/Sample Number 153 198 182 131 203 867

Table 2. Feature details for pair-activity representation.

Type Causality/Feedback Relative Velocity Relative Distance Absolute Velocity Absolute Position

Number 2 4 4 8 8

The derivative of the objective function with respect to p is

∂F (p)
∂p

=
N∑

i=1

{
∑

j∈N+
k (xi)

∂fij(p)
∂p

−
∑

j∈N−
k (xi)

∂fij(p)
∂p

}, (4)

where

fij(p) =

∑m
k=1 p2

kxk
i xk

j√∑m
k=1 p2

kxk
i xk

i

√∑m
k=1 p2

kxk
j xk

j

. (5)

The derivative of fij(p) with respect to pk is calculated as

∂fij(p)
∂pk

=
2xk

ijb
1
2
iib

1
2
jj + bij(b

1
2
jjx

k
ii/b

1
2
ii + b

1
2
iix

k
jj/b

1
2
jj)

biibjj
,

(6)

where

xk
ij = xk

i xk
j , (7)

bij =
m∑

k=1

p2
kxk

i xk
j . (8)

Based on the derivative, we can optimize the objective

function in (3) with gradient descend approaches, e.g.,
levenberg-marquart which is implemented in Matlab as

lsnonlin function.

3.3. Classification with Weighted Features

Based on the derived vector p in the above subsection,

each datum x is reweighted as p � x, and then we can di-

rectly classify the pair-activities with the Nearest Neighbor

approach based on this rescaled feature space. We can also

use other more complex multi-class learning algorithm to

further improve the algorithmic performance. In this pa-

per, we choose the Linear Discriminant Analysis [1] to fur-

ther reduce the feature dimension with the projection matrix

P ∈ R
m×d (usually d � m). Then, when a new datum

comes, its class label is predicted as that of the sample with

index

arg max
i

< PT × (p � x), PT × (p � xi) >

‖PT × (p � x)‖ ‖PT × (p � xi)‖ . (9)

Also we evaluate the performance of Support Vector Ma-

chine (SVM) [12] in pair-activity classification based on

weighted features, owing to its popularity in general clas-

sification problems. In this work, we use the one versus all

approach to extend the basic two-class SVM for handling

the multi-class problem.

4. Experiments
In this section, we first introduce the details of the pair-

activity database we collected, and then demonstrate the ef-

fectiveness of the designed features from Granger Causal-

ity Test for pair-activity representation, and finally we

evaluate the effectiveness of the proposed feature weight-

ing/normalization procedure.

4.1. Pair-Activity Database Construction

The database we used for the experiments was collected

at the indoor environment with a still camera. The cam-

era (Sony 908E, 30f/s) was installed in the second floor

of a building, and captures the hall area in the first floor

from the top-view. The whole database consists of five cat-

egories of most common pair-activities: chasing, following,

together, meeting, and independent. For each category of

pair-activity, multiple sessions with different character pairs

are captured. Within each session, two characters contin-

uously staged the same pair-activity and change the style

frequently, and then the long video is divided into a se-

ries of clips with overlapping between successive clips. Fi-

nally, each category consists of 131 to 203 video clips of 8

seconds or longer, and altogether we have 867 video clips

for all the five categories. The detailed information of ses-

sion number and clip number for each category of the pair-

activities is listed in Table 1, and some example clips are

displayed in Figure 1.

To estimate the trajectories of the two moving objects in

the videos, we use the mean-shift tracking algorithm [5][4],

and the tracker is automatically initialized from the Gaus-

sian Mixture Models (GMM) based background subtraction

algorithm.

4.2. Feature Effectiveness

The features we used for the experiments include:

causality ratio, feedback ratio, relative velocity and dis-

tance, and absolute velocities and positions for two objects.

For the conventional features of single trajectory represen-

tation such as velocity, position and etc., we compute both



Figure 2. Comparison of feature values of causality ratio, feedback ratio, relative distance and relative velocity of examples from different

categories.

mean and variance of their magnitudes and orientations, so

finally we have 26 features in total as shown in Table 2. The

causality ratio and feedback ratio are estimated using 10th

order regression model, namely k = 10 for computing the

casuality ratio value δ(at|Ut−l − Bt−l(k))/δ(at|Ut−l(k)),
where l is set as 15 due to the high frame rate of the video

clips.

In Figure 2, we list the values of the causality ratio, feed-

back ratio, and relative velocity features for five example

pair-activity instances from five different categories. From

these values, we can observe that: 1) the causality and feed-

back ratios are very useful in discriminating different cate-

gories of pair-activities; and 2) the relative velocity feature

is not so important as the causality ratio feature, but also

contributes greatly, especially for the pair-activities inde-

pendent and chasing.

4.3. Pair-Activity Classification

For pair-activity classification, the 26 features weighted

by the derived vector p are fed into the Linear Discrimi-



Table 3. Comparison confusion tables of pair-activity classification accuracy (%): Original features plus LDA (OF-LDA) vs. weighted

features plus LDA (WF-LDA).

OF-LDA Chasing Following Together Meeting Independent

Chasing 89.1% 7.3% 1.9% 0% 1.7%

Following 8.4% 91.2% 0.1% 0.2% 0%

Together 0.3% 7.5% 74.6% 8.1% 9.5%

Meeting 6.1% 5.6% 9.8% 64.6% 13.9

Independent 8.5% 7.0% 6.9% 11.2% 66.4%

WF-LDA Chasing Following Together Meeting Independent

Chasing 89.6% 7.3% 1.7% 0.2% 1.2%

Following 6.3% 93.4% 0.1% 0.2% 0%

Together 0.3% 4.1% 85.3% 5.5% 4.8%

Meeting 5.2% 5.7% 10.4% 62.4% 16.3

Independent 5.7% 6.1% 5.3% 11.9% 71.0%

Table 4. Comparison confusion tables of pair-activity classification accuracy (%): Original features plus SVM (OF-SVM) vs. weighted

features plus SVM (WF-SVM).

OF-SVM Chasing Following Together Meeting Independent

Chasing 89.5% 8.1% 1.1% 0% 1.3%

Following 3.3% 95.2% 0% 1.5% 0%

Together 3.2% 8.3% 80.1% 0% 7.9%

Meeting 6.9% 5.8% 6.0% 69.7% 11.5

Independent 8.4% 7.3% 7.8% 15.2% 61.3%

WF-SVM Chasing Following Together Meeting Independent

Chasing 92.1% 7.0% 0.9% 0% 0%

Following 2.7% 97.0% 0% 0.3% 0%

Together 1.2% 3.1% 89.1% 3.5% 2.7%

Meeting 6.5% 2.2% 8.1% 70.1% 13.1

Independent 3.2% 5.1% 2.5% 10.5% 78.7%

native Analysis (LDA) algorithm, and then the final classi-

fication is conducted based on the dimensionality reduced

feature space with the Nearest Neighbor approach. Also

these features can be used as input for SVM based classifi-

cation. The experimental protocol is leave-one-session-out,

namely each time, the samples within one session are used

as testing data and all the others as training data.

We compare the experimental results from LDA based

on original features with those from LDA and those from

LDA based on weighted features. The detailed results are

listed in Table 3, from which we can observe that the clas-

sification accuracies are improved for most categories by

the feature normalization procedure, especially for the to-

gether category. We also compare the experimental results

from Gaussian-kernel based SVM with original features and

those from SVM with weighted features, and the results

listed in Table 4 validate the effectiveness of the feature

normalization process as well. Also the results show that

SVM is more powerful for classification task as compared

with LDA.

In addition, we evaluate the effectiveness of individual

feature for pair-activity classification, and here we focus

on two most representative ones, namely causality ratio and

relative velocity, one of which from Granger Causality Test

and the other from the conventional single-trajectory repre-

sentation. The experiments are conducted based on LDA

along with the feature normalization procedure. Table 5

lists the detailed results where the causality ratio or rela-

tive velocity feature is removed respectively for pair-activity

representation. The observation can be made that: 1) when

causality ratio feature is removed, the classification perfor-

mance degrades dramatically, especially for the categories

of chasing, following and together, and hence the causality

information is significant in identifying the pair-activities;

and 2) when the relative velocity feature is removed, the

performance degrades, but not so great as for causality ratio

feature, which means that the relatively velocity is impor-

tant but less important than the causality ratio feature for

pair-activity classification.

5. Conclusions and Future Works

This work was devoted to the pair-activity classification

problem from three aspects: database construction, feature

design, and feature normalization for classification. To the

best of our knowledge, the pair-activity database introduced



Table 5. Comparison confusion tables of pair-activity classification accuracy (%) based on weighted features plus LDA: without causality

ratio feature vs. without relative velocity features (mean and variance).

Without Causality Ratio Chasing Following Together Meeting Independent

Chasing 47.0% 25.3% 21.8% 2.2% 2.9%

Following 17.9% 61.4% 12.4% 4.2% 4.1%

Together 8.8% 15.1% 65.9% 4.6% 5.6%

Meeting 8.2% 10.1% 10.4% 53.1% 18.2

Independent 6.2% 17.5% 16.1% 18.5% 41.7%

Without Relative Velocity Chasing Following Together Meeting Independent

Chasing 84.6% 6.7% 5.4% 1.2% 2.1%

Following 9.1% 81.5% 5.8% 2.9% 0.7%

Together 3.1% 10.9% 73.4% 3.8% 8.8%

Meeting 7.0% 3.2% 7.3% 63.1% 19.4

Independent 13.1% 9.2% 4.5% 11.1% 62.1%

in this work is the first one available for studying the pair-

activities, and also it is the first work to study the pair-

activity classification problem. We are planning to further

exploit this topic in three aspects: 1) to combine the middle-

level visual information (trajectories) with the low-level

(patch appearance) and high-level information (object cate-

gories) for better understanding the pair-activities; 2) to ex-

tend our proposed techniques for analyzing group-activities

involving multiple active objects; and 3) to extend the cur-

rent work to a more general framework for automatic pair-

activity detection, segmentation, and classification within a

long video.
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