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Abstract

Prior distributions are useful for robust low-level vision,

and undirected models (e.g. Markov Random Fields) have

become a central tool for this purpose. Though sometimes

these priors can be specified by hand, this becomes difficult

in large models, which has motivated learning these models

from data. However, maximum likelihood learning of undi-

rected models is extremely difficult- essentially all known

methods require approximations and/or high computational

cost.

Conversely, directed models are essentially trivial to

learn from data, but have not received much attention for

low-level vision. We compare the two formalisms of di-

rected and undirected models, and conclude that there is

no a priori reason to believe one better represents low-level

vision quantities. We formulate two simple directed priors,

for natural images and stereo disparity, to empirically test if

the undirected formalism is superior. We find in both cases

that a simple directed model can achieve results similar to

the best learnt undirected models with significant speedups

in training time, suggesting that directed models are an at-

tractive choice for tractable learning.

1. Introduction

Low-level perception involves dealing with large

amounts of uncertainty. Many problems can be phrased

as “inference”, or using prior knowledge to predict unseen

quantities. Though it is possible to specify simple priors by

hand, there is great interest in the use of data to learn priors

that are too complex to construct manually.

For low-level vision, the most common type of priors

have been formulated as undirected models (e.g. Markov

random fields, or conditional random fields). These have

been successfully learnt as priors for natural images [13,

22, 23], stereo depth [16, 15], single image depth [14], ob-

ject segmentation [2], optical flow [12], intrinsic images

[20], etc. However, undirected models are in general ex-

tremely difficult to learn. Essentially all uses of undirected

models have either restricted the model to a simple (e.g.

Gaussian or Laplacian) form, used variational approxima-

tions, or used exhaustive Markov chain Monte Carlo sam-

pling. (Training time of days or weeks is not uncommon

for MCMC based learning.) In short, exact maximum like-

lihood learning of undirected models seems to require re-

peated inference, which is often unacceptably slow. Ap-

proximations, on the other hand, can be difficult to gener-

alize to new situations. These difficulties have limited the

complexity of models that are practical to learn.

Directed models, an alternative type of graphical model,

do not suffer from many of the difficulties of undirected

models, but have received comparatively little attention for

low-level vision [8, 7]. This may be due, in part, to the fact

that directed models require imposing an order on variables,

that is unnatural for quantities like images. Nevertheless, di-

rected models have major computational advantages– there

is great flexibility in specifying the prior while permitting

exact maximum likelihood learning.

As we will argue, there is no theoretical reason to be-

lieve that any particular low-level vision prior is better rep-

resented by either type of model. The traditional view that

undirected models better represent low-level vision may

very well be correct. However, before dismissing the eas-

ier directed models, to investigate an experimental question.

How good are the priors we can estimate using directed

models, when compared to the state of the art in undirected

model learning?

To this end, we develop simple priors for two quantities:

stereo disparity, and natural images. In both cases, exact

maximum likelihood learning is easy and proceeds in a rea-

sonable amount of time. For natural images, we fit the con-

ditional probability of one pixel given some neighbors by a

mixture of Gaussians. For stereo, we learn a discrete rep-

resentation conditioning each pixel’s disparity on neighbor-

ing disparities, as well as image information near that pixel.

Despite the simplicity of these approaches, in both cases we

find that the priors are able to produce results comparable to

state of the art learnt undirected models.

The basic thesis of this paper is that directed models can
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Figure 1. An example graph where the parents of a variable consist

of its left and upper neighbors.

also represent priors for low-level vision, while enjoying

major computational advantages for learning.

2. Background

Section 2 reviews well known material on graphical

models. The expert reader can skip to section 3.

2.1. Directed Models

By elementary rules of probability, any probability dis-

tribution can be exactly written as a product of terms, where

each term is the conditional probability of one variable,

given all those before it in some order.

p(x1, x2, ..., xN ) = p(x1)p(x2|x1)...p(xN |x1, x2, ...xN−1)
(1)

However, unless the number of variables is small, this

representation will usually be impractical, since most terms

involve conditional probabilities defined over large numbers

of variables. In a directed model, one assumes a set of “par-

ents” for each variable, that render that variable independent

all all others before it in the ordering. Let πi denote the set

of parents for variable i. Then the assumption is that

p(xi|x1, ..., xi−1) = p(xi|xπi
) (2)

and so

p(x1, x2, ..., xN ) =
∏

i

p(xi|xπi
). (3)

Given a set of assumed parents for each node, it is often

convenient to picture the situation by drawing a graph with

one node for each variable, and directed edges from each

parent to each child (Fig. 1).

Notice that there is no reference in Eq. 2 to any

conditional independence to nodes xi+1, xi+2, ..., xN . A

directed model asserts only that xi is independent of

{x1, x2, ..., xi−1} given xπi
. So what is the “Markov blan-

ket” of xi, i.e., the set of variables that render it condition-

ally independent of all others? This turns out to consist of

xi’s parents, children, and its childrens’ parents (Fig. 2).

Now, we turn to the issue of learning. Suppose we have

a set of samples {x̂} from some true (but unknown) distri-
bution p(x). The most common way to do learning is by

M(xi)

xi

Figure 2. The Markov blanket M for xi. This consists of xi’s

parents, and children, as well as its childrens’ parents.

maximum likelihood. For some candidate distribution q(x)
define the log-likelihood to be

l(q) =
∑

x̂

log q(x̂). (4)

Different justifications are sometimes given for the max-

imum likelihood criterion. For our purposes here, however,

we consider maximizing the likelihood to be a surrogate

for minimizing the KL-divergence to the true distribution,

KL(p||q). An informal motivation for this is that

arg min
q

KL(p||q) = arg min
q

∫

p(x) log
p(x)

q(x)
dx (5)

= arg max
q

∫

p(x) log q(x)dx (6)

≈ arg max
q

∑

x̂

log q(x̂). (7)

So in the high data limit, the maximum likelihood solu-

tion will converge to the minimum KL-divergence solution

(under certain conditions [21]). The reason that directed

models are comparatively easy to learn is that the likelihood

“decomposes” into a sum of terms. Substituting Eq. 2 into

Eq. 4 yields

l(q) =
∑

i

∑

x̂

log q(x̂i|x̂πi
). (8)

So given q, the likelihood can be computed in closed
form. In general, to maximize this expression with respect

to q does not present any particular difficulties.
For low-level vision it is common to impose translation

invariance, to reduce model complexity, and the required

amount of training data. This means that only a single func-

tion q(xi|xπi
) needs to be learned.

2.2. Undirected Models

In an undirected model, or Markov random field, one di-

rectly specifies theMarkov blanket of each variable. Denote

byN (i) the set of neighbors of i. One then asserts that xi is

independent of all other variables given its set of neighbors.

p(xi|x1, ..., xi−1, xi+1, ..., xN ) = p(xi|xN (i)) (9)



N (xi)
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Figure 3. The classic undirected model where a variable is inde-

pendent of all others given its four neighbors.

The neighborhood systemmust be symmetric– j ∈ N (i)
if and only if i ∈ N (j). An undirected model is pictured
by drawing a graph with one node for each variable, and

undirected edges between the nodes for all variables that

are neighbors. (Fig. 3)

The immediate question is, given an undirected model,

what form can its probability distribution take? It is not

easy to specify p(x) in terms of local conditional probabil-
ity distributions, because in general graphs these local con-

ditional distributions turn out to have severe, non-obvious

constraints [4]. The solution ultimately came in the form of

the famous Hammersley Clifford theorem[4], which applies

only to positive probability distributions.

Theorem: p(x) > 0 obeys the set of conditional in-
dependencies asserted by a graph if and only if there exist

functions fC(xC) such that

p(x) =
1

Z
exp(

∑

C

fC(xC)), (10)

where the sum is over the set of cliques C in the graph,
and Z =

∫

exp(
∑

C fC(xC))dx.
So, specifying a valid distribution p(x) is equivalent to

specifying the set of functions fC(xC).
Now, suppose we would like to do maximum likelihood

density estimation of an undirected model. Substituting Eq.

10 into 4 gives

l(f) =
∑

x̂

(
∑

C

fC(xC) − log Z). (11)

Unfortunately, it is in general not possible to compute

l(f). The difficulty is the presence of the normalization
constant. Computing Z requires a high dimensional inte-
gral (or sum for discrete variables). Except in some special

cases, there is no tractable method to exactly find Z . In
fact, for discrete variables, finding Z is known to be NP-
hard. Since it is difficult to even compute the likelihood,

it is unsurprising that maximizing it is also very difficult.

There are algorithms for learning discrete models, such as

Iterated Proportional Fitting. However, these algorithms re-

quire repeatedly computing marginal distributions, which is

also known to be NP-hard (to do exactly) in general graphs.

Given the above difficulties, work on learning undi-

rected models either restricts attention to simple (e.g. Gaus-

sian) functions [18], uses exhaustive Markov chain Monte

Carlo techniques [13, 23], variational methods [19, 22], the

pseudo-likelihood approximation [5], and/or other approx-

imations [17] such as contrastive divergence[13]. While

these methods have proven successful in their domains, it

is often difficult to generalize these results, due to either

computational requirements, or domain-specific approxi-

mations.

2.3. Directed vs. Undirected Models

Computational considerations in the learning stage

clearly favor directed models. Exact maximum likelihood

learning in general undirected models is intractable, while

presenting no particular difficulty for directed models. In

the case of discrete variables a well-known result shows

maximum likelihood learning for a directed model often

reduces to setting each conditional probability distribution

equal to the observed frequencies.

Absent experiment, it is not clear which type of model

can better represent a given type of prior. Eachmodelmakes

assertions of conditional independence that are unlikely to

ever be exactly satisfied. However, as argued above, maxi-

mum likelihood learning of a directed or undirected model

(if feasible) will converge to the closest representable dis-

tribution, in the sense of KL-divergence.

One common misconception about directed models

stems from interpreting themodel causally. It does not seem

to make sense to think of the pixels in the upper left-hand

corner of an image “causing” the pixel intensities in the cen-

ter of an image. However, using a directed model makes no

such assumptions. To take an extreme example, imagine

that each pixel is conditioned on all those before it, as in

Eq. 1. By definition, this can exactly represent any distribu-

tion. Limiting the number of parents to each node reduces

the space of representable distributions, but so does limiting

the number of links in an undirected model. See Pearl [10]

for more details on causality.

In summary, both undirected and directed models im-

pose assumptions of conditional independence that are un-

likely to be exactly true in practice. In both cases, maxi-

mum likelihood learning results in the closest distribution,

in the sense of KL-divergence. However, in general, maxi-

mum likelihood learning of undirected models presents se-

vere computational difficulties. It is possible that undirected

models truly do allow a more accurate approximation of

some priors. However, this can only be determined by ex-

periment. Even if this was the case, the computational ad-

vantages of directed models would still need to be weighed

against these representational issues.

3. Image Prior

Our image model is pictured in Fig. 4. Essentially, each

pixel is conditioned on the twelve pixels before it in the five



xπi

xπi

xi

xi

Figure 4. The model for natural images, p(xi|xπi
). Here, xi de-

notes the intensity of pixel i.

by five surrounding patch.

We assume the prior should be translation invariant.

Hence, we fit a single function p(xi|xπi
) that approximates

the conditional probability of any one pixel xi given its

neighboring pixels xπi
; this single function applies to any

position in the image. Thus, for simplicity, the index i is
dropped in the following discussion.

3.1. Representation

The image prior is represented as a conditional mixture

of Gaussians. Suppose that the joint density over x and xπ

is represented by some mixture of Gaussians.

p(x,xπ) =
∑

m

αmN (
[ x

xπ

]

, Σm, µm) (12)

It is well known that the marginal of this over xπ will be

p(xπ) =
∑

m

αmN (xπ , Σ∗
m, µ∗

m) (13)

where µ∗
m denotes the vector containing all elements of

µm except the first, and Σ∗
m denotes the submatrix of Σm

containing all elements except the first column and first row

[11].

The conditional distribution follows immediately from

Eqs. 12 and 13.

p(x|xπ) =

∑

m αmN (
[ x

xπ

]

, Σm, µm)

∑

m αmN (xπ , Σ∗
m, µ∗

m)
(14)

3.2. Learning

To do maximum likelihood density estimation, we

should now fit the distribution to maximize the conditional

likelihood

∑

{(x̂,x̂π)}

log p(x̂|x̂π) =
∑

{(x̂,x̂π)}

(log p(x,xπ) − log p(xπ)),

(15)

where p(x,xπ) and p(xπ) are given in Eqs. 12 and 13.
The derivatives of Eq. 15 with respect to αm, µm, and Σm

are easily derived in terms of the derivatives of the logarithm

of a mixture of Gaussians[11].

σ λ(σ) Lena Barbara Boats House Peppers Mean R&B

1 1.5 48.2 48.2 48.1 48.9 48.2 48.3 47.90

2 1.5 42.8 42.8 42.2 43.9 42.9 42.9 43.02

5 2 37.7 36.7 36.1 37.9 37.5 37.2 37.49

10 2.5 34.4 32.2 32.8 34.8 33.8 33.6 34.05

15 3 32.6 29.7 31.0 33.3 31.7 31.7 32.04

20 3.5 31.4 27.9 29.8 32.1 30.3 30.3 30.57

25 4.5 30.4 26.5 28.8 31.1 29.2 29.2 29.38

50 9 27.5 23.2 25.7 27.9 25.6 26.0 25.09

75 12.5 25.7 22.3 24.1 25.9 23.4 24.3 22.76

100 15.5 24.5 21.7 22.9 24.4 22.0 23.1 20.74

Table 1. Denoising Results, including the extra parameters λ(σ).
R&B refers to the Roth and Black Field of experts model [12],

which uses similar parameters (see text).

Before learning, we initialized αm uniformly, and ini-

tialized all Σm and µm to be the covariance and mean of

the training data, with some slight perturbation to break

symmetries. We used 1,000,000 randomly sampled 5 ×
5 patches, taken from the same Berkeley segmentation
database used to learn some other recent priors[13, 22]. We

learned three priors, with mixtures of one, two, and five

components.

The mixtures were learnt using stochastic gradient as-

cent, with a small fixed step size. In order to be a valid

mixture of Gaussians, the matrices Σm must be constrained

to be positive definite, and the parameters αm must be

constrained to be positive and sum to one. This is han-

dled by reparameterizing Σm = MmMT
m and αm =

exp(θm)/
∑

n exp(θn). We made 100 passes through the
data, with the order of the data randomly shuffled before

each pass. For computational purposes in our interpreted

implementation, the samples were considered in batches of

size 1000. In ourMatlab implementation on a 2.79 GHz PC,

learning took about one hour for the five component prior.

3.3. Denoising Experiments

As is common in image denoising, we assume that an

image has been corrupted with Gaussian noise of known

variance. Then, given the observed noisy imagew, the pos-

terior distribution over the noiseless image x is

p(x|w) ∝ p(w|x)p(x) (16)

where p(w|x) ∝ exp(||w−x||2/(2σ2)), and p(x) is the
prior over natural images learned above. Then it is possible

to find a local maximum of log p(w|x) + log p(x) using a
nonlinear optimization to produce a denoised image x.

The gradient of log p(w|x) is well known. The gradi-
ent of log p(x) again follows from Eq. 14 using standard
formulas [11].

To maximize p(x|w) we used a quasi-Netwon method
(Limited memory BFGS [1]). To reduce memory require-



σ Lena Barbara Boats House Peppers Mean W&F

1 47.7 47.8 47.8 48.7 47.8 47.9 43.6

2 42.2 42.5 41.6 43.5 42.4 42.4 40.2

5 37.1 36.2 35.4 37.0 36.9 36.5 36.3

10 33.7 31.3 31.8 34.4 33.0 32.8 33.3

15 31.8 28.3 29.9 32.6 30.6 30.7 31.1

20 30.5 26.0 28.6 31.2 28.8 29.0 29.4

25 29.5 24.4 27.5 30.2 27.4 27.8 27.9

50 26.6 22.7 24.6 26.8 23.9 24.9 23.1

75 25.2 22.0 23.3 25.0 22.1 23.5 20.0

100 24.1 21.5 22.5 23.9 21.1 22.6 17.8

Table 2. Denoising Results, not including the extra parameters

λ(σ). W&F refers to the model byWeiss and Freeman [22], which
also does not use such parameters.

ments, the image is divided into several patches of approx-

imately 40 by 40 pixels each. The optimization then itera-

tively optimizes over the pixels in each patch. The image is

first denoised with the 1-mixture prior, then the 2-mixture

prior, then the full 5-mixture prior. We found that this sig-

nificantly improved convergence. The image is swept over

5 times for the 1 and 2-mixture priors, and five times for the

5-mixture prior. In each sweep, 15 L-BFGS iterations are

used on each patch.

Tables 1 and 2 compare the denoising results with two

other image priors using a standard denoising test set. These

tables give results in terms of the peak signal to noise ratio

(PSNR). In general, a higher PSNR indicates a better recon-

struction.

It is important to note that Roth and Black use an ad-

ditional set of parameters to denoise. Rather than directly

maximizing Eq. 16 they maximize p(w|x)λ(σ)p(x) where
λ(σ) is some constant greater than one chosen for each
noise level. Experimentally, including these constants also

improves the performance of our model. We learned a sim-

ilar set of parameters by testing a range of constants λ, in
intervals of .5, for each noise level using a small subset of
the training data images. The constant which yielded the

best average PSNR scores was chosen. For completeness,

we give results both with the constants (comparing to Roth

and Black) and without the constants (comparing to Weiss

and Freeman).

3.4. Inpainting Experiments

Figure 6 shows the results of using our image prior for

image inpainting, using the data from Bertalmío et al. [3].

In each case, an image is provided, along with a mask.

The pixels in the mask are optimized to maximize p(x).
Again, we first optimize using the 1-mixture prior, then the

2-mixture prior, then the 5-mixture prior. In this case, be-

cause the masks contain relatively few pixels, the optimiza-

tion took place over the full image, with L-BFGS run to

completion.

dπi

dπi

di

di mi

mi

gi

gi

Figure 7. The model for stereo. Here, di denotes the disparity of

pixel i,mi denotes the vector of matching costs at pixel i, and gi

represents the gradients at pixel i.

4. Stereo

The graphical model for stereo disparity is shown in Fig.

7. We condition the disparity at each pixel di on the dispar-

ity of its four grayed neighbors dπi
, the vector of match-

ing costsmi at that pixel (explained below), and the image

gradient gi at that pixel. Since we work in a discrete dis-

parity space, it is also convenient to discretize the variables

for image gradients and matching costs. Again, we assume

translational invariance, meaning only a single conditional

distribution needs to be fit.

4.1. Representation

We fit p(di|dπi
,gi,mi) using the parametric model

p(di|dπi
,gi,mi) =

exp
(

fd(di,dπi
,gi, θ

d) + fm(di,mi, θ
m)

)

Z(θd, θm,dπi
,gi,mi)

,

(17)

where Z is the normalizing constant for the parameters
θ

d, θm, and the parent values dπi
,gi,mi. Notice that Z is

a function of the parent variables, but not of d.

Z(θd, θm,dπi
,gi,mi) =

∑

d

exp
(

fd(d,dπi
,gi, θ

d) + fm(d,mi, θ
m)

)

(18)

The functions fd and fm are lookup tables defined as

fd(di,dπi
,gi, θ

d) = θd
a, a = dcase(di,dπi

,gi)

fm(d,mi, θ
m) = θm

b , b = mcase(di,mi)

where the functions dcase and mcase are integer valued

functions that compute the “cases” for their inputs:

• mcase computes the cases based on matching costs.
Following previous work on stereo [9], we use both

the Birchfield-Tomasi matching cost[6] and gradient

differences between the left and right images. At each



Figure 5. Denoising experiments with noise level σ = 25, using the adjustment λ = 4.5.

Figure 6. Inpainting experiments.

pixel i, we compute these costs for each allowed dis-
parity, and stack these together to form the vector of

matching costs mi. For each allowed disparity, we

compute two values – the Birchfield-Tomasi matching

cost, and the L1 norm of the difference between the

gradients in each image. Both costs are averaged over a

3× 3 window. The two-dimensional space of intensity
and gradient matching costs is discretized by binning

each dimension separately. The bins are chosen such

that equally many matching costs from the training

data fall into each bin. We used 18 bins for the match-
ing cost and 20 bins for the gradient cost, for a total
of 360 cases. For a particular pixel, mcase(di,mi) re-
turns the case at disparity di.

• dcase computes the cases based on neighboring dis-
parities and gradients. A naïve representation of all the

possible disparity configurations (di,dπi
) is not prac-

tical – with 80 allowable disparities, there would be

805 possible cases. To reduce this, several of these

cases are considered equivalent. For each parent in

dπi
, we consider 3 cases – either di is equal to that

parent, differs by one, or differs by greater than one.

Since we are considering four parents (Fig. 7), the set

of all possible disparities di,dπi
gets divided into a

more practical 34 = 81 cases. The gradients gi are

computed by a difference filter in the horizontal and

vertical directions. We used only three bins for each

gradient value - [0 − 25), [25 − 50), and [50 − 255].
Since we have two gradient values (horizontal and ver-

tical), we have 32 = 9 bins for the gradient at a pixel.
Finally, since there are 81 bins for di,dπi

, and 9 bins
for gi, there are a total of 729 cases.

Theoretically, we could have used a single function with

joint cases for matching costs, gradients, and disparities, but

this would have required too much training data.



∂
∂θd

a

l =
∑

{d̂,ĝ,m̂}

∑

i

(

∂
∂θd

a

fd(d̂i, d̂πi
, ĝi, θ

d)

− 1
Z(θd,θm,d̂πi

,ĝi,m̂i)
∂

∂θd
a

Z(θd, θm, d̂πi
, ĝi, m̂i)

)

∂
∂θm

b

l =
∑

{d̂,ĝ,m̂}

∑

i

(

∂
∂θm

b

fm(d̂i, m̂i, θ
m)

− 1

Z(θd,θm,d̂πi
,ĝi,m̂i)

∂
∂θm

b

Z(θd, θm, d̂πi
, ĝi, m̂i)

)

∂
∂θd

a

Z(θd, θm, d̂πi
, ĝi, m̂i) =

∑

d exp
(

fd(d, d̂πi
, ĝi, θ

d)

+fm(d, m̂i, θ
m)

)

∂
∂θd

a

fd(d, d̂πi
, ĝi, θ

d)

∂
∂θm

b

Z(θd, θm, d̂πi
, ĝi, m̂i) =

∑

d exp
(

fd(d, d̂πi
, ĝi, θ

d)

+fm(d, m̂i, θ
m)

)

∂
∂θm

b

fm(d, m̂i, θ
m)

∂
∂θd

a

fd(d̂i, d̂πi
, ĝi, θ

d) = [dcase(d̂i, d̂πi
, ĝi) = a]

∂
∂θm

b

fd(d̂i, m̂i, θ
d) = [mcase(d̂i, m̂i) = b]

Figure 8. Gradient Equations. The last two equations use Iverson’s

notation: [X] is 1 isX is true, and 0 otherwise.

4.2. Learning

Following Eq. 17, the log likelihood for the training data

{d̂, ĝ, m̂}is

l =
∑

{d̂,ĝ,m̂}

∑

i

(

fd(d̂i, d̂πi
,gi, θ

d) + fm(di,mi, θ
m)

(19)
− logZ(θd, θm,dπi

,gi,mi)
)

.

Even though it is discrete, the distribution p(d|dπ ,g,m)
cannot be learned by counting. We again used a quasi-

Newton method to optimize the log-likelihood. The gra-

dients of the log likelihood are cumbersome to write down

but easy to compute. These are shown in Fig. 8.

We used 100,000 samples from the Art, Books, Dolls,

Laundry,Moebius, and Reindeer stereo pairs in the Middle-

bury dataset [16] for learning the parameters. The learning

process took about 30 minutes using L-BFGS. If all param-

eters are fit together, we observed that the model tended to

oversmooth the disparity map. Hence, we use two mea-

sures to reduce oversmoothing of disparity map. First, we

train the matching parameters θ
m by fixing fd = 0, and

then train the smoothness parameters with θ
m held con-

stant. Second, we regularize the smoothness term by chang-

ing the learnt θd to θ
d/λ, where λ = 1.5.

4.3. Inference

For our final result, we would like to find the disparity

map that has the smallest number of errors. The optimal

solution to this is to take the disparity for each pixel, in-

dependently, to be the disparity that is most probable. To

approximate this, we pursue the following strategy: sample

several disparity maps from the posterior p(d|g,m). Then,
for each pixel, simply count the number of occurrences of

each disparity, and set it to the most frequent. This is opti-

mal in the sense that it minimizes the expected number of

disparities that are incorrectly assigned. However, we em-

phasize that this is not equivalent to maximizing p(d|g,m).
One major advantage of our directed model is that it is

easy and efficient to obtain exact samples. It is possible

to sample from our model in O(Nd) where N is the num-
ber of pixels and d is the number of disparities. We em-
phasize that this is unlike the case for undirected models

which in general require computationally intensive tech-

niques such as Gibbs sampling. Sampling proceeds in a

column major order. Notice, when proceeding in this order,

that for each pixel, the parent disparities dπi
in Fig. 7 will

have already been sampled (The boundary cases are handled

by setting disparity values at non-existent neighbors to the

nearest available disparity. A more correct solution would

be to learn different conditional distributions for the bound-

aries). The vector of matching costs mi, and the norm of

the gradient gi, of course, are constant. Thus, we can easily

sample di from p(di|dπi
, gi,mi). In our implementation,

sampling one full disparity map from the Tsukuba pair (16

disparities) takes 0.1 seconds, and from the Cones pair (64

disparities) takes 0.4 seconds.

We compute 100 such samples of the disparity map.

Half of the samples are obtained by flipping the stereo pair

from left to right. These samples give us an approximate

marginal distribution for the disparity at each pixel. For

our final result, for each pixel, we choose the disparity that

was sampled most often. Empirically, sampling 30 dispar-

ity maps gives a result close to the final solution. (We note

that these samples could trivially be computed in parallel.)

We note that common inference algorithms, such as be-

lief propagation, which attempt to maximize p(d|g,m), are
expensive to apply to our model, since it involves products

over five disparity variables, each of which can take a sig-

nificant number of values (16 to 80). However, taking the

maximum probability disparity for each pixel will on aver-

age produce fewer errors than the joint maximum probabil-

ity disparity map.

4.4. Stereo Experiments

Figure 9 and Table 3 show the computed disparity maps

and scores for the Tsukuba, Venus, Teddy, and Cones stereo

pairs from the Middlebury dataset. We compare against the

CRF model of Scharstein and Pal[16] as well as the popular

Graph Cuts[17] algorithm on which it is based. The scores

indicate the percentage of pixels for which the absolute dif-

ference between the true disparity and computed disparity

exceeded 1. We note that there are better performing hand

crafted algorithms, but our results are similar to the model

learnt using CRFs .



Figure 9. Stereo Results. From left to right: Tsukuba, Venus, Teddy, and Cones.

Tsukuba Venus Teddy Cones Mean

Directed Sampling 3.9 3.6 10.5 4.2 5.6

Graph Cuts 1.9 1.8 16.5 7.7 7.0

CRFs (K = 2) 2.2 1.6 11.3 10.7 6.5

Table 3. Results of Middlebury evaluation. (Numbers indicate the

percentage of incorrect disparities.)

5. Conclusions

Since directed models provide priors that seem to be

comparable to the state of the art, and the fact that this kind

of learning takes a few minutes, it suggests that directed

models have great potential as a tool for computer vision

research. Given the simplicity of our models here, we be-

lieve even better results can be obtained by learning more

sophisticated representations.
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