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Abstract

We describe a method to retrieve images found on web

pages with specified object class labels, using an analysis

of text around the image and of image appearance. Our

method determines whether an object is both described in

text and appears in a image using a discriminative image

model and a generative text model.

Our models are learnt by exploiting established online

knowledge resources (Wikipedia pages for text; Flickr and

Caltech data sets for image). These resources provide rich

text and object appearance information. We describe re-

sults on two data sets. The first is Berg’s collection of ten

animal categories; on this data set, we outperform previous

approaches [7, 33]. We have also collected five more cat-

egories. Experimental results show the effectiveness of our

approach on this new data set.

1. Introduction

Image retrieval is an established research task. There are

several major strategies. One could match representations

of image appearance and sketches (e.g. [6, 19]). However,

content based methods do not appear to be able to meet user

needs [3, 15], and the major search engines use text-based

methods, relying on cues such as file name, alt tags, user

labeling and nearby text.

So one may ask: Does the combination of image cues

and associated text suggest the image contains the relevant

concept? In this framework, one works with a pool of web

pages, typically collected by querying on an object name

(e.g. “frog”), and must then identify images that depict

frogs. This problem is challenging, because both text and

images display richly varied properties. Words usually have

multiple senses. For example, “frog” can be a bicycle band,

an article of dress, a video game or a films, meaning that

many web pages collected with a “frog” query have nothing

to do with the animal “frog” . To overcome this problem,

Berg et al [7] applied latent Dirichlet allocation [9] to dis-

cover word clusters that are relevant to the desired sense and
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Rank Result

Web pages downloaded with keyword “frog”

Wikipedia page of frog (amphibian) Frog images from Flickr and Caltech data sets

Figure 1. The framework of our approach. Query “frog” is taken as an an

example in this figure. We collect a pool of noisy web pages by inputting

“frog” to Google. Wikipedia page of frog (amphibian) is extracted and

a text model is built with its textual description. Similarly, image model

is trained with Caltech and Flickr “frog” images. By combining text and

image cues, images from web pages are ranked.

rank images according to these words. They must select the

word cluster by hand, and LDA may fail to discover mean-

ingful clusters from noisy web texts. Schroff et al. [33]

used text features with strong semantics (image filename,

image alt text and website title) rather than just nearby text.

This form of text semantics offers strong constraints, but

does not guarantee avoiding sense ambiguity. Web images

of concepts are often extremely complex, with variations in

pose, location, species, etc. Nonetheless, both [7] and [33]

showed visual information makes a substantial contribution

to the final retrieval results.

A shortage of good training data is an important chal-

lenge for this problem. One strategy is to build text model

from collected noisy web pages. Then images with high

rank based on the text model are used to train image

model(e.g [7, 33]). The strategy is reasonable, but makes

methods sensitive to text ranking results, and forces a com-
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promise between the number of training images and their

quality. Instead, we use web derived online knowledge re-

sources (Sec.2). With enough human compiled text and im-

age data, we build text and image models separately.

An important feature of our image model is its discrimi-

native form (systems for object recognition that are trained

on data where location is not known are more typically gen-

erative in form; see, for example, [28]). We use an SVM,

because the method has behaved well on visual classifica-

tion in the past [23, 33]. However, because images obtained

in the wild are extremely complex, we need to stabilize the

feature space; we use a novel form of the method advocated

by [31, 30].

Our approach is automatic — meaning one could build a

search engine that took text queries, extracted information

from the knowledge resources, and identified relevant im-

ages — except for a step where we identify the sense of the

query word (which we do by offering a user a set of senses

from Wikipedia). We perform experiments on the same an-

imal data set of [7], which includes ten animal categories.

Our method outperforms reported results [7, 33]. We collect

five new categories: “binoculars”, “fern”, “laptop”, “motor-

bike” and “rifle”. The experimental result shows our algo-

rithm can also get high precision over these categories.

1.1. Background

Words and Pictures: There are many data sets of im-

ages with associated words. Examples include: collections

of museum material [5]; the Corel collection of images

([4, 12], and numerous others); any video with sound or

closed captioning [35]; images collected from the web with

their enclosing web pages [7]; or captioned news images

[34]. It is a remarkable fact that, in these collections, pic-

tures and their associated annotations are complementary.

The literature is very extensive, and we can mention only

the most relevant papers here. For a more complete review,

we refer readers to [13, 24]. Joint image-keyword searches

are successful [6], and one can identify images that illustrate

a story by search [21]. Clustering images and words jointly

can produce useful, browsable representations of museum

collections [5].

Linking keywords to images: One could: predict words

associated with an image (image annotation); or predict

words associated with particular image structures (image

labelling). Because words are correlated, it can be help-

ful to cluster them and predict clusters, particularly for an-

notation ([25]). Labeling methods are distinguished by the

way correspondence between image structures and labels

is inferred. Methods include: clustering or latent variable

methods [5, 4]; using multiple-instance learning [27, 12];

explicit correspondence reasoning with generative model

([14]; model from [10]); latent dirichlet allocation [8];

cross-media relevance models [20]; continuous relevance

models [22]; and localization reasoning [11]. Barnard et

al. demonstrate and compare a wide variety of methods

to predict keywords, including several strategies for reason-

ing about correspondence directly [4]. Most methods at-

tempt to predict noun annotations, and are more successful

with mass nouns — known in vision circles as “stuff”; ex-

amples include sky, cloud, grass, sea — than with count

nouns (“things”; cat, dog, car). For these methods, evalua-

tion is by comparing predicted annotations with known an-

notations. Most methods can beat a word prior, but display

marked eccentricities. One could then propagate text labels

from labelled images to unlabeled images, making keyword

based searches of large image collections possible.

2. Online Knowledge Resources
The web is rich in pools of information carefully com-

piled and edited by humans, typically volunteers. We call

these pools of information knowledge resources. They are

convenient to access and rich in context. In this paper, we

use text and image knowledge resources for the image re-

trieval task.

For text, we employ Wikipedia[1], which is the biggest

free encyclopedia on internet nowadays. It had over

2,104,000 articles on 902,000,000 words by December

2007. Besides abundant information, Wikipedia can disam-

biguate: for objects with multiple senses, it provides sepa-

rate descriptions for each sense. This is very useful for our

task. We select the desired sense and build a text model us-

ing its description. Then the resulting model can filter web

pages from other senses and avoid ambiguity. For example,

a text model trained with the “frog (amphibian)” Wikipedia

page could filter text about a horror film called “frog”.

Wikipedia has a hierarchical taxonomy of classes, which

could help to find classes close to the object in seman-

tics. For example, from “frog”, we can go to its child class

“ascaphidae ”. A better text model is built by combining

“ascaphidae ” with “frog” since this captures specific in-

formation about specific frogs. Wikipedia pages of other

semantically close classes which are not descendant such

as “amphibian”,“snake” and “caecilian” are used to smooth

the “frog” model parameters.

To train the image model, we exploit Caltech data sets

(Caltech 101 [16] and Caltech 256 [18]) and Flickr [2] as

image knowledge resources (Labelme [32] is another pos-

sibility; we have not used it to date). Caltech images depict

objects cleanly because they are collected for research pur-

pose, but the number is limited. For object classes which

appear in Caltech data sets, we use Caltech images as pos-

itive training examples; for object classes which don’t ap-

pear in Caltech, we use Flickr images as positive training

examples. Flickr has immense numbers of images (several

thousands uploaded each minute; 2.2 million geotagged last

month), but the labels are usually noisy. We use query ex-

tension to get a cleaner set of images. We query Flickr with

an object name as well as its parent class name, obtained



from the Wikipedia taxonomy. For example, we use “frog

amphibian” to extract frog images.

3. Approach
Our goal is to retrieve object images from noisy web

page with image and text cues. We have a query q which

is the object class name, for example, “frog”. We also have

a collection of web pages which are collected by inputting q

and some extensions to Google text search engine. The ith

web page is represented as a packet {Wi, Ii}, i = 1, · · · , N ,

where Ii denotes image and Wi denotes text nearby Ii. We

write ci = 1 if Ii is relevant to q; otherwise ci = 0. We

write θt for the text model parameter and θv for the image

model parameter when ci = 1; write θb for the text model

parameter when ci = 0. We rank images according to:

p(ci = 1 | Wi, Ii, q; θt, θv, θb) (1)

We adopt a generative text model and a discriminative im-

age model. Eq.1 is written as:

p(Wi | ci = 1, q; θt)p(ci = 1 | Ii, q; θv)

p(Wi | Ii, q)
(2)

p(Wi | Ii, q) is:

p(Wi | ci = 1, q; θt)p(ci = 1 | Ii, q; θv)+
p(Wi | ci = 0, q; θb)p(ci = 0 | Ii, q)

(3)

Where p(ci = 0 | Ii, q) equals to 1 − p(ci = 1 | Ii, q).
θt and θv are trained on text and image knowledge re-

sources. Fig.1 takes query “frog” as an example to illus-

trates our approach. We show how to learn p(Wi | ci =
1, q; θt) and p(Wi | ci = 0, q; θb) in Sec.3.1. p(ci = 1 |
Ii, q; θv) is studied in Sec.3.2.

3.1. Text model
We adopt a generative text model. Wi is a sequence of

words {wj
i , j = 1, · · · , L}. θt is multinomial parameter

over words and is estimated from text knowledge resource.

Assume words are independent from each other in Wi:

p(Wi | ci = 1, q; θt) =

L∏

j=1

p(wj
i | ci = 1, q; θt) (4)

But Eq.4 tends to underweight the contribution of long

text. For example, a short sentence may be accidental, but a

paragraph is not. So we use the following formula:

p(Wi | ci = 1, q; θt) = (

L∏

j=1

p(wj
i | ci = 1, q; θt))

1

L (5)

which weights longer sets of relevant text more heavily

in posterior inference (Eq.2).

The text knowledge resource is denoted K . It is a sim-

ple combination of all the Wikipedia pages (just body text)

from queried object class (with desired sense) and its de-

scendant classes in Wikipedia taxonomy. In the simplest

case, θt could be estimated from K by maximum likeli-

hood, which estimates θ
j
t (the jth component of the multi-

nomial parameter) as a ratio of word counts. However, word

set of K is limited, meaning that zero counts are a problem.

“smoothing” is necessary. In this paper, we adopt Dirichlet

smoothing [36] since it is simple and effective.

A much richer Wikipedia page collection A is extracted.

The pages are from a number of semantically close classes

(except children classes) of the object. With A as smoothing

data, θt is estimated as:

θ
j
t =

N
j
K + ληj

NK + λ
(6)

Where N
j
K denotes the counts of the jth word in K and

NK denotes the counts of all the words in K . Similarly,

ηj =
N

j

A

NA
. λ is a parameter to control the contribution of

the prior. Words are set to be independent and of uniform

probability when c = 0. Then p(Wi | ci = 0, q; θb) is

calculated similar to Eq.5.

3.2. Image model

We use a discriminative method to learn p(ci = 1 |
Ii, q; θv) directly. An SVM is employed because it has

been proven to be effective and highly robust to noise in

image classification [23, 33]. We exploit Caltech or Flickr

images of the queried object class as positive training ex-

amples; the “clutter” category from Caltech 256 is used as

negative examples. Each image is represented as a normal-

ized histogram of visual words with dimension l. Train-

ing examples for this task are denoted as {(xr, yr), r =
1, · · · , R, yr = 1,−1}.

The original SVM classifier just outputs a hard decision.

In this paper, we adopt the method of [29] to fit a posterior

probability with a sigmoid function.

l is usually high dimensional. It is difficult to learn the

model in the high dimensional space. [31, 30] have shown

that using subsidiary tasks can produce a low dimensional

feature space, which is stable and effective for the problem

at hand. But instead of using unlabeled data as the sub-

sidiary task, we propose a novel method to exploit highly

relevant images in the knowledge resources, which are more

helpful for the main task.

We first represent the object class we want to query as a

normalized histogram of codewords fo by using all positive

training images. Other categories from the Caltech data set

(except the queried object class) are also represented as his-

tograms fm, m = 1, · · · , M . We calculate the difference

between queried object class and Caltech classes using χ2:

1

2

l∑

j=1

[f j
o − f j

m]2

f
j
o + f

j
m

(7)



The Ts most similar categories are chosen from Caltech and

act as positive examples in the subsidiary tasks. We down-

load Tn sets of background images from web as negative

examples. By pairwise matching, there are T = TsTn sub-

sidiary tasks overall. Each image in subsidiary tasks is also

represented as a normalized histogram with dimension l.

Similar to [30], for each auxiliary task t, we learn a linear

function w∗

t which is most discriminative between positive

and negative training images with a linear SVM.

We concatenate all w∗

t (each w∗

t is a column) to form a

matrix W with dimension l × T . We obtain a projection

matrix P with dimension h × l by taking the first h eigen-

vectors (h ≪ l) of matrix WW ′. The training examples for

the main task are now represented in the new feature space

as {(P · xr, yr), r = 1, · · · , R, yr = 1,−1}, where P · xr

is with dimension h. A kernel SVM classifier with optimal

parameter w∗ is trained:

min ‖w‖2 + C
∑

r

ξr (8)

subject to yr(w · Φ(P · xr) − b) ≥ 1 (9)

Where Φ denotes the kernel function. We use radial basis

function in this paper. To calculate p(ci = 1 | Ii), Ii is

represented in the low dimensional feature space and the

learnt kernel SVM classifier is applied. SVM decision is

converted to a probability with the method of [29].

The overview of our learning algorithm is presented in

Alg.1

4. Implementation
In this section, we give implementation details for the

text and image models. In Eq.6, λ is set to be one tenth

of the words number of K . We remove stop words from

Wikipedia and collected web pages.

Both training and testing images are converted to gray

scale and resized to a moderate size. We use a canny edge

detector to extract edge points from image. A set of points

are randomly selected and regions are extracted at these

points. As in [17], scale is uniformly sampled from a sen-

sible range (10-30 pixels in this paper). Around 400 re-

gions from each image are extracted. We represent these

regions with SIFT [26] feature. Features from 150 Caltech

categories (100 categories from Caltech101 plus 50 from

Caltech 256) are quantized with Kmeans. The number of

clusters is 500. So each image and class is represented with

a 500 dimensional histogram.

When constructing subsidiary tasks, the 10 most similar

categories are selected out, and 3 sets of background im-

ages are downloaded from web. So there are 30 subsidiary

tasks by pairwise matching. We reduce the 500 dimensional

feature to be 20 dimensional.

As considered by [33], there are “abstract” images which

don’t look realistic such as comics, graphs, plots, charts.

In order to get natural images, it’s better to remove them.

Algorithm 1 The overview of image model learning.

For a given query:

1. Obtaining training examples: Use Caltech or Flick

images of the queried object class as positive training

examples; use “clutter” category from Caltech 256 as

negative training examples.

2. Representation: Represent image as a normalized

histogram of codewords with dimension l; represent

queried object class and other categories in Caltech

data sets as normalized histograms with dimension l

too.

3. Constructing subsidiary tasks: By Chi-square mea-

sure over histograms, find the Ts most similar cate-

gories from Caltech data set and set them to be posi-

tive examples in subsidiary tasks. Download Tn sets

of background images from web as negative examples.

By pairwise matching, there are T = TsTn subsidiary

tasks overall.

4. Learning feature projection: For each subsidiary

task t, learn linear function w∗

t with linear SVM. Con-

catenating all w∗

t to form a matrix W with dimension

l × T . By taking the first h eigenvectors of WW ′, get

a projection matrix P with dimension h × l.
5. Training SVM classifier: Convert training examples

of the main task to low dimensional space with projec-

tion matrix P , train a kernel SVM.

[33] learnt a SVM classifier between “abstract” and “non-

abstract” with extra training images. In this paper, we sim-

ply remove the non-color images since most of “abstract”

images are black and white.

5. Experiments

We perform two experiments in this paper. The first one

is on the data set of [7], which includes ten animal classes

as shown in Fig.3. The second experiment is performed on

five newly collected categories.

Besides the combined model in Eq.1, we also perform

retrieval experiments with a pure text model and a pure im-

age model. The text model ranks images according to:

p(Wi | ci = 1, q; θt)p(ci = 1, q)

p(Wi | ci = 0, q; θb)p(ci = 0, q)
(10)

p(ci = 1, q) and p(ci = 0, q) are simply set to be equal.

The image model ranks images with p(ci = 1 | Ii, q; θv).

5.1. Experiment 1

For each animal class, we use its Wikipedia pages and

Caltech or Flickr images as knowledge resources to train

the text and image models. Then images in the returned

web pages by “google” are ranked for each class. There is

no “monkey” in Caltech data sets, so we use Flickr images
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Figure 2. Precision at 100 image recall by image model. “Flickr” denotes

the model is trained with Flickr images as positive training examples. Sim-

ilarly, “Caltech” denotes the model is trained with Caltech images; “Flickr

and Caltech” denotes the model is trained with both Flickr and Caltech

images. In most categories, clean Caltech images produce better results.

But results by Flickr are comparable and acceptable. This shows we can

build image model with Flickr if there are not clean Caltech images for the

queried object class.

to train “monkey” image model. For the other nine cate-

gories, we use Caltech images. We also compare the per-

formance with different types of training images in Fig.2,

which shows precision at 100 image recall by the pure im-

age model. “Flickr” denotes the Image model is trained

with noisy Flickr images as positive training examples.

Similarly, “Caltech” denotes the model is trained with Cal-

tech images; “Flickr and Caltech” denotes the model is

trained with both Flickr and Caltech images. In most cate-

gories, clean Caltech images produce better results. Results

using Flickr images are comparable and acceptable, which

shows we can use Flickr images to train the image model if

there are not clean Caltech images available.

In Fig.3, we present precision recall curves with different

models. In all figures, the x axis denotes recall while the y

axis denotes precision. “Text” is the result with text model;

“Image” is the result with image model. “Text+Image”

shows the result with the combined model. Note that we

don’t remove “abstract” images here.

We compare our ranking results produced by the com-

bined model with the work of [33] and of [7] in Fig.4. This

is based on the precision of 100 image recall. Note that we

use the result of “classification on test data” in [7]. We out-

perform [7] on all the categories and outperform [33] except

“Alligator” and “Beaver”. Improvement is significant for

categories such as “Bear”, “Dolphin”, “Monkey” and “Pen-

guin”. We also make a comparison with different measures

on the whole data set as shown in Table.1.

We show the top ranked images for “Alligator”, “Bear”,

“Frog”, “Dolphin”, “Giraffe”, ”Penguin“ and “Leopard” in
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Figure 3. Precision recall curves with different models. In all figures, x

axis denotes recall while y axis denotes precision. “Text” is the result with

text model; “Image” is the result with image model. “Text+Image” shows

the result by combining text and image models. Note that we don’t remove

“abstract” images here. The combined model usually works better than

separate models. Image models can be quite discriminative such as the

“dolphin” image model and the “frog” image model.

Mean Median Minimum Maximum

[7] 55.1 61 15 83

[33] 63.3 64 36 88

Our result 79.4 84 41 94

Table 1. Overall comparison withSchroff et al [33] and Berg et al [7] on

the ten animal categories. This is based on the precision at 100 image

recall. Our method outperform them on all the four measures: “Mean”,

“Median”, “Minimum” and “Maximum”.
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Note that we compare with the “classification on test data” of [7]. We out-

perform [7] over all the categories and outperform [33] except “Alligator”

and “Beaver”. Improvement over many categories are significant such as

“Bear”, “Dolphin”, “Monkey” and “Penguin”.

Fig.6. Images in the red squares are false positives. Most of

these images are correct.

5.2. Experiment 2

Experiment 1 is carried only on animal categories. In this

section, we collect five diverse object classes (“binoculars”,

“fern”, “laptop”, “motorbike” and “rifle”). Similar to [7],

we query google with the object name and some extensions.

The top returned web pages are collected. We restricted

downloaded images to be “.jpg” format. Finally, we get

732 “binoculars” images, 323 of which are correct images;

501 “Laptop” images, 158 of which are correct; 636 “Fern”

images, 190 of which are correct; 801 “Motorbike” images,

276 of which are correct; 921 “Rifle” images, 195 of which

are correct.

Text Image Text+Image

Binoculars 76 90 93

Laptop 58 41 67

Fern 72 68 80

Motorbike 57 34 63

Rifle 55 21 57

Table 2. Precision at 100 image recall. “Text” is the result with text model;

“Image” is the result with image model. “Text+Image” shows the result

with combined model.

Similar to Experiment 1, our algorithm is applied to

these categories and the precision recall curves is shown in

Fig.5. In Table.2, we show the precision at 100 image recall

with different models. Highly ranked images are exhibited

in Fig.7. False positive images are marked with red squares.
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Figure 5. Precision recall curves with different models. In all figures, x

axis denotes recall while y axis denotes precision. “Text” is the result with

text model; “Image” is the result with image model. “Text+Image” shows

the result with the combined model.

6. Conclusion
In this paper, we present a novel idea to exploit online

knowledge resource for object image retrieval, which pro-

vides human compiled data to build object models. We per-

form experiments on two data sets. The results show the

effectiveness of this approach.
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