
Abstract

We present a statistical learning approach for

finding recreational trails in aerial images. While the

problem of recognizing relatively straight and well

defined roadways in digital images has been well

studied in the literature, the more difficult problem of

extracting trails has received no attention. However,

trails and rough roads are less likely to be adequately

mapped, and change more rapidly over time.

Automated tools for finding trails will be useful to

cartographers, recreational users and governments. In

addition, the methods developed here are applicable to

the more general problem of finding linear structure.

Our approach combines local estimates for image

pixel trail probabilities with the global constraint that

such pixels must link together to form a path. For the

local part, we present results using three classification

techniques. To construct a global solution (a trail)

from these probabilities, we propose a global cost

function that includes both global probability and path

length. We show that the addition of a length term

significantly improves trail finding ability. However,

computing the optimal trail becomes intractable as

known dynamic programming methods do not apply.

Thus we describe a new splitting heuristic based on

Dijkstra’s algorithm. We then further improve upon

the results with a trail sampling scheme.

We test our approach on 500 challenging images

along the 2500 mile continental divide mountain bike

trail, where assumptions prevalent in the road

literature are violated.

1. Introduction

There is a growing need for accurate digital

representations of recreational trails and 4x4 roads.

Trail maps are not even available for many areas.

Further, as trails are constructed, closed or rerouted,

maps quickly become out of date. Digital

representations are becoming more desirable as

technologies such as GPS navigation become more

widespread. Being able to monitor trails automatically

will support natural resource management, directly, and

through research into recreation simulation modeling

[1].

In this paper we develop a semi-automatic method

for extracting trails from aerial and satellite images.

We assume that the two end points of the trail are

given. Our task is to find the most likely trail that

connects the two points.

To develop and validate our system we exploit the

large amount of training and testing data available

through GPS technology. This data is collected

automatically as people recreate and is becoming

increasingly plentiful. However, for our purpose, raw

GPS data has a non-negligible amount of error, and

thus we automatically lock the GPS data onto the

nearby trail using the GPS-snakes algorithm [2].

Thus we can easily acquire a large quantity of aerial

image data. We compute relatively simple feature

vectors and then train systems to estimate the likelihood

that an observed image patch is on a trail. We

experimented with three ways to do this: a naïve

Bayesian classifier, a support vector machine with soft

output, and a multi-modal mixture model. All methods

give roughly comparable performance for the raw

classification task (trail versus not-trail) when tested on

held out data.

Even with high quality training data, trails cannot be

found by local methods alone. Trail image data is too

varied and too noisy. For example, the trail in Figure 1

is completely obscured by bushes in places. In other

cases, trails are mimicked by washes, animal tracks, or

random alignment of terrain features. Trails can also be

indistinguishable from the background on occasion.

Clearly, what further distinguishes trail pixels from

non-trail ones is that the trail pixels can be linked up to

go somewhere. In other words, we need to integrate the

Finding Trails

Scott Morris Kobus Barnard

Computer Science Department

University of Arizona

{smorris,kobus@cs.arizona.edu}

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

global condition of a path with the results from our

classifiers. We do this by supposing that the per-pixel

probabilities are an estimate of the amount of energy a

traveler would have to expend to cross that pixel. We

then wish to minimize the total energy along the path.

This is attractive because it can be done efficiently,

provided we blindly ignore the fact that we are

comparing trails of different lengths. In practice this

approach has some merit, both in the literature and on

our test set. But we have found that taking care to

control the length of the path significantly improves

performance.

Adding length information is not trivial. We were

able to formulate a method similar to Floyd’s minimum

cost algorithm that can handle a length term, but

unfortunately this approach has complexity O(N
3
) in

time and O(N
2
) in space, where N is the number of

pixels. Since this is computationally prohibitive, we

instead developed a splitting heuristic based on

Dijkstra’s algorithm. This heuristic works by piecing

together portions of shortest paths using the length

based global cost function. We then further improve on

the heuristic method by randomly sampling trails, since

the heuristic is constrained to piecing together shortest

paths.

Our results on 500 trail images suggest that adding

length information to the energy formulation

significantly improves the ability to extract trails over

naively using the minimum cost formulation.

2. Previous Work

We are not aware of previous work focused on

finding recreational trails in remote sensed images.

However, the problem of finding roads from such data

has been well studied, with a variety of approaches

surveyed in [3]. We briefly review some of what has

been learned from work on roads below. However, we

emphasize that trails are more difficult than roads since

they are narrower, less predictable, less uniform, more

often obscured, and more often indistinguishable from

the background. This means that the handling of the

global constraint is more critical—simply (virtually)

following the trail will fail much more often than

following a well maintained road. Features from trails

are also less reliable, leading to our emphasis on a

probabilistic treatment and learning the relationship

between features and category probabilities from data.

Early work on extracting roads focused on local

methods, using image processing techniques on local

pixel neighborhoods. To determine if pixels are “road”

or “background” operators such as edge detectors, ridge

finders, crest detectors, morphological operators and

even road-specific operators have been tried [4].

Road tracking [4] extends the local information in

plausible directions. However, to keep the search space

reasonable, the assumption that roads generally change

direction slowly is made—a very reasonable

simplification in the road domain, but clearly not

prudent in the case of trails.

Our approach is closer to that by Fischler et al [5],

which uses a dynamic programming optimization over

the pixel lattice. The cost function is based on weights

determined by local operators. To extend this work to

trail data would require non-trivial extensions. First, it

is not clear how to build reliable operators for the case

of trails—hence we learn them from data. Second,

because even learned trail classifiers can be unreliable,

the standard dynamic programming optimization can

result in trails that are too long, relative to their total

cost. Since trails turn direction more often than roads

this especially applies. We instead propose optimizing

a cost function with an added penalty term that is

function of length, and present heuristics for computing

it.

3. Data Collection

In order to build a statistical model of trails we require

training data. The most obvious approach is to have a

human operator choose example trail points by

inspection of an aerial photograph. This approach

suffers not only from being manual but it also exhibits a

typical problem in many machine learning situations: a

lack of large, quality datasets.

Instead, we propose using an already existing and

growing data source: GPS track logs. Track logs are

sequences of precise locations that a GPS receiver

automatically records as a trail user travels. While GPS

data is still in some sense manually collected, it is

relatively easy to collect, and is being collected for

Figure 1: Example USGS aerial photograph, from the Santa

Rita mountains

other purposes, even as a part of everyday recreation.

Inexpensive consumer level GPS receivers are

increasingly being used to record outdoor trips. Many

web sites offer GPS track logs for download, and

centralized, user submitted databases are on the

horizon.

3.1. Aerial Image data

We use USGS DOQ imagery (Figure 1) because a

public domain internet source is available for nearly the

entire United States. Microsoft’s Terraserver [6]

efficiently serves these images, which we are able to

download, on-the-fly, using TopoFusion [7] software.

Using TopoFusion we are able to seamlessly process

GPS data from around the country. As points are

processed, aerial images are downloaded via the

internet and cached on local disk to speed up further

iterations. This greatly simplified our research effort

and improves the applicability of the techniques

developed. Our approach can be used to extract trails

for any location in the United States. We use the

highest level detail imagery available, which is at a

resolution of one meter per pixel.

3.2. Pre-processing using GPS-snakes

Although using GPS provides an abundance of data, the

quality of the data suffers compared to human extracted

data. There are two sources of error: the GPS system

itself and photo calibration error. The result is that

GPS data points sometimes do not lie exactly on

corresponding trails in aerial images. These problems

can be partially addressed by using the GPS-snakes

algorithm [2]. GPS-snakes can be used to pre-process

the GPS data, placing it on trails in the neighborhood of

the data. The GPS-snakes method draws inspiration

from the active contour (snakes) model developed by

Kass et al [8], but it exploits properties of GPS data and

trail image appearance to correct GPS tracks. In Figure

2, original GPS data is shown along with the GPS-

snakes corrected output. Table 1 shows the positive

effect of using the GPS-snakes to clean up the data

before training.

3.3. Negative (non-trail) examples

To learn the difference between trails and the

background we also need non-trail example points. To

generate non-trail points we simply sample random

points in the area covered by the trail points. This is

based on the observation that most of the world is not a

trail. Thus we select non-trail points which are the

mean of eight randomly selected trail points. Visual

inspection confirmed that this process produced good

selections of negative examples. In all experiments we

used equal numbers of positive and negative examples.

4. Statistical Learning

Naturally we begin by computing feature vectors for

image regions surrounding each pixel. We use feature

vectors from the training data to build a classifier that

estimates the probability that a pixel is on a trail. To

find trails in a new image, we compute analogous

feature vectors, and use them as input to the classifier to

estimate the trail probabilities for the second part of the

algorithm which finds the path through the pixels.

While the focus of this work is on the integration of

low and high level information, we experimented with

three different systems of probabilistic classification.

4.1. Computing Feature Vectors

To capture what trails look like in aerial images we

use a characterization of texture in the form of

responses to oriented Gaussian filter kernels [9-11].

These function as oriented edge detectors, capturing

edges in the direction perpendicular to the direction the

trail is traveling. The kernels are centered at the data

point and the response at each orientation is used as a

component of the feature vector. The final component

of the feature vector is a simple grayscale histogram in

a small area surrounding the point.

We settled on the following parameter values

which gave good performance on preliminary

experiments: 12 filter orientations, at a single scale

(sigma is 2.5 pixels). The histogram was computed in a

9x9 window around the pixel.

Figure 2: GPS track log corrected using GPS-snakes.

Empty circles: original data. Smaller filled dots:

corrected data.

4.2. Naïve Bayes

A naïve Bayes classifier operates under the ‘naïve’

assumption that all of the feature vector components are

independent of each other. This is not the case with our

vectors, but even when this assumption is violated,

naïve Bayes often performs well [12].

We generate two sets of histograms, one for trail

and one for not trail. Among each set there is a

histogram for each component of the feature vector.

With the histograms computed, the likelihood of a test

feature vector being trail or not trail is computed simply

by counting the proportion of training data that fell into

the bins corresponding to the test vector’s components.

If the likelihood produced by comparison with the trail

histograms is greater than the likelihood from the not

trail histograms, the vector is classified as a trail.

One issue for the Bayes classifier is the choice of

the number of histogram bins. To determine this

number we plotted the performance on some held out

data of the classifier with varying bin values. We chose

32 bins, which was maximal for the Tucson Mountain

Park dataset. The plot was relatively flat, indicating

that performance is insensitive to the number of bins.

4.3. Support Vector Machine

We presented the feature vectors to SVM
light

 [13], a C

implementation of Support Vector Machines [14]. The

SVM attempts to find a multidimensional cutting plane

that separates the positive (trail) and negative (non-

trail) examples. We experimented with the four

available kernel options: linear, polynomial, radial basis

and sigmoid. We found that the linear cutting plane

consistently outperformed the other kernel options on

training and test data. The SVM
light

 software provides

soft classification which we normalized to use as a

crude estimate of probability.

4.4. Multi-modal mixture model

We also trained a generative multi-modal mixture

model [15] [16] to classify image points. Here we

assume that an image pixel and its label (“trail” or

“not_trail”) are concurrently generated as follows. First,

a hidden factor, or node, is chosen according to a prior

distribution. Then the visual features for that pixel and

its label are generated conditionally independent given

the node. The label is generated according to a simple

frequency distribution, and since there are only two

labels, this reduces to a single number, namely the

probability of “trail”. The image features are generated

according to a Gaussian distribution with a diagonal

covariance matrix. The model for the joint distribution

for the “trail” label, t, and the feature vector, v, is given

by:

P(t,v) = P(t | n)P(v | n)P(n)
n

N

∑ (1)

where n indexes over nodes, P(t | n) is the probability

of trail given the node, P(v | n) is a Gaussian

distribution for that node, and P(n) is the node prior.

Model parameters are learned from the training data

using the expectation maximization algorithm [17]. We

verified that the performance of the model is relatively

robust to a wide range for the number of nodes, N. For

the results in this paper we used 200 nodes.

5. Trail Extraction

In the final step we construct connected pixel sequences

that represent probable trails, given a classified

probability image. The process is semi-automatic,

meaning we assume that we are given a start and end

point. The algorithm then connects the points with an

optimal path based on the probability image.

5.1. Trail objective function

We consider P(not_trail) for a given pixel to be an

estimate of the energy required to cross that pixel. The

idea being that a pixel that is high in trail probability

(and thus low in non-trail probability) will be easy to

cross. We can then compute the global minimum for

the objective function:

∑=

N

trailnotPpathf
1

)_()((2)

If we let N vary we can find the above minimum

efficiently with a shortest path algorithm such as

Dijkstra’s [18], and doing so leads to a baseline

algorithm which we test below. However, this favors

longer paths since we are, in effect, maximizing P(trail)

along the path. Figure 3 is an example of an image

where minimizing (2) resulted in a path that is too long.

There are situations when a bias for short paths is

desirable. For example, in areas where there is a

genuine lack of information (e.g. trees obstructing the

trail) the shortest path is a reasonable guess. There is

also a notion that trails, though they do not follow the

shortest Euclidean distance between points, are still

“going somewhere,” rather than roaming around

aimlessly. Therefore, we introduce an empirically

determined crude length bias for the cost function:

22)2,1(/)(vvdlengthpathP ∝ (3)

where d(v1,v2) is the Euclidean distance between the

start and end nodes (constant for a given trail image),

and length is the total distance of the path which varies

among hypotheses. (2) then becomes:

∑=

N

trailnotP
vvd

length
pathf

1
2

2

)_(
)2,1(

)((4)

Computationally, adding a length term to the

objective function is difficult. Known fast minimum

cost methods do not apply since negative weight cycles

are introduced into the pixel lattice.

We have formulated a dynamic programming

algorithm to compute the minimum path, with length

prior, that runs in O(N
3
) time, where N is the number of

pixels in the image. It is based on enumerating optimal

paths of a particular length (up to a reasonable cut-off)

in turn. Besides being computationally expensive, the

algorithm also requires O(N
2
) space, making it wholly

impractical for anything but very small images. We

instead develop alternative methods.

5.2. Recursive Splitting Heuristic

Since finding the global minimum of (4) is

computationally prohibitive, we have devised a more

feasible heuristic method based on the following

observation. The optimal path is likely to be composed

of portions of nearly optimal sum paths. That is, for

very short distances, the minimal cost and length

adjusted cost paths are the same.

Our heuristic proceeds as follows. Let v1 and v2

be the start and end nodes of the path. We first

compute the shortest path between v1 and all other

nodes using Dijkstra’s algorithm. The cost function

used is the sum of P(not_trail) as in (2). We then do the

same for v2 to all nodes. Now we find the intermediate

node, vint, which minimizes (4) along the path

(v1→vint→v2), where the paths used are the optimal

P(not_trail) paths computed by Dijkstra’s algorithm.

The resulting path has the lowest objective value,

subject to the constraint that only the shortest paths

from nodes v1 and v2 through an intermediary point

can be followed. Under this greedy assumption we

then proceed by recursing on the two halves of the path.

Shortest paths and intermediate nodes are computed

just as before. The recursion runs to a specified depth

(we used a recursive depth of two in this work).

We also cannot allow the resulting path to intersect

itself. Checking for intersection is the slowest part of

the method, taking O(N
2
) time, worst case. Dijkstra’s

itself runs very quickly when implemented with a

Fibonacci heap and is run a constant number of times.

Figure 3 provides an example where the recursive

splitting heuristic correctly extracted the trail where

naïve minimum cost failed.

5.3. Trail Sampling

The splitting heuristic introduced in the previous

section suffers from the limitation that it can only

choose minimal cost paths between chosen intermediate

points. An example of this is shown in Figure 4(a).

We propose to further lower the objective function (4)

by sampling random trails in the image.

We seed the sampler with the lowest cost trail as

output by the splitting heuristic procedure. The current

sample is altered by the following proposals:

(a) Trail lengthening. A random point on the trail

is chosen. N points are chosen according to a

Gaussian distribution centered at the chosen

trail point. The point with the maximal value

of P(trail) among these N points is chosen to

(a)

(b)

Figure 3: A image from the test set from the Great Divide Mountain Bike Route. Seed points P1 and P2 were taken from the GPS

track of the trail. Resulting extracted trails are shown, comparing the difference between minimum cost and length adjusted paths.

(a) shows the effect of the trail using minimum cost; since portions of the trail are obscured, the optimal path follows longer side

trails (b) shows the correct trail extracted using the recursive splitting heuristic. The Hausdorff distance between (b) and the

ground truth GPS track is 49.5. This is just less than the threshold for correctness. The only portion “off” trail can be seen in the

middle portion of (b), where the trail is obscured.

“pull” the trail to. The trail is cut at half the

“pulling” distance away from the chosen point,

and connected with straight lines.

(b) Trail shortening. A random point on the trail

is chosen. A normally distributed distance to

shorten by is chosen. The trail is then walked

until this distance is met, and the current trail

is replaced by a straight line.

Both proposal types are subject to the constraint

that intersecting paths are not allowed. If the proposal

introduces an intersection, it is rejected.

Each type of proposal is equally likely to be

chosen. At each iteration, the objective function (4) is

evaluated for both the current sample, x
t
, and the

proposed sample, x’. Since we want to explore the trail

space, we allow acceptance of worse proposals

according to the ratio:

)'(

)(

xf

xf
t

<α (5)

Where α is drawn from U(0,1). Though similar to

the Metropolis Hastings algorithm [19] [20], our

objective function (4) is not a probability distribution,

so we are not using Metropolis Hastings as such. The

ratio (5) is reversed since we seek the minimum of our

objective function, rather than the maximum

probability. The sampler keeps track of the minimum

trail as it explores the trail space.

6. Results

Pixel classification. We present results from two GPS

datasets, one from the Tucson Mountains and another

from the Santa Rita range. The Tucson Mountains are

lower Sonoran desert terrain while the Santa Ritas are

higher elevation chaparral. Negative training points for

each set were generated using the heuristic proposed in

§3.3. Each dataset contains roughly 4000 trail points

(as well as 4000 non- trail points).

Each of the three classification models were

trained on 90% of the data, while a randomly chosen

10% were held as a test set. Table 1 presents the

accuracy rates on the test sets for each of the three

methods. There is some variation between the

methods, but all seem capable of generating the correct

answer, trail or not trail, roughly 75% of the time.

Table 1 shows that the effect of pre-processing the data

using GPS-snakes is significant. In some cases the

performance gain is over 10%.

Due to similar performance of the three pixel

classification methods, we chose Naïve Bayes since it

has the shortest runtime.

Finding trails. We test our techniques using a

large and challenging dataset. The Great Divide

Mountain Bike Route (GDMBR) is a bicycle path that

covers 2500 miles along the continental divide of North

America, from Canada to Mexico. Using GPS data

collected along the GDMBR, we train and test a general

purpose trail finder.

We trained the Naïve Bayes classifier using GPS

points collected on the southern half of the GDMBR.

This corresponds to the states of New Mexico and

Colorado.

The northern half (Montana, Idaho and Wyoming)

was used for testing. 500 trail sections were chosen, at

random, from the GPS track. Each trail is associated

with a 2000x2000 aerial image, whose pixels were then

classified with Naïve Bayes. The average trail length is

3000 meters, with a standard deviation of 820 meters.

The average straight line distance between start and end

 (a) (b)

Figure 4: Trail Finding comparisons. In (a) the recursive splitting method suffers from the constraint that it can only use strict

shortest paths to construct global paths. In this case dynamic programming without a length prior causes the trail finder to

follow spurious noise. The sampling technique extracts more of the trail. (b) shows an example of a poorly visible trail. All

methods fail to extract the correct trail, with the sampling technique causing short cutting due to weak trail evidence in the

image.

points is 1920 meters, suggesting that the trail segments

are far from straight.

 Since the trail follows and crosses the continental

divide it often traverses steep mountains, which leads to

frequent turns and switchbacks. Elevations range from

2500 ft to 12,000 ft, introducing a wide variety of

vegetation and soil types. Figure 3 shows one of the test

images with seed points P1 and P2.

Table 2 summarizes the results on the test images.

To measure performance we use the Hausdorff distance

between the GPS data and the extracted trail.

Intuitively this means we are measuring the maximum

distance the extracted trail strays from the truth. The

values in the table are the average Hausdorff distances

for each run of the test set.

The results show that a significant improvement

can be gained by penalizing trails by length. The

splitting heuristic shows considerable (9.5%)

improvement and sampling trails seeded with that

answer gives further improvement (17.7%).

At first glance, an average Hausdorff distance of

over 100 meters may seem large. But we argue that

these are solid results. Given that these trails are, on

average, 3000 meters long, only straying from the trail

by at most 100 meters means the majority of the trail

was correctly extracted.

We define a Hausdorff threshold of 50 meters to

determine whether a particular trail is “correct.” If the

most a solution strays from the ground truth is 50

meters, it has correctly identified the trail (see Figure 3

for an example trail at a Hausdorff of 49.5). Using this

measure, the sampling technique gets 60% of the

images correct. This is impressive given the difficulty

and high variability of the dataset. We have observed a

significant number of trail images for which the correct

answer is highly unlikely to be extracted by any

process. This is either because the trail is not visible to

the human eye or because multiple trails are visible in

the image, and the GDMBR followed a less likely

(even to human eyes) path. Figure 4(b) gives an

example where all techniques failed to extract the

correct trail due to weak trail evidence.

7. Discussion

We have presented results showing that our approach is

capable of extracting trails in a wide variety of terrain.

Key points include using GPS tracks to obtain

significant quantities of training data, a snakes based

method to improve the training data, statistical models

to estimate the probability that pixels are associated

with trails, and a global constraint that trail pixels must

link together to form a path.

We have demonstrated that a naïve implementation

of minimal cost across the pixel lattice does not

correctly deal with the length of the path, and that

formulating the problem with a length prior

significantly improves performance. Though a global

Table 2: Finding trails results. The table lists the average Hausdorff distance, in meters, between the true trail (GPS data) and the

extracted trail for 500 random, 2000x2000 images along the Great Divide Mountain Bike Route. Significant improvement is shown

when the length penalty of the splitting heuristc method is added. Sampling trails using the same objective function gives even

further improvement. Error estimates are provided in parentheses.

Mean Hausdorff Distance Improvement vs. Baseline

Minimum Cost Dynamic Programming

(Baseline technique)
138.7 (9.2) N/A

Recursive Splitting Heuristic 126.7 (8.1) 9.5%

Sampling 117.8 (7.8) 17.7%

Table 1: Accuracy on held-out data for three classification methods. Using GPS-snakes to pre-process improves the classification

results significantly.
 Data set 1 – Tucson

Mountain Park

Data set 1 – Pre-processed

Snakes
Data set 2 – Santa Ritas

Data set 2 – Pre-

processed Snakes

Naive Bayes
73.9% 76.1% 73.1% 78.5%

Support Vector Machines
74.6% 83.0% 71.3% 81.2%

Multi Modal Mixture Model
75.2% 79.2% 71.4% 81.5%

solution that accounts for length is not possible, we

have presented a heuristic method, and further

improved upon the results by sampling.

The problem underlying our task is quite common.

In particular, it is often the case that local features are

required for extraction, but are unusable without a

global path constraint. One example is the extraction of

neuron branching structure from images. Helping

neuroscientists do so automatically would increase the

scale of the data that they can process. We are pursuing

this important alternative application domain.

References

[1] H. R. Gimblett, M. T. Richards, and R. M. Itami,

“RBSim: Geographic Simulation of Wilderness

Recreation Behavior,” Journal of Forestry, vol. 99, pp.

36-42, 2001.

[2] S. Morris, “Pathway Extraction using Snakes with GPS

Initialization,” Proc. 2nd International Conference on

Geographic Information Science, Boulder, CO, 2002.

[3] M.-F. Auclair-Fortier, D. Ziou, C. Armenakis, and S.

Wang, “Survey of Work on Road Extraction in Aerial

and Satellite Images,” Departement de mathematiques et

d'informatique, Universitede Sherbrooke, Technical

Report 247, 2000,

[4] D. Geman and B. Jedynak, “An Active Testing Model

for Tracking Roads in Satellite Images,” IEEE Trans.

Patt. Anal. Mach. Intell., vol. 18, pp. 1-14, 1996.

[5] M. Fischler, J. Tenebaum, and H. Wolf, “Detection of

roads and linear structures in low-resolution aerial

imagery using a multisource knowlede integration

technique,” Computer Graphics and Image Processing,

vol. 15, pp. 201-223, 1981.

[6] T. Barclay, R. Eberl, J. Gray, J. Nordlinger, G.

Raghavendran, D. Slutz, G. Smith, and P. Smoot, “The

Microsoft TerraServer,” MSR-TR-98-17, 1998,

[7] S. Morris and A. Morris, “TopoFusion GPS Mapping,”

Internet: www.topofusion.com. Dec. 10, 2007.

[8] A. Witkin, M. Kass, and D. Terzopoulos, “Snakes:

Active Contour Models,” Proc. IEEE International

Conference on Computer Vision, pp. 259-268, 1987.

[9] J. Malik and P. Perona, “A computational model of

texture segmentation,” Proc. IEEE Conference on

Computer Vision and Pattern Recognition, pp. 326-332,

1989.

[10] J. Malik and P. Perona, “Preattentive texture

discrimination with early visual mechanisms,” J. Opt.

Soc. America. A, vol. 7, pp. 923-932, 1990.

[11] J. Shi and J. Malik., “Normalized Cuts and Image

Segmentation,” IEEE Trans. Patt. Anal. Mach. Intell.,

vol. 22, pp. 888-905, 2000.

[12] P. Langley, W. Iba, and K. Thompson, “An analysis of

Bayesian classifiers,” Proc. Tenth National Conference

on Artificial Intelligence, San Jose, CA, pp. 223-228,

1992.

[13] T. Joachims, Learning to Classify Text Using Support

Vector Machines: Kluwer, 2002.

[14] V. N. Vapnik, The Nature of Statistical Learning

Theory: Springer, 1995.

[15] K. Barnard and D. Forsyth, “Learning the Semantics of

Words and Pictures,” Proc. International Conference on

Computer Vision, pp. II:408-415, 2001.

[16] K. Barnard, P. Duygulu, N. d. Freitas, D. Forsyth, D.

Blei, and M. I. Jordan, “Matching Words and Pictures,”

Journal of Machine Learning Research, vol. 3, pp. 1107-

1135, 2003.

[17] A. P. Dempster, N. M. Laird, and D. B. Rubin,

“Maximum likelihood from incomplete data via the EM

algorithm,” Journal of the Royal Statistical Society.

Series B (Methodological), vol. 39, pp. 1-38, 1977.

[18] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,

Introduction to Algorithms: McGraw-Hill, 1990.

[19] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A.

H. Teller, and E. Teller, “Equations of state calculations

by fast computing machines,” Journal of Chemical

Physics, vol. 21, pp. 1087-1092, 1953.

[20] W. K. Hastings, “Monte Carlo sampling methods using

Markov chains and their applications,” Biometrika, vol.

57, pp. 97-109, 1970.

 (a) (b)

Figure 5: Further Trail Examples. (a) shows a successfully extracted trail despite occlusion and switchbacks. In (b) a very

difficult image is shown. All methods fail to extract the faint trail.

