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Abstract

Camera-equipped mini-UAVs are popular for many ap-
plications, including search and surveillance, but video
from them is commonly plagued with distracting jittery mo-
tions and disorienting rotations that make it difficult for hu-
man viewers to detect objects of interest and infer spatial
relationships. For time-critical search situations there are
also inherent tradeoffs between detection and search speed.
These problems make the use of dynamic mosaics to expand
the spatiotemporal properties of the video appealing. How-
ever, for many applications it may not be necessary to main-
tain full mosaics of all of the video but to mosaic and retain
only a number of recent (temporally local) frames, still pro-
viding a larger field of view and effectively longer temporal
view as well as natural stabilization and consistent orienta-
tion. This paper presents and evaluates a real-time system
for displaying live video to human observers in search sit-
uations by using temporally local mosaics while avoiding
masking effects from dropped or noisy frames. Its primary
contribution is an empirical study of the effectiveness of us-
ing such methods for enhancing human detection of objects
of interest, which shows that temporally local mosaics in-
crease task performance and are easier for humans to use
than non-mosaiced methods, including stabilized video.

1. Introduction
Using video feeds from inexpensive Mini Unmanned Air

Vehicles (mUAVs) is becoming popular in a variety of ap-
plications, including search and rescue, military reconnais-
sance and target acquisition, counterterrorism, and border
patrol. Their small size and ease of deployment enable
mUAVs to gather up-to-date and high resolution surveil-
lance that could be much more difficult to obtain otherwise.
We focus here on the use of mUAV-acquired video for as-
sisting search and rescue in remote wilderness areas (see [3]
for a description of the field deployment of these mUAVs
coordinated with human search teams), but the methods and
study presented here apply to a variety of applications.

(a) Original video (b) Local mosaic video

Figure 1. Temporally local mosaics for enhanced detection.
A small object in the non-mosaiced video (a), seen here at the
lower-right corner of the frame and circled in red, may be visible
in only a few frames. In the enhanced temporally local mosaic dis-
play (b) the same object, seen in the lower-middle of the view and
again circled with red, is visible over nearly one hundred frames.

Unfortunately, video from mUAVs suffers from three
general problems that make the video difficult for humans to
interpret. First, the video tends to be shaky or jittery due to
the small size and maneuverability of the aircraft, making it
difficult for people to identify and track interesting features
in the video. Second, it is easy to become disoriented while
watching video from a mUAV, especially when the aircraft
is circling or turning frequently, making it difficult to relate
features seen throughout the video to each other or to real
world features, locations, or objects. Third, in order to pro-
vide high enough resolution for detection and identification,
UAVs will often use high-power lenses or fly lower to the
ground, reducing the field of view and corresponding dura-
tion for which objects of interest are visible. This is further
compounded when the UAV has to fly quickly due to the
time-critical nature of search-and-rescue.

This paper proposes and evaluates the use of real-time
temporally localized mosaics (Figure 1) to enhance the spa-
tiotemporal display of live video for human observers in
search applications. The enhanced spatial view increases
situational awareness by giving observers a larger and more
consistent sense of localization, and the enhanced temporal
view increases an observer’s opportunity to detect targets
of interest. We present here and evaluate three alternative
methods for video viewing based on temporally local mo-
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saicing alone, stabilization and consistent orientation alone,
or a hybrid stabilization/mosaicing approach.

The primary contribution of this paper is a quantitative
human-observer study evaluating detection performance us-
ing these three display methods to each other and to unen-
hanced video while simultaneously performing a secondary
task, similar to field use of these systems. We first describe
the construction of these displays, then focus primarily on
the evaluation of their use.

2. Related Work
Registering and combining multiple images together to

form mosaics, larger images created by compositing multi-
ple smaller source images, has been a well-studied problem
in computer vision. This body of work is far too extensive to
survey here, but we recommend [16] for an excellent recent
survey and tutorial. Source images for mosaics can come
from a variety of sources, including frames from a moving
video camera to create larger views than obtainable through
the field of view of any one frame (e.g., [10, 6]).

Video from UAVs can be used to create large-scale static
mosaics of scenes from aerial imagery. (See [7] for an
overview of this and related work.) [5] points out that this
mosaicing of video simultaneously extends not only the
spatial information but the temporal information (change
capture) as well.

By updating the mosaic as new video is obtained, one
can create a dynamic mosaic [6, 12] to display “live” con-
tent. The temporally local mosaics used here can be thought
of as “memory-less” versions of these dynamic mosaics, in
which we retain only the portion of the dynamic mosaic still
in the display area.

Using combinations of telemetry, terrain models, refer-
ence imagery, and aerial video, one can further georegister
the video to allow it to be overlaid in its larger context (ter-
rain with reference imagery) [8, 19, 9], but this is beyond the
scope of what we explore here, which is the effect such mo-
saicing has on detection of objects of interest. Obviously,
once objects are detected and identified, such methods can
help place them in proper geospatial context.

3. Methods
We first present three methods for enhancing video dis-

play for detection: local mosaicing, stabilization alone, and
a hybrid stablization/mosaicing approach. For each method,
we preprocess each frames on the fly, perform frame-to-
frame alignment using video data only, then display them
according to the viewing method used. Because the core
methods build on well-established techniques, we focus
primarily on application-specific constraints and on spe-
cific design and implementation details necessary for repro-
ducibility of our empirical evaluation.

3.1. Video Acquisition

The mUAV platform is a custom airframe with a 50”
wingspan. The sensor suite includes 3-axis rate gyro-
scopes, 3-axis accelerometers, static and differential baro-
metric pressure sensors, a GPS module, and a 640 × 480
video camera on a gimballed mount. It uses a 900 MHz
radio transceiver for data communication and an analog
(NTSC) 2.4 GHz transmitter for video downlink. The UAV
includes an onboard autopilot that provides stabilization of
the aircrafts roll and pitch angles, attitude stabilization, alti-
tude controller, and ability to fly to a waypoint. Because of
the small size of the mUAV, no onboard processing of the
video is performed.

3.2. Preprocessing

For all display methods, we preprocess each frame on
the fly by deinterlacing it and correcting for radial distor-
tion. Deinterlacing is essential for fast-moving mUAVs, as
the translation between odd and even fields of the video is
significant and introduces visible artifacts that impair de-
tection as well as subsequent video processing. We have
found it most efficient to simply use the 640 × 240 fields
directly for the later vision algorithms, then upsample each
to 640× 480 frames for deinterlaced display.

3.3. Frame Alignment

To align successive frames of video, we use the Harris
corner detector [4] to identify feature points, then establish
correspondence between these points and use RANSAC [2]
to estimate the Euclidean transformation (translation and
rotation) between each pair of frames.

Although the small variation of the terrain within the
camera’s field of view relative to the mUAV’s height above
ground allows us to do as others have done and model the
frame-to-frame transformation as a homography (e.g., [7]),
our experience is that the inevitable accumulated error that
occurs in all registration methods causes the scaling and
skew components of the homography to adversely scale and
distort the displayed frames over time. Because we are sta-
bilizing video or creating temporally local mosaics in real
time, not aligning entire sequences offline, we perform only
frame-to-frame alignment and do not have the luxury of or
a need for a global bundle adjustment [17].

Using only a Euclidean transformation can cause minor
frame-to-frame alignment errors, but we have found these to
be minimal compared to the need to display full-resolution,
unskewed video for optimal detection by avoiding cumu-
lative drift in scale or skewing. Since the drift in posi-
tion and rotation (camera roll) is gradual and much longer
than the time an object is visible in the video, we can still
composite the frames and present them with a consistent
orientation, even though the absolute orientation may drift



over time. This precludes geolocation or a true “north-up”
display without the addition of heading telemetry from the
mUAV, but this has no effect on the ability of an observer to
detect objects of interest.

3.4. Display Methods

Once we have preprocessed and aligned the frames,
we then display them to the user according to the display
method selected.

3.4.1 Mosaiced Viewing

To allow the viewer a longer temporal window, we create
a temporally local mosaic of recent video frames. This not
only extends duration for which objects of interest are vis-
ible but also provides natural stabilization and maintains
viewing orientation.

Let Q(t) denote the Euclidean transformation from
frame I(t − 1) to the current frame I(t). We can then de-
fine the cumulative transformation Q′(t) from frame I(0)
to frame I(t) as the composition of these transformations
using the following recurrence relation:

Q′(0) = I (1)
Q′(t) = Q(t) Q′(t− 1) (2)

For our temporally local mosaic, we build a composite
image I ′ that is the size of the viewing window and keep
in it only the frames that are still visible in the current dis-
play. We begin each video display by copying the first frame
I(0) onto the center of I ′(0) and displaying it to the user.
We then align each successive frame I(t) to its predecessor
I(t − 1), warp frame I(t) using the cumulative transfor-
mation Q′(t) to the corresponding position and orientation,
and superimpose this frame onto the existing I ′(t − 1) to
create I ′(t). Because of the temporal ordering of the frames
and the desire to always show in full the current frame, no
frame-to-frame blending is used.

When the warped position of the new frame I(t) exceeds
the bounds of the viewing window, we translate I ′(t − 1)
by the minimum amount necessary so that the new frame
can be added in full. Denoting this required offset (if any)
as (x(t), y(t)) and the corresponding translation matrix as
T(t), we can then denote the warp M(t) used to apply each
frame to the already-translated mosaic I ′(t− 1) as

M(t) = Q′(t) T(t) (3)

Intuitively, the Q′(t) component of M(t) tracks the motion
of the video while T(t) accounts for the required scrolling
of the display so that each frame is placed correctly.

For forward-moving mUAVs with downward pointing
cameras, this causes the display to pan steadily with the di-
rection of motion (Figure 2(a)). As past frames composited

onto I ′ move outside of the viewing display, their content
is no longer retained. This simplifies the process of com-
positing the video while still providing the desired temporal
expansion. It also avoids awkward accumulated-error arti-
facts when looping back over previously-seen areas or the
need to test for and compensate for such artifacts (e.g, [15]).

3.4.2 Stabilized Viewing with Consistent Orientation

To see whether the effects of temporally local mosaics for
display are due to the mosaicing or solely to the stabiliza-
tion and consistently oriented display, we compare them to
stabilized, consistently-oriented video without mosaicing.

To stabilize the display of the image, we calculate the
warped positions of the center of each image and fit a spline
to the warped positions. This dampens the jittering caused
by erratic motions of the small UAV while allowing general
progression of the plane’s search/flight path.

Let c(0) denote the position of the center of the image.
We can then build the paths of the warped centers c(t) of
the images as

c(t) = Q′(t) c0 (4)

and use the most recent n transformed centers as controls
points bi for a spline B:

bi = c(t− n + i), 0 ≤ i ≤ n (5)

We define the smoothed location q(t) as the midpoint of the
spline between c(t) and c(t− n), which we evaluate using
de Casteljau’s mid-point algorithm [1].

We then warp the image to the displayed position using
the transformation

A(t) = Q′(t) T(t) S(t) (6)

where S(t) causes translation by c(t)−q(t) and T(t) is cal-
culated as for the local mosaic.Thus, the stablilizing trans-
formation A(t) for frame t is a composite of the cumulative
history Q′(t) tracking the moving center c′(t) of the image,
the translations T(t) that would be used to keep this frame
within view, and a stabilizing shift c(t)−q(t). The relation-
ships between these components are illustrated in Figure 3.

Since the stabilized view uses Q′(t) and translations
only, the orientation of the currently displayed frame is the
rotation component of Q′(t). This provides the same con-
sistent orientation as with the temporally local mosaic.

The effect of this stabilized display is that the content of
the video moves smoothly and in a consistent orientation
between frames, while the outer bounding box of the dis-
played frame may jitter and rotate within a larger display
(Figure 2(b)). While it would be possible to crop the frame
so that the jittering of the bounds of the displayed frame
would not be visible, as is commonly done with stabilized



(a) Local Mosaic (b) Stabilized Only (c) Stabilized Mosaic

Figure 2. View presentation methods. Example of the stabilized mosaic and stable mosaic view presentations, each with a view three times
the size of the original capture frame size.

displays, we avoid this approach because we want to pro-
vide to the observer the full area seen by the current frame
and not lose video content. We also avoid using methods for
full-frame stabilization [14, 18, 11], which synthesize data
from the current and surrounding frames to provide a full
field of view, because we want to display only actual rather
than synthesized content.

3.4.3 Stabilized/Mosaic Viewing

One effect of the temporally local mosaic translating the
display only when the current frame exceeds the viewing
window is that when the video jitters it may cause the dis-
play to pan, then it may move back into the displayable area,
then it may shift so as to cause the display to pan again.
This causes jerky motion of the entire display as the cur-
rent frame unpredictably “knocks” against the edge of the
displayed area. To compensate for this, we combine the lo-
cal mosaic and the stabilized presentation to create a hybrid
stabilized mosaic (Fig 2(c)) by warping each frame as with
the stabilized view (A(t)), then compositing the new frame
onto the translated I ′(t − 1) rather than clearing previous
frames.

Figure 3. Stabilization path. As the tracked center of the current
image moves (green), a spline is fit to the last n tracked frame cen-
ters (red). The difference between the lagging smoothed position
and the actual position of the center of the image, as well as addi-
tional translations used to keep the entire display within view, are
used to create the stabilized path of the displayed frames (blue).

(a) Invalid registration indication (b) Mosaic reset

Figure 4. Indication of data loss. When frames are corrupted, we
drop them and change the highlight of the current frame to blue (a)
to indicate the data loss. After a predefined limit of lost frames, we
reset the display and begin building the mosaic again (b).

3.5. Interface Issues

We have found it useful to highlight the boundary of the
current frame so as to distinguish for the user the “live”
frame and the recent history (Figure 2).

When frames are corrupted due to transmission prob-
lems, as are inevitable when transmitting analog video from
mUAVs, we may have frames that cannot be accurately
aligned to the previous frame. We detect these corrupted
frames by testing the accuracy of the alignment (number of
corresponding points in the RANSAC consensus set) and
simply do not display these frames, continuing to display
the last well-aligned frame and aligning future frames to it.
Not only does this create a more pleasing display due to
the removal of noisy frames, but it specifically avoids well-
known visual masking effects in human perception that can
interfere with detection of briefly seen objects [13] .

While not displaying the corrupted frame(s), we change
the color of the boundary highlight for the last displayed
frame so as to indicate the data loss (Figure 4). Should the
number of lost frames exceed a predefined limit (we use five
frames), we clear the display and restart the presentation of
frames by treating the next frame as I(0).

4. User Study Design

We here present the design for a user study we conducted
to quantify the effectiveness of these different presentation
methods at enhancing subjects’ abilities to detect and iden-



tify objects of interest within mUAV-acquired video while
performing a secondary visual task. These tasks were de-
signed to mimic common tasks performed in scenarios in
which these mUAVs have been used. In addition to the
three forms of enhanced video presented in Section 3, we
also include the de-interlaced and undistorted but otherwise
unenhanced original video.

The study involved 14 naı̈ve and 12 potentially biased
volunteer subjects. Each participant was asked to perform
two tasks simultaneously in a controlled scenario over 16
different trials. Prior to completing the trials, each subject
was required to complete training, during which they were
introduced to the tasks and allowed to practice them before
proceeding to the measured trials.

On the primary video display (Figure 5(a)), each subject
was presented with a controlled random ordering of 16 dif-
ferent short video clips acquired using a mUAV engaged in
common search patterns. Each clip lasted about 1.5 minutes
and was presented to the subject using one of the four pos-
sible views: original, stabilized, mosaic, or stable mosaic.
Within each clip, there were a random number of objects of
interest (faint red umbrellas) placed randomly in the scene,
which the subjects were asked to detect and identify.

On the secondary task display (Figure 5(b)), subjects
were shown a controlled random set of uniquely colored
spots dependant on the corresponding video clip. We re-
generated a new display with 10 spots every 2–5 seconds,
using 12 unique colors. Of these, subjects were asked to
detect and identify as many red spots as possible without
jeopardizing their ability to detect and identify objects of in-
terest in the primary video display. This task was designed
to provide a measure of the subject’s ability to simultane-
ously perform a task similar to that traditionally required
for operating the aircraft while performing a video search.

In order to facilitate within- and between-subject video
clip and display method (view) comparisons, we use a coun-
terbalanced design ensuring that every clip and every view-
ing method is seen an equal number of times per subject as
well as seen a progressively equal number of times by each
subject. Across all subjects, each view was seen a total of
104 times and contained a total of 254 red umbrellas.

Each clip-view combination was presented using an in-
terface that allowed the subjects to easily select objects of
interest in the video and secondary displays. This was de-
signed to require as little training as possible so as to min-
imize performance differences between naı̈ve and biased
subjects. The subjects interacted with the system using only
the mouse, and the controls for the video display and the
secondary display were intentionally similar.

In order to decouple subjects’ hand-eye coordination
from the detection task, any time an object of interest was
thought to be seen on the primary video display, they could
freeze the frame by mouse-left-clicking anywhere in the

(a) Video Display (b) Secondary Display

Figure 5. User study displays presented using dual monitors.

display window. Freezing the frame caused the display of
the video to freeze but did not pause the video playback,
which continued in the background. The longer the frame
was frozen, the more video content the user would miss see-
ing, just as in a live search situation. From there, the user
could either left-click on the object of interest to identify it
or right-click to indicate no selection, with either action re-
suming playback. The secondary task display used a similar
control interface, allowing subjects to place, adjust, or clear
markers indicating a detected red spot.

After each trial, each subject was asked to answer three
post-trial questions presented on the secondary display.
These questions related their perception of their perfor-
mance on the trial and to their relative preference between
the just-finished trial and the previous one. After complet-
ing all 16 trials, each subject was asked to complete a brief
questionnaire about their overall impressions and prefer-
ences.

5. Results and Discussion

In the described user study, we gathered hit rates for the
primary and secondary tasks, hit rates given whether the
subject is biased or naı̈ve, hit rates within the current frame,
hit rates within the history of the mosaic (when applicable),
and false-positive rates and types. We also gathered subjec-
tive feedback from the participants.

Three preliminary observations are in order before com-
paring the main results. First, there is no statistical differ-
ence between the objective results for naı̈ve and biased par-
ticipants, who had hit rates for the primary task of 73% and
72% respectively (Table 1). Thus, the remaining analysis
does not distinguish between the two participant types. Sec-
ond, detection and identification success rates for the sec-
ondary display are very high and consistent across all par-
ticipants and all views at about 94% (Table 2). This suggests
that any influence from the additional cognitive load on the
results will be expressed mainly in the differences among
detection rates within the primary video display. Third, one
particular video clip was an outlier wherein all participants
identified all of the objects of interest regardless of the ac-
companying view. This clip was removed from the analysis.



ω P % improvement
mosaic 1.6610 84.04% 45.33%
stable mosaic 1.5486 82.47% 42.62%
stabilized 0.3935 59.71% 3.26%
unenhanced 0.3156 57.83% 0.00%
biased 1.0051 73.21% -
naı̈ve 0.9543 72.20% -

Table 1. Hit probability comparisons among the different presenta-
tion views as well as between the naı̈ve and biased subjects, where
ω is the least-squares means estimate and P is (eω)/(1 + eω),
i.e., the probability that the object of interest will be detected
given the corresponding presentation view or subject. The im-
provement over Plow, the unenhanced view, was computed by
(Pview − Plow)/Plow.

Spot Hit Rate
mosaic 94.88%
stable mosaic 93.24%
stabilized 93.67%
unenhanced 94.99%

Table 2. Performance at the secondary task by presentation view.

5.1. Primary Task Performance

The detection hit rates for the primary task are shown in
Table 1 and support our hypothesis that extending the spa-
tiotemporal view using local mosaics increases the prob-
ability that objects of interest will be detected throughout
mUAV-acquired video. The mosaic view gave the largest
increased percentage at 45.33% in hit probability over the
unenhanced view. Also, there is a strong (∼ 43%) improve-
ment from the non-mosaiced to mosaiced views.

Comparisons of similarity obtained by a least-squares
means indicate that the two mosaiced views were similar
to each other (p = 0.9674) and that the two non-mosaiced
views were likewise similar (p = 0.9804), but that the mo-
saiced and non-mosaiced forms were statistically different
(p < 0.00001). These results were obtained via a multiple-
comparison ANOVA with the Tukey-Kramer adjustment.

This improvement is largely explained by examples such
as that in Figure 1. In the original video (1(a)), the object
of interest (red umbrella) is visible for only a few frames
in the lower-right corner of the original view, and would
appear similarly in the stablized view. However, in the cor-
responding mosaicked view (1(b)), the object is visible for a
much longer time over possibly hundreds of frames, or sev-
eral seconds, before it moves out of the viewing frustum.

5.2. Hits in the Current Frame vs. Mosaiced History

To see whether subjects were actually detecting the ob-
jects in the current frame or in the mosaiced history (if ap-
plicable), we also recorded hits in each area respectively,
the results of which may be seen in Table 3.

It is interesting to note the connection between the in-
creases in hit probabilities between the mosaiced and non-
mosaiced presentation views shown in both Table 1 and the
“History” column of Table 3. We believe that this reinforces

Current Frame History Total
mosaic 128 62.44% 77 37.56% 205
stable mosaic 137 68.66% 62 31.34% 199
stabilized 147 100.00% n/a 147
unenhanced 144 100.00% n/a 144

Table 3. Hits in the current frame vs. hits in the mosaiced history.

that the increase in hit probability is largely due to the pro-
vision of a history in the mosaiced presentation views.

We also believe that the main difference in hit probabili-
ties between the stable mosaic and mosaic views is because
the stable mosaic view presents less of a history than the
mosaic view.

5.3. Analysis of Types of Misses

To further determine whether the mosaic’s history was
providing the increased detection, we examined the types
of misses that occurred. Did the subject completely miss
the object (not detected) or did they see it and click on
it only after it left the current frame (late hit)? (See Fig-
ure 6.) By separating out the late hits from those targets
that were not detected (Table 4), we see a significant differ-
ence in the types of misses that occurred when using the two
mosaiced views compared to the two non-mosaiced views.
The mosaic view, which displays the longest history, had
the fewest number of late hits; the stabilized mosaic, which
has a shorter history, had more late hits; and the two non-
mosaiced views had more than four times the number of
late hits. The greater number targets not detected in the non-
mosaiced views indicates that these targets were completely
missed.

5.4. False Positives

Table 5 shows an increase in the number of false pos-
itives (FPs) that occurred using the mosaiced views. FPs

Late Hits Not Detected Total
mosaic 2 4.08% 47 95.92% 49

stable mosaic 7 13.21% 46 86.79% 53
stabilized 33 31.13% 73 68.87% 106

unenhanced 31 27.93% 80 72.07% 111
Table 4. Classification of the misses by presentation view.

(a) A stabilized view’s “Late Hit” (b) A stable mosaic view’s hit of
the same frame

Figure 6. Example of a late hit. A user may detect but not react
quickly enough with a non-mosaiced view (a) but may be able to
accurately detect and localize an object in a mosaiced history (b).



(a) In the current frame (b) In the mosaic

Figure 7. Examples of believable false positives. All methods are
equally likely to generate FPs for confounding objects in the cur-
rent frame (a). Once they pass from the current frame, they are
more likely to be detected as FPs in the mosaiced views (b).

FP total Current Late / History
mosaic 19 18.27% 7 6.73% 12 11.54%
stable mosaic 11 10.58% 7 6.73% 4 3.85%
stabilized 6 5.77% 4 3.85% 2 1.92%
unenhanced 9 8.65% 7 6.73% 2 1.92%

Table 5. False positives in current frame and in mosaiced history.

can occur to the fault of a mosaic presentation mainly due
to possible noise caused by the video transmission or cap-
ture device, or due to possible misalignments in the mosaic.
These would be manifest as FPs made in the history; and
according to Table 5, our results show a significant increase
in FP’s in the history of the mosaic view over those made
in the surrounding area of the unenhanced view. They also
show a 4% chance of having a FP occurrence in the history
given the stable mosaic view, and a 12% chance given the
more lengthy history presented in the mosaic view.

Reexamination of the video segments in which the FPs
occurred showed that there were three kinds: (1) those oc-
curring in the current frame (Figure 7(a)), which are likely
to occur regardless of the view presentation; (2) those oc-
curring in the history due to an alignment error, which
can be attributed to the mosaicing; and (3) true objects or
transmission noise bursts in the scene that appear similar
to the intended objects of interest (Figure 7(b)), which are
more likely to generate FPs in the history of the mosaiced
views, not as a mosaicing artifact but due to demonstrated
increased detectability in these views. In this last case, mo-
saiced views cause more false positives just as they cause
more hits because potential confounding objects are them-
selves now more detectable.

5.5. Subjective Results

After each trial beyond the first one, each subject was
asked to compare the presentation view of that trial to
the one preceding it and rank it as harder (<), about the
same (∼), or easier (>). The collective results are shown
in Table 6. We found no statistical bias in preference due
to ordering, so we present here only the combined results
for all times where one method was preferred to another,
regardless of whether it preceded or followed the other. The
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mosaic 3 26 7 16 2 26 53 41
stable mosaic - 6 9 13 8 2 44 32
stabilized - - 5 23 1 14 8 10
unenhanced - - - 7 5 11 15 2

Row ∼ Column Row > Column
Table 6. Subjective pairwise comparison of the presentation views.
Values indicate how many times users found one method similar
to another (∼) or preferred one to the other (>).

Umbrellas Spots
- 0 + - 0 +

mosaic 10 64 30 21 49 34
stable mosaic 14 61 29 23 44 37
stabilized 11 44 40 20 44 40
unenhanced 9 44 49 19 53 32

Table 7. Hit confidence measures. Values indicate the number of
times the subjects underestimated (“-”), accurately estimated (0),
or overestimated the number of misses (“+”).

results show an obvious heavy leaning towards the easiness
of the mosaiced views over the non-mosaiced views.

One unexpected result is that the stabilized view seems
to have been perceived as more difficult than the unen-
hanced view, and the stable mosaic view similarly more
difficult than the mosaic view. Participant comments sug-
gested that this difficulty was heavily influenced by the vi-
sual secondary task that required the subject to be visually
engaged on another screen. When they were forced to look
away from the video display for a moment and then look
back again, the current frame was in a much less predictable
position on the video display. Because of the moving high-
gradient boundary of the displayed frames, users’ attention
was drawn to the moving frame boundary, especially when
looking back to the display but even to some degree when
not shifting between displays.

5.6. Subject Confidence

As a final subjective measure, we asked the subjects to
estimate their own effectiveness in the tasks performed by
asking them to report the number of spots and umbrellas
they thought they missed during each trial. In a way sim-
ilar to analyzing the late-hit misses, this allows us to see
whether the subjects simply missed targets or saw them
but didn’t indicate them correctly. We then counted how
many times the subjects underestimated (“-”), accurately es-
timated (“0”), or overestimated (“+”) the number of misses
(Table 7). The results suggested that the subjects tended to
consistently underestimate the number of misses, i.e., when
they missed a target, they were usually not aware of it, but
this was reduced when using mosaiced views.



6. Conclusion
Enhancing mUAV-acquired video for human observers

in real-time search applications imposes a number of con-
straints on the processing of the video: real-time vision
algorithms, high detection rates, handling of noisy or lost
frames, consistency of relative orientation, and considera-
tion of human perception and interface factors.

The empirical evaluation presented here shows that the
use of temporally local mosaics can significantly increase
the detectability of objects of interest and ease of use for
human observers. The two mosaiced display methods pre-
sented here (mosaicing alone or combined with stabiliza-
tion) were nearly identical in their impact on performance
and significantly better than either of the two non-mosaiced
display methods (unenhanced or stabilized alone).

Mosaiced displays also bring a slight increase in the
number of false positives, some of which are due to arti-
facts in the mosaicing, but many of which are simply due to
the fact that potential confounding objects are themselves
likewise made more detectable.

Study participants were also more likely to be overcon-
fident when using the non-mosaiced forms of display than
when using the mosaiced forms. This has significant impli-
cations in search situations because it suggests that once an
area is searched we may be too mistakenly confident that
the area covered does not contain an object of interest.

Stabilizing the non-mosaiced video surprisingly seems
not to improve detection, nor did stabilizing the current
frame in a mosaiced presentation. Study participants sug-
gested that these forms of non-cropped stabilized display
were actually harder to use, perhaps due in large part to the
presence of a secondary visual task that required them to
continually shift their attention between the video and an-
other display. Not cropping the stabilized video allows the
display to maintain full information but introduces a high-
gradient moving boundary, which seems to make the task
more difficult, especially when shifting attention.

The study presented here did not assess the influence of
non-visual secondary tasks, nor did it attempt to assess the
impact of these display methods on long-term fatigue. Each
of these would be interesting studies to pursue in the future.

Although studied here in the context of search-and-
rescue applications, these findings should extend to video
presentation for other applications of mUAVs and similar
video sources.
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