
 

 

 
Abstract 

Concept-based multimedia search has become more and 
more popular in Multimedia Information Retrieval (MIR). 
However, which semantic concepts should be used for data 
collection and model construction is still an open question. 
Currently, there is very little research found on 
automatically choosing multimedia concepts with small 
semantic gaps. In this paper, we propose a novel 
framework to develop a lexicon of high-level concepts with 
small semantic gaps (LCSS) from a large-scale web image 
dataset. By defining a confidence map and content-context 
similarity matrix, images with small semantic gaps are 
selected and clustered. The final concept lexicon is mined 
from the surrounding descriptions (titles, categories and 
comments) of these images. This lexicon offers a set of 
high-level concepts with small semantic gaps, which is 
very helpful for people to focus for data collection, 
annotation and modeling. It also shows a promising 
application potential for image annotation refinement and 
rejection. The experimental results demonstrate the 
validity of the developed concepts lexicon.  

1. Introduction 
Recent years have witnessed a fast development of 

Multimedia Information Retrieval (MIR).  Despite 
continuous efforts in exploring new MIR techniques, the 
semantic gap between the expressing power of low-level 
features and high-level semantic concepts is still a 
fundamental barrier. In order to reduce the semantic gap, a 
promising paradigm of concept-based multimedia search 
has been introduced into many practical search systems in 
the past few years. This paradigm focuses on modeling 
high-level semantic concepts, either by object recognition 
or image annotation. Among various approaches, the first 
step is to select a lexicon that is relatively easy for 
computers to understand, and then to collect training data 
to learn the concepts. 

However, the problem of lexicon selection is usually 
either simplified by manual selection or totally ignored in 
most previous works. For example, researchers working on 
object classification and recognition manually defined a 
number of datasets, including UIUC [1], Caltech 101[2], 

Caltech 256 [3], and PASCAL [4].  When choosing 
concepts to construct these datasets, they implicitly 
favored those relatively “easy” concepts, although it is still 
very challenging to model them. Other researchers 
working on image annotation either simply use all the 
keywords associated with training images, including 
ALIPR[5], SML [6], or don’t impose any limitation to the 
annotation vocabulary such as ESP [7], LabelMe [8], and 
AnnoSearch [9]. These approaches actually ignore the 
differences among keywords in terms of semantic gap.   

There is no doubt these efforts make their unique 
contributions to the standardization of concept corpus thus 
letting the multimedia community focus ongoing research 
on a well-defined set of semantics. However, we argue that 
semantic gaps are actually not uniform in a low level 
feature space and it is inappropriate to ignore the semantic 
gap differences.    For example, it is well acknowledged 
that modeling “Europe” is more challenging than modeling 
“sunset” due to the lack of an effective visual feature that 
can represent the concept of “Europe”.  Also, researchers 
usually choose color features to model concepts like 
“sunset”, and choose local features to model concepts like 
“building”.  

Concepts with smaller semantic gaps are likely to be 
better modeled and retrieved than concepts with larger 
ones. But in current literature, very little research is found 
on quantitative analysis of semantic gap. What are the 
well-defined semantic concepts for learning and how to 
automatically find them are still open problems. This 
highlights a critical requirement for establishing an 
efficient way to “measure” the semantic gap thus finding 
those high-level concepts with small semantic gaps, which 
should be given high priority for data collection, modeling, 
and training. 

Motivated by this, this paper focuses on two key 
problems: what are the high-level concepts with small 
semantic gaps and how to identify them?  In other words, 
what semantic concepts should we focus on first to assure 
that they can be well modeled and easily annotated?  We 
answer these questions by proposing a novel framework to 
automatically construct  a  concept  lexicon  from  a  large 
web-scale image dataset,  which  contains over 2.4 million 
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Figure 1: Framework of LCSS Construction 

images collected from several online photo forum 
websites. 

Web images are usually associated with rich textual 
features, such as filename, title, alt text, and surrounding 
text [10]. These textual features are much closer to the 
semantics of the images than visual features. Especially 
when users upload their photos online, the input titles and 
comments that are assigned by the users are actually good 
semantic descriptions of the images.  Therefore, in this 
paper, we particularly focus on the collected web images 
and fully utilize this useful information to identify images 
with small semantic gaps by the proposed confidence 
value. Then the top N images with the smallest semantic 
gaps are clustered and the key concepts learned from their 
surrounding texts are output as the produced concepts.  

To our best knowledge, it is the first attempt that 
quantitatively and automatically identifies high-level 
concepts with small semantic gaps from a huge repository 
of well annotated photographs on the Web. Compared with 
the limited number of manually selected concepts, the 
proposed approach is potentially capable of constructing a 
well-defined lexicon customized for a given feature space, 
and is of great help for data collection and concept 
modeling. 

In our design, we request two properties for the desired 
concept lexicon. (i) The words (concepts) in the lexicon 
should have high occurrence frequency within the 
descriptions of real-world images, which makes them 
commonly used concepts. (ii)  The chosen concepts are 
expected to be visually and semantically consistent, that is, 
the images of these concepts have smaller semantic gaps, 
which make them moderately easy to be modeled for 
retrieval and annotation. 

The contributions of this work can be highlighted as 
follows:  

1) We quantitatively study and formulate the semantic 
gap problem and propose a novel framework including a 
definition of confidence value and an algorithm for 
dominant concept identification to automatically select 
visually and semantically consistent concepts. 

2) The constructed lexicon shows its promising 
application potential for concept detection, automatic 

annotation, and multimedia information retrieval. As the 
chosen concepts are ranked based on their semantic gaps, 
researchers can either focus on modeling concepts which 
are visually and semantically more consistent, or 
concentrate on designing rejection strategies to reject those 
tough concepts with low confidence. 

3) Although this work only studies lexicon construction 
in one feature space, the proposed framework is also 
helpful for feature space selection for any given concept.  
This will explicitly guide the research in concept modeling 
and provide a possibility for multimodality modeling. 

The rest of the paper is organized as follows: Section 2 
introduces the related work. Section 3 presents the lexicon 
construction procedure. Section 4 gives the comprehensive 
experimental results, and the conclusions and future work 
are given in Section 5. 

2. Related Works 
Lexicon selection and data collection are essential 

elements of concept-based image retrieval. Publicly 
available image databases, such as UIUC [1], Caltech-101 
[2], Caltech-256 [3], and PASCAL [4], contain many 
manually selected concepts for category-level recognition. 
Recently, web-based annotation tools (ESP [7] and 
LabelMe [8]) provide a new way of building large 
annotated database by relying on the collaborative effort of 
a large population of users [11]. By playing games, players 
enter labels describing the content of images, from which, 
a lexicon can be collected. In 2006, MediaMill challenge 
concept data (101 terms) [12] and Large-Scale Concept 
Ontology for Multimedia (LSCOM) [13] containing about 
1,000 concepts were proposed, both of which include a 
manually annotated concept lexicon established on 
broadcast news video from the TRECVID benchmark. The 
LSCOM was designed to satisfy multiple criteria of utility, 
coverage, feasibility, and observability.   

Unfortunately, all the lexica described ignore the 
differences of semantic gaps among concepts and no 
automatic selection is executed. 

3. Lexicon Construction 
In this paper, we propose a confidence map to 

“measure” the semantic gap.  After selecting images with 
small semantic gaps from a large-scale web-based 
database, concepts are mined from the descriptions of the 
clustered images. 

The framework of the Lexicon of High-Level Concepts 
with Small Semantic Gaps (LCSS) construction procedure 
is shown in Figure 1.  It contains four stages: (1) data 
collection, (2) confidence map construction, (3) affinity 
propagation clustering, and (4) text-based keyword 
extraction labeled by ①-④, respectively. 



 

 

 

Image Title Descriptions 

 
Sea sunset Sunset at the sea 

 
Red Rose 

A rose in my garden taken 
June 8th 2002 (My other 
hobby is rose gardening)… 

 
The Falls 

This is a waterfall that is 
about 3 miles from my 
house. It's called The 
Falls… 

Figure 2: Example images and surrounding descriptions 

3.1 Data Collection 
About 2.4 million web images were collected from 

several online photo forum sites including Photosig.com, 
Photo.net, etc. The reason we chose these forum sites was 
that their photos have very high quality and rich textual 
information such as title and photographer’s comments. As 
shown in Figure 2, these descriptions cover the content of 
the corresponding photos to a certain degree. 

Semantic gap really depends on the low-level features. 
In this paper, a 64-dimensional global visual feature vector 
[14] is extracted for all 2.4 million images, which contains 
three different kinds of color features: 6 dimensional color 
moments in LUV color space, 44 dimensional banded 
auto-color correlogram in HSV color space, and 14 
dimensional color texture moments.   

3.2 Visual-Textual Confidence Map 
According to the second property of our concept 

lexicon, the images belonging to these selected concepts 
must have small semantic gaps. Very little research in the 
current literature can be found on how to analyze the 
semantic gap. Fortunately, semantic information is 
available for the web images from their rich context 
features, such as title, category, and photographers’ 
comments. This input information actually describes 
images’ semantics when users name and describe them. In 
this paper, we utilize the context information and define a 
novel Nearest Neighbor Confidence Score (NNCS) to 
evaluate the semantic gap between visual (content) and 
textual (context) features. 
 
3.2.1 Nearest Neighbor Confidence Score 

Viewing each image as a K-NN classifier, for a 
particular image xI , we obtain its K nearest neighbors 
based on its visual feature. Assuming xI and one of its 
neighbors iI both have surrounding texts, we can measure 
their textual description’s cosine similarity 

)(_ , ix IItextsim using their textual features. Then the 

Nearest Neighbor Confidence Score of image xI  can be 
defined as   
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where iI , Ki ,,1= are the K nearest neighbors of xI  in 
the visual feature space.  Obviously, an image’s NNCS can 
be interpreted as the coherence degree in both visual and 
textual spaces.  

By definition, semantic gap is the difference between 
two descriptions by low-level features and high-level 
concepts. The basic idea of the proposed NNCS to 
measure the semantic gap is using the low-level content 
features of image xI  to search most visually similar 
images first. Next, their contextual (semantic) similarities 
are calculated. If they share common contextual 
information, we can conclude these visually similar 
images also have very similar semantics thus called 
content and context similar. This consistency shows that 
the low-level features of image xI can express its semantic 
information well. Hence, the higher the NNCS value is, the 
smaller the semantic gap would be.  
    In our paper, we calculate NNCS Score with 500=K 1 
for all 2.4 million images and construct a large visual-
textual confidence map. From this map, we can select 
candidate images with high NNCS for later concept 
exploration and lexicon construction. The most simple 
way2 is to rank all images by their NNCS value and use a 
threshold to select the top N images. In our 
implementation, 36231 top images are selected due to its 
relatively large size and memory concern for the Affinity 
Propagation clustering algorithm described in Section 
3.2.2.  

 3.2.2 Clustering Using Affinity Propagation 
After those candidate images with small semantic gaps 

are selected, the next step is to cluster these images and 
extract corresponding concepts information. We use a very 
recently proposed affinity propagation method [15] for 
clustering because it is fast for large scale data set and 
requires no prior information (e.g., number of clusters).  

 Different from traditional clustering methods, affinity 
propagation does not need specify and fix the number of 
exemplars (representative centers). It starts with the 
construction of a similarity matrix. By viewing each data 
point as a node in a network, this method recursively 
transmits real-valued messages along edges of the network 
until a good set of exemplars and corresponding clusters 
emerge.  Affinity  propagation  has been successfully used  

 
1K is chosen as a trade-off of both image coverage and computational 

complexity.  
2 We have tested with other selection methods, but simple 

thresholding gives quite reasonable candidate set and is very fast for 
implementation for large scale image dataset. 
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Figure 3: (a) Content-Context K-Nearest Neighbor and (b) 
Content-Context Similarity Matrix 

in face image clustering, genes detection, and sentence 
identification, etc [15]. 

In order to cluster content and context similar images 
together, we define and construct a content-context 
similarity matrix, based on content-context K-nearest 
neighbor (KNN-C2). Intuitively, image jI is KNN-C2 of 
image iI  only if jI is both visually and textually nearest 
neighbors of image iI . An illustration example is given in 
Figure 3.  iI  has K ( 5=K ) visually and textually nearest 
neighbors 54321 ,,,, vvvvv and  54321 ,,, ttttt . In this 
example, only image jI  and kI  are called KNN-C2 of 
image iI  since they are both visual and textual nearest 
neighbors of image iI . The content-context K-nearest 
neighbors of image iI can be represented by 

},{)(2 kji IIICkNN =− .   
Based on the KNN-C2, we construct a 36231×36231 

content-context similarity matrix (CCSM) P as follows 
(Figure 3): 
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This CCSM matrix describes the similarity of visual 
content and textual context between any two images 

iI and jI , 36231,,2,1, =ji .  When jI is KNN-C2 of 

iI , ijP is set to their content and context similarity, which 
equals to the summation of negative Euclidean distance of 
their visual features and cosine distance of textual features.  
Otherwise, ijP is set to −∞ .  
   ijP  indicates how well an image iI   is suited to be the 
exemplar for image jI . For all images, we assume that 
they are equally considered to be exemplars. Hence the 
preferences [15] are set to a common value - the median of 

ijP . It should be noted that ijP  is not necessarily equal  

 
Figure 4: Message passing between images 

to jiP . Fortunately, affinity propagation can be applied to 
non-symmetric similarity matrix.  

Affinity propagation is a message-passing algorithm. 
Two kinds of messages: “responsibility” ),( kir  and 
“availability” ),( kia are exchanged between images i and 
k. 

Shown in Figure 4, the “responsibility” ),( kir , sent 
from image i to candidate exemplar image k, reflects the 
accumulated evidence for how well-suited image k is to be 
the exemplar for image i, taking into account other 
potential exemplars. The “availability” ),( kia , sent from 
candidate exemplar image k to point i, reflects the 
evidence for how appropriate for image i to choose point k 
as its exemplar, considering the support from other images 
that image k should be an exemplar.  

At the beginning, the availabilities are initialized to 
zero: 0),( =kia . Then, the responsibilities and 
availabilities are updated iteratively using the following 
two rules, which let all candidate exemplars compete for 
ownership of an image and gather evidence from images to 
support each candidate exemplar.  
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After a fixed number of iterations, a good set of 
exemplars and corresponding clusters emerges. For image 
i, the image k that maximizes ),(),( kirkia +  will be 
identified as its exemplar. If ik = , image i itself is an 
exemplar. The corresponding clusters are constructed by 
connecting each image to the exemplar that best represents 
it.   

3.3 Text-based Keyword Extraction 
After candidate images are well clustered, a text-based 

keyword extraction (TBKE) is proposed to extract 
keyword (concept) information from these clusters. 

Given a cluster iC in the cluster pool C, the text-based 
keyword extraction is to find the most representative 



 

 

keywords by ranking all related keywords in this cluster. 
The related keywords are the ones that appear in the title 
or surrounding descriptions of images belonging to iC . To 
be specific, the set of the related keywords of cluster iC is 
denoted as iW . And the relevance score of a keyword jk to 
cluster iC  is denoted as ),(_ ij CkrScore . 

Many different strategies could be applied to 
calculate ),(_ ij CkrScore . In paper [10], they show that an 
if-ikf strategy (image frequency-inverse keyword 
frequency) performs well when it finds keywords from 
surrounding texts of an image. Enlightened by the if-ikf 
strategy, we extend this strategy from image to cluster, 
defined as follows: 
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where ),( ij Ckoccurence denotes the number of keyword 

jk  in title or descriptions of images belong to cluster iC . 
Similarly, for the whole cluster pool C, we denote W as 

the combination of all iW , i.e. i
i
WW ∪=  . For each 

keyword jk in W, its relevance score to the whole cluster 
pool C can be denoted as )( jkScore . It is the summation 
of the relevance scores of jk to each jC , CCi ∈ .       

∑
∈

=
CC

ijj
i

CkScorekScore ),()( . The assumption is that if the 

jk is a representative word for many clusters, it would be 
also an important keyword for the whole cluster pool. 

 Once the relevance score )( jkScore of each keyword 

jk in W is obtained, we can select the top ones to make the 
final concepts lexicon. Because of the limited space, we 
only list the top 50 keywords in Table 1 grouped in five 
categories: scene, object, color, season, and others. The 
full concept lexicon can be downloaded from (left blank 
for blind review). 

Table 1. Top 50 keywords in the LCSS lexicon 

Category Concepts 
Scene/Landscape sunset , sky, beach, garden, lake, sunflow, 

water , firework, cloud, moon, sunrise, 
mountain, city, river, snow, rain, home, island 

Object flower, rose, butterfly, tree, bee, candle, 
bridge, leaf, eye, tulip, orchid, house, peacock, 
window, glass, bird, rock 

Color blue, red, yellow, green, pink, purple, orange, 
dark, golden 

Season fall, spring, summer, autumn 
Others small, wild 
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Figure 5: Distribution of average confidence value. x-axis 
represents top 15 keywords (from left to right)  in LCSS. 

4. Experiments 
It is not  a trivial task to evaluate LCSS. In this paper, 

we design two experiments to evaluate the validity of this 
list. First, we construct a confidence map for some 
concepts selected from the LCSS and compare their 
average confidence score. Secondly, we apply this 
developed LCSS list on image annotation refinement. The 
superior performance demonstrated that this concept 
lexicon provides a reliable and effective list of concepts 
with small semantic gaps. 

4.1 Confidence Map 
One way to evaluate the LCSS is to calculate the 

confidence score of images labeled with the keywords in 
the list. Intuitively, the images labeled with top keywords 
should have higher confidence value than images labeled 
with lower ranked keywords.  

Hence, in our first experiment, we select top 15 
keywords from the LCSS list. For each keyword w, we 
randomly selected 500 titled photos with this keyword 
from 2.4 million web images database. It is our assumption 
that the image is labeled with the keyword if the keyword 
appears in its title, then we calculate the average nearest 
neighbor confidence score of photos labeled with the same 
keyword.  

The distribution of the average confidence score for 
each keyword is shown in Figure 5. It can be seen that the 
confidence value decreases similarly to the keyword rank’s 
depreciation. This figure clearly demonstrates that the 
image labeled with the top words have higher confidence 
value.  

4.2 Image Annotation Refinement 
As mentioned in Section 1, the developed LCSS can be 

applied to help refine and re-rank the annotated keywords, 
which is called image annotation refinement.  

In this section, we apply the lexicon on the University of 
Washington (UW) dataset to refine the annotation results 
obtained by the search-based image annotation algorithm 
[10].  Two different refinement strategies are shown in 
Figure 6. 

 



 

 

 
Figure 6: Image annotation refinement scenario 

UW dataset is a popular content-based image retrieval 
database, which has been used in many cited work and is 
downloadable from (http://www.cs.washington.edu/ 
research/imagedatabase/groundtruth/). For each image, 
there are about 5 manually labeled ground truth 
annotations. In total, it contains 1,109 images and more 
than 350 unique words. In our evaluation, we strictly use 
the annotations of UW as the ground truth and all 
synonyms and non-appearing correct annotations are 
assumed incorrect.  

Search-based image annotation (SBIA) is a very recent 
annotation algorithm [10]. SBIA first uses the 64 color 
features to retrieve visually similar images. Next it applies 
a keyword search to obtain a ranked list of candidate 
annotations from the surrounding texts of the retrieved 
image. 

Given a query image, SBIA is first employed to obtain a 
set of candidate annotations. Then, uses the developed 
LCSS to refine the annotations by re-ranking the candidate 
annotations and reserves the top ones (Figure 6). In our 
experiments, two new refinement strategies are used: 
annotation relevance re-ranking and annotation pruning.  

4.2.1 Annotation Relevance Re-Ranking  
For each keyword appearing in the annotations of an 

image, for example aword _ , its relevance score, which 
reflects the relevance between the image and keyword can 
be calculated as: 
                 

)1ln(
1)_(_

i
awordrScore

+
=           (7) 

i is the rank of aword _ in the annotation of the image. 
The assumption is that the keyword with top rank is more 
important to the image thus having larger relevance score.   

Similarly, in the constructed lexicon, a static score of 
each keyword could also be defined to reflect its 
appropriateness as an effective annotation. It should be 
noted that our word lexicon LCSS is constructed over the 
2.4 million web images, which is independent from the 
UW dataset. Therefore, the static score is independent of 
the target images. 

  =)_(_ awordsScore
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j is the rank of the aword _ in the lexicon list. If 
aword _ does not appear in the lexicon list, its static score 

is defined as 0. 
The final score of the keyword could be calculated as a 

weighted combination of the relevance score and the static 
score as follows: 
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In our experiments, α is set to 10 empirically from 
various tests. 

From formula (9), we can see if one keyword is ranked 
high in the annotation but appears low in the LCSS, its 
final rank will decrease. Similarly, if one lower ranked 
keyword is within the top keywords of the LCSS, it will be 
ranked higher in the final annotation. 

4.2.2 Annotation Pruning 
Annotation pruning is an alternative to annotation 

relevance re-ranking. The difference from annotation 
relevance re-ranking is that irrelevant annotations that do 
not appear in the lexicon are pruned. The basic assumption 
is that highly correlated annotations should be reserved 
and non-correlated annotation should be removed.  
   Since the original UW ground truth annotations include 
both keywords and phrases, in our experiments, we define 
two evaluation levels to evaluate the annotation 
performance: phrase-level and term-level. In the phrase- 
level, an annotation is considered to be correct if and only 
if it is a ground truth annotation of the target image. In the 
term-level, both the ground truth annotation phrases and 
the result annotation phrases are divided into separate 
words. If there is more than one same word in the 
annotations of an image, only one is reserved. An 
annotated keyword is considered to be correct if and only 
if it appears in the ground truth annotation of the target 
image. The Precision and Recall are defined as follows:   

∑ == n
knprecision 1

k
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Iimagein(terms)phrasesannotatedofnumber

Iimagein(terms)phrasesannotatedcorrectlyofnumber (10) 
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n is total number of the test images. In our experiments, 
the number of SBIA’s annotation keywords is restricted to 
be no more than 10. 

4.2.3 Size of Lexicon 
Obviously, the size of lexicon is a crucial parameter in 

the annotation refinement. It decides how many keywords 
will be used to refine or prune the final annotation. Let’s 
denote it by s. To facilitate the further evaluations, s is first 
determined by comparing the annotation performance with  
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Figure 7: Annotation precision of different sizes of lexicon 
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Figure 8: Annotation recall of different sizes of lexicon 

different s. The number of annotation results m is fixed to 
5 since there are about 5 manually labeled ground truth 
annotations in the UW dataset. The Precision and Recall 
are shown in Figure 7 and Figure 8, with s changed from 0 
to 200. When s is set to 0, it is the original annotation 
without refinement.  

From these two figures, we can find that Precision and 
Recall exhibit similar varying characteristics. The 
refinement distinctively improves original annotation’s 
precision and recall when s becomes larger. And the 
performance of refinement keeps stable when s is equal or 
larger than 100, which means the most annotation words 
of UW dataset fall into the first 100 keywords in the LCSS 
list. Therefore, s is set to be 100 in the following 
evaluations. 

4.2.4 Size of Annotation 
In Figure 7 and 8, we can see that the annotation 

refinement consistently improves the performance when m 
is 5. In order to test the effect of different m, in our second 
experiment, m is varied from 1 to 10. The corresponding 
Precision and Recall are shown in Figure 9 and Figure 10, 
respectively. Three observations can be drawn from the 
results. Firstly, when m is ranging from 3 to 7, the 
Precision and Recall of refined annotation (annotation re-
rank and pruning) are improved most. When m hits 10, the 
Precision and Recall of annotation re-rank becomes same 
as the unrefined one since all annotation words are counted 
for both methods. In addition, the Precision and Recall of 
the annotation pruning remains same especially while m is 
larger than 7. It means that most of top 7 annotation words 
of  SBIA  fall  into  the LCSS  list.  Secondly,  the  absolute  
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Figure 9: Annotation precision of different sizes of m 
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Figure 10: Annotation recall of different sizes of m 

values of term-level evaluation are better than that of 
phrase-level, because SBIA is a term-based annotation 
algorithm. Thirdly, the performance of annotation re-rank 
is better than pruning. The reason is that pruning method 
filters out some possible correct annotations.  

4.2.5 Comparison with Other Lexica 
In our last experiment, we studied three different lexica 

of semantic concepts, where each set is larger than the 
previous one. 
LCSS:  Our developed lexicon list of concepts with small 
semantic gaps. To be consistent with previous 
experiments, we still use the top 100 keywords for 
annotation refinement. 
LSCOM: Large Scale Concepts Ontology for Multimedia 
[13], a standardized lexicon established on broadcast news 
video from TRECVID benchmark. The largest word list, 
which contains 858 terms, can be downloaded from 
http://www.ee.columbia.edu/ln/dvmm/lscom/. 
WordNet: A very large lexical database of English. 
Nouns, verbs, adjectives, and adverbs are grouped into sets 
of cognitive synonyms (synsets), each expressing a distinct 
concept. Because most of image annotation words are 
nouns and adjectives, for this study, we use a total of 
100,303 nouns and adjectives terms from WordNet 2.1 
[16]. 

Since LSCOM and WordNet do not have the word rank, 
in this experiment, we only compare their annotation 
pruning performance of SBIA results on the UW dataset. 
From Figure 11 and Figure 12, it is clear that LSCOM and 
WordNet do not improve the annotation precision at all 
and  perform  much  worse  than LCSS.  The reason is that 
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many correct annotations are not included in these two 
lexica thus are pruned. It validates that these two lexica are 
not good concepts corpus with small semantic gap for 
web-scale image annotations. Instead, LCSS demonstrates 
to be more effective for image annotation refinement.   

5. Conclusion and Future Work 
In this paper, we have presented an innovative 

framework to automatically construct a concept lexicon 
with small semantic gap from a large photo dataset.    

Our major contributions are: (i) This work sheds some 
light in answering the question “what specific concepts 
have small semantic gaps?” Among the hundreds or even 
thousands of multimedia concepts, it is the first of its kind 
to be designed for which semantic concepts should be 
focused first for data collection and modeling. (ii) It also 
provides a candidate pool of good semantic concepts to 
annotate other image datasets, thus it can be used for 
annotation refinement and rejection. (iii)This lexicon list 
will have many potential applications in concept detection, 
query optimization and multimedia information retrieval.  

It should be also noted that these concepts are related to 
low-level visual features. Except for the current color 
features used in this work, in the future we will investigate 
texture feature, shape feature and SIFT feature, etc., to 
construct feature-based lexica. The family of these lexica 
will provide more options to different modeling methods 
given specific feature and could also be fused or combined 
to further refine annotation results based on various 
features.  

Although a number of semantic concepts have been 
developed for MIR, some questions still remain to be 
answered in the future, e.g., how many semantic concepts 
are necessary [17]? Which features are good for image 

retrieval with specific concept? Our work is a first step in 
answering these questions. 
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