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Abstract

In this paper, a comparison of five state of the art re-
gion detectors is presented with regard to localization ac-
curacy in position and region shape. Based on carefully
estimated ground truth homographies, correspondences be-
tween frames are assigned using geometrical region over-
lap. Significant differences between detectors exist, depend-
ing on the type of images. Also, it is shown that localization
accuracy linearly depends on region scale for some detec-
tors, which may thus be used as a pre-selection criterion
for the removal of error-prone regions. The presented re-
sults serve as a supplement to existing comparative studies,
and can be used to facilitate the selection of an appropriate
detector for a specific target application. When descrip-
tor distance is used as assignment criterion instead of re-
gion overlap, a different set of correspondences results with
lower accuracy. Set differences (and thus localization accu-
racy) are directly related to the density of regions in a local
neighborhood. Based on the latter, a novel measure for the
identification of error-prone regions - shape uniqueness - is
introduced. In contrast to existing methods that are based
on the descriptor distance of region correspondences, the
new measure is pre-computed on each image individually.
Thus, the complexity of the subsequent matching task can
be significantly reduced.

1. Introduction
In this work, five popular region detectors are compared

with regard to localization accuracy in position and region
shape: the edge-based (EBR) and intensity-based (IBR) re-
gion detectors by Tuytelaars and Van Gool[10], the max-
imally stable extremal regions detector (MSER) by Matas
et al. [5], and both Harris- and Hessian-affine detectors
(HARAFF & HESAFF) introduced by Mikolajczyck and
Schmid[6]. For all experiments, the original implementa-
tions1 of the authors with their respective default parameters

1http://www.robots.ox.ac.uk/ vgg/research/affine

are used (including the SIFT-descriptor).
A thorough analysis of state of the art region detectors

has been published by Mikolajczyck et al. in [7]. There,
detector performance is evaluated with regard to feature re-
peatability under several image transformations. The under-
lying idea is that under a geometric or photometric transfor-
mation between two images, the set of regions detected in
the first frame should correspond to the set of transformed
regions in the second frame. The authors introduce the re-
peatability score as a measure for detector performance, de-
fined as the ratio between the number of region correspon-
dences and the smaller number of regions in a pair of im-
ages. A good detector should exhibit both a large number
of correspondences and a high repeatability score. Moreels
and Perona [8] additionally evaluated the performance of
region detectors and descriptors, but based on 3D-objects
instead of planar objects.

Until now, there exists only little information on how ac-
curately regions are located. Therefore, detectors are com-
pared within this work with regard to their localization ac-
curacy in position and region shape. If reliable information
on the latter were available, depth changes of moving ob-
jects could be observed from the relative scale difference of
region correspondences, e.g. in a tracking application. To
the best knowledge of the authors, such a comparative study
has not yet been published in the literature. The presented
results serve as a supplement to existing comparative stud-
ies, and can be used to facilitate the selection of appropriate
region detectors for a specific target application.

Firstly, based on carefully estimated ground truth homo-
graphies, correspondences between frames are assigned us-
ing geometrical region overlap. It is demonstrated, that sig-
nificant differences between detectors exist, depending on
the type of images. Also, it is shown that localization ac-
curacy linearly depends on region scale for some detectors,
which may thus be used as a pre-selection criterion for the
removal of error-prone regions. Secondly, descriptor dis-
tance is used as assignment criterion instead of region over-
lap (based on the well-known SIFT-method [4]). The result-
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ing set of correspondences differs from the overlap-based
set and generally exhibits a lower accuracy. It is shown that
set differences and accuracy are directly related to region
density. Based on the latter, a novel measure for the iden-
tification of error-prone regions - shape uniqueness - is in-
troduced. In contrast to existing methods that are based on
the descriptor distance of region correspondences, the new
measure is pre-computed on each image individually. By
removing regions with low shape uniqueness, the complex-
ity of the matching task can be significantly reduced, while
the resulting set of final correspondences stays similar.

This paper is organized as follows: In section 2, the eval-
uated image sequences are shown. In section 3, a method
for the selection of region correspondences is introduced,
along with a first qualitative assessment of region accuracy.
Further, a detailed evaluation of errors in both position and
shape is presented in section 4. Finally, section 5 gives a
concluding summary and an outlook on future work.

2. The Image Data Set

Figure 1 shows a reduced version of the image sets ana-
lyzed within this work. Each sequence contains 6 roughly
equal-sized gray scale images (≈ 800 × 640 pel). The se-
quences boat, wall and graffiti were taken from the dataset
provided by Mikolajczyck et al.1. All others were chosen
from the database made available by Moreels and Alatorre2.

The 6 sequences are categorized into two disjoint groups:
graffiti, carton and frame mainly contain homogeneous re-
gions with distinctive edges (structured), whereas dvd, boat
and wall show repeating patterns and natural textures (tex-
tured). All experiments in sections 3 and 4.1 are conducted
separately on both groups. Every image shows mainly pla-
nar objects so that carefully estimated homographies may
be used to determine region correspondences. If a scene
is not planar (as with boat), the camera position has been
fixed during image acquisition. The homographies for boat,
wall and graffiti have been made available online1, for all
other sequences we estimated them ourselves according to
the method described in [7]. The root mean square error is
less than 1 pel for each image pair. In order to eliminate the
influence of color information, all images have been con-
verted to gray scale.

3. Region Correspondences

In this section, a method for the selection of correspon-
dences is introduced, based on the two-dimensional area
overlap of candidate regions. Further, the susceptibility of
all detectors to changes in the maximally permissible over-
lap is assessed, enabling conclusions on shape accuracy and
region density.

2http://www.vision.caltech.edu/pmoreels/Datasets/TurntableObjects

Figure 1. A reduced version of the image set: The top 3 sequences
are categorized as textured with repeating patterns and natural tex-
tures, whereas the bottom 3 sequences are classified as structured,
with distinctive edges and homogeneous regions.

The definition of region shape varies between detectors:
Both HARAFF and HESAFF use the second moment ma-
trix of the intensity gradient (Baumberg [1], Lindeberg and
Garding [3]) to define an elliptic region description, EBR
uses parallelograms derived from the edge geometry of the
surrounding neighborhood, IBR regions are based on in-
tensity profiles along rays emanating from an intensity ex-



EBR HESAFFHARAFFMSERIBR
Figure 2. Correspondences between the 1st and 2nd frame of the carton-sequence are shown, overlayed on the 1st frame. Region density
corresponds to the ratio of positives and negatives in table 1.

tremum and MSER returns the boundaries of watershed-
like regions. In order to enable meaningful comparisons
between the different detectors, each region is replaced by
an (approximated) ellipse as described in [7]. For elliptic
regions, potential correspondences may be easily identified
based on the area overlap error

ei,j
o (m,n) = 1− Hijri,m ∩ rj,n

Hijri,m ∪ rj,n
, (1)

where ri,m and rj,n are corresponding regions in frames i
and j. Further holds m ∈ {1...M} and n ∈ {1...N}, where
M andN denote the number of regions in either frame. Hij

represents the estimated ground truth homography between
the frame pair. In the remainder of this work, both frame
and region indices are omitted for the sake of brevity. Re-
gion congruency is reached for eo = 0 whereas ellipses with
no intersection yield eo = 1. Two regions are associated to
each other as candidate correspondences if eo ≤ eo,max.

If several regions in frame i should claim the same can-
didate in frame j or vice versa, ambiguities have to be re-
solved based on the degree of eo for each candidate corre-
spondence (m,n). Figure 3 illustrates the principle: In the
first step, the region pair with lowest overlap error is se-
lected from an initial link set and all dependent correspon-
dence candidates are removed. On the reduced set, this pro-
cedure is applied iteratively, until all candidates have either
been labeled as final (positives) or rejected (negatives) cor-
respondences.
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Figure 3. Iterative correspondence assignment.

In their comparative evaluation [7], Mikolajczyck et al.

always chose the first image of each sequence as a refer-
ence frame in order to measure the influence of different
geometric and photometric transformations on detector per-
formance. Throughout this evaluation, correspondences are
selected between adjacent frames instead. The commonal-
ity which all 6 sequences share is the mere observation that
perspective transformations do occur, inflicting change in
shape, scale, orientation and position upon all regions. In
contrast to [7], neither type nor degree of the transforma-
tions are considered here.
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Figure 4. Number of correspondences (positives).

In order to obtain an impression on the susceptibility of
each detector to variations of the maximum overlap thresh-
old, figure 4 shows the relative number of positives as a
function of eo,max. In the literature [7][9], the setting
eo,max = 0.5 is normally used. In this work, the same
threshold has been adopted, bounding the maximum local-
ization error in subsequent sections. In figure 4 it can be
seen, that all detectors converge to a maximum number of
positives. For the structured sequences, EBR and HESAFF
clearly detect the most correspondences, followed with dis-
tance by IBR, HARAFF and MSER. It is conspicuous that



on the textured sequences, the detection rate of HESAFF is
significantly lower compared to EBR and is even slightly
outperformed by the MSER-detector. Also, differences be-
tween IBR and HARAFF are more pronounced.

From the curve progressions, a first assessment of shape
accuracy is possible: With MSER for example, the num-
ber of positives with an overlap error below eo ≤ 0.2
has increased to more than 80% of all positives found for
eo = eo,max (for the structured sequences), indicating high
region accuracy. In the case of IBR on the contrary, only
slightly more than 50% of all positives have an overlap er-
ror of eo ≤ 0.2. Except for MSER, differences between
the detectors are comparatively small. For the textured se-
quences, gradients are generally weaker and notably, there
is almost no difference between IBR and EBR. In section
4, it will be shown that the actual localization errors gen-
erally coincide with these observations. Additionally, ta-
ble 1 shows the absolute number of positives and negatives
for each detector at eo = eo,max in all frames of each se-
quence. From the number of negatives, conclusions on re-
gion density and thus matching complexity can be drawn:
With EBR, the negatives exceed the positives by a factor of
5 on both structured and textured sequences, indicating high
density. With MSER on the contrary, region density is low-
est. Figure 2 gives a visual impression of region densities
for all detectors.

boat wall dvd
∑

graffiti carton frame
∑
,∅

EBR

∑
pos. 2036 5457 628 8121 2083 3428 419 5930∑
neg. 13062 26344 2173 41579 11062 19505 637 31204

neg.
pos. 6.42 4.83 3.46 5.12 5.31 5.69 1.52 5.26

IBR

∑
pos. 969 1042 567 2578 1325 1142 325 2792∑
neg. 1248 725 596 2569 1573 1273 274 3120

neg.
pos. 1.29 0.70 1.05 0.99 1.19 1.11 0.84 1.12

MSER

∑
pos. 1284 3127 348 4759 1056 1079 159 2294∑
neg. 473 1118 170 1761 705 547 55 1307

neg.
pos. 0.37 0.36 0.49 0.37 0.67 0.51 0.35 0.57

HARAFF

∑
pos. 643 499 334 1476 915 1327 405 2647∑
neg. 1183 736 560 2479 1685 2759 682 5126

neg.
pos. 1.84 1.47 1.68 1.68 1.84 2.08 1.68 1.94

HESAFF

∑
pos. 1644 1364 1510 4518 2044 3418 1109 6571∑
neg. 4796 2924 4340 12060 6267 9662 3047 18976

neg.
pos. 2.92 2.14 2.87 2.67 3.07 2.83 2.75 2.89

Table 1. Number of correspondences (positives,top row), rejected
candidates (negatives,middle row) and ratio of rejected and ac-
cepted candidates (bottom row) for the textured (left) and the
structured sequences (right) at eo = eo,max = 0.5.

4. Localization Accuracy
The area overlap error in equation 1 is influenced by four

different region properties: position of the region center, ra-
tio of minor and major axis, direction of the major axis (on
the interval 0 . . . π) and region scale s (square root of major
and minor axis). From eo alone, conclusions on the individ-
ual error of a specific property may not be drawn. To this
purpose, the position error has been additionally evaluated,
as it is of great interest in many applications (e.g. homogra-
phy estimation).

The position error is defined as the absolute euclidean
distance

ei,j
p (m,n) = ‖Hijpi,m − pj,n‖ (2)

where pi,m and pj,n denote the positions of the correspond-
ing region centers. As with eo, both frame and region in-
dices will be omitted for brevity.

4.1. Overlap-based correspondences

In this section, region correspondence assignment is
based on the area overlap error as described in section
3. Therefore, the resulting evaluation of ep and eo repre-
sents only the theoretically achievable detector accuracy, as
for real matching applications homographies Hij between
frames are usually not known and an overlap measure can
thus not be computed.

Figure 5 shows the distribution of ep over the n-
percentile for eo,max = 0.5: For the structured sequences,
approximately 80 % of all MSER-correspondences show
an error below ep ≤ 2 pel and only 5 % are worse than
ep = 4 pel. Between HARAFF and HESAFF, there are
almost no differences while IBR performs worst, closely
followed by EBR. For the textured sequences, ep is gener-
ally higher, but with almost identical relative ordering of the
detectors (only EBR now is slightly worse than IBR). For
MSER, 80 % of all correspondences show an error below
ep ≤ 3 pel. For higher percentiles, ep is significantly higher
than for the structured sequences. In figure 6, the region
overlap error eo over the n-percentile for eo,max = 0.5 is
shown. Again, MSER shows the highest accuracy, with an
error below eo ≤ 0.05 for 80 % of all correspondences on
the structured sequences. The other detectors may be classi-
fied into two groups: HARAFF/IBR show the worst perfor-
mance, with 50 % of all correspondences above eo ≥ 0.05.
The second group, HESAFF/EBR, is slightly better but still
less accurate than MSER. In analogy to ep, the overlap er-
ror for the textured sequences is generally higher than for
the structured sequences. Notably, differences between the
detectors are much less pronounced.

4.2. Accuracy as a function of scale

Considering a small circular region of scale s = 10 pel
and a correspondence with eo = 0.5 as illustrated in fig-
ure 7, the resulting position error is at ep = 5 pel. For a
larger region with s = 40 pel and the same overlap error,
the position error attains ep = 20 pel however. Thus, a
detector that produces mainly large regions is in principle
more prone to larger position errors. For better compara-
bility among different detectors, ep could be normalized on
region scale. However, this has not been done in the con-
text of this evaluation, as information on the true error can
be used more effectively as a decision criterion with regard
to a specific target application. In figure 8, the distribution
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Figure 5. Distribution of the position error ep.
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Figure 6. Distribution of the region overlap error eo.

of region scales is shown for each detector. While IBR,
MSER, HARAFF and HESAFF are very similar with more
than 80 % of all regions below s = 30 pel, EBR provides
larger regions with more than 50 % above s = 30 pel.

eo=0.5

e p=20, s=40 e p=10, s=20 e p=5, s=10

Figure 7. Influence of region scale s on position error ep in [pel].

Notably, although EBR-regions are generally larger than
IBR-regions, the position errors for both detectors are very
similar. Also, ep is significantly lower for MSER than
for IBR, while both methods detect regions of comparable
scales. Thus, the distribution of scales alone is not suffi-
cient in order to explain detector differences. Therefore,
the influence of region scale on both ep and eo has been
additionally evaluated statistically in figure 9. Here, dif-
ferent percentiles of both errors are shown as a function of
scale. For compactness, a separate evaluation of structured
and textured sequences has been spared.

While ep does increase linearly with scale for IBR,
EBR, HARAFF and HESAFF, it remains largely constant
for MSER. Strikingly, the latter exhibits a negative linear
dependency of eo instead: The median position error of
MSER-regions decreases from eo ≈ 0.1 at s = 10 to only
eo ≈ 0.01 at s = 60 pel. In conjunction with figure 8, the
distributions of ep and eo may be used as a pre-selection cri-
terion in order to improve localization accuracy: By remov-
ing all regions with s > 20 pel for HARAFF and HESAFF
for example, the median position error can be lowered to
ep ≈ 2 pel while preserving approximately 60% of all cor-
respondences.
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Figure 8. Distribution of region scales.

4.3. Descriptor-based correspondences

For the evaluation in section 4.1, regions have been as-
signed based on the area overlap error eo. If instead re-
gion descriptors are used as selection criterion, a different
set of correspondences results, generally with lower accu-
racy. Within this work, SIFT [4] has been used as a popular
representative for the class of histogram-based region de-
scriptors. The purpose of this section is two-fold: Firstly,
it is investigated in how far both methods differ from each
other with regard to set intersection and localization accu-
racy. Secondly, three measures for the mitigation of set
differences and for the removal of error-prone correspon-
dences are discussed. In order to reduce the number of fig-
ures within this publication, textured and structured image
sequences are not evaluated separately. For the same rea-
son, localization accuracy has been assessed in terms of eo

only.
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Figure 9. Dependency of region accuracy in terms of position error ep (top) and overlap error eo (top) on region scale s. The diagrams
show the median error (diamond markers), the 25- and 75-percentiles (solid lines) and the 5- and 95-percentiles (dashed lines), estimated
from all sequences (textured + structured).

In the following, the set of correspondences based on
eo is termed co and the set based on descriptor distance is
referred to as cd. Set differences are defined as cd,d = cd /∈
co and cd,o = co /∈ cd. Figure 10 illustrates the terminology.

cd , d cd∩co cd ,o

cocd
Figure 10. Set terminology.

Naturally, cd and co may only differ in the subset of cor-
respondences with multiple candidate regions: For regions
with only a single assignment candidate, descriptor-based
and overlap-based decisions are always identical. In fig-
ure 11, the distributions of eo for cd,d (solid line) and cd,o

(dashed line) are shown: With all detectors, eo is lower for
cd,o. The number of correspondences with multiple candi-
dates and the percentage of set differences cd,d

cd
are addition-

ally given in table 2. Although for MSER the difference be-
tween cd,d and cd,o in figure 11 is most significant, it affects
only 13 % of all correspondences in cd. For EBR, differ-
ences in eo between both sets are smaller, but the ratio cd,d

cd

is at 34 %, thus affecting a larger part of correspondences.
The same relative ordering of the detectors as in table 2 can
also be found in table 1 (section 3) in the ratio positives

negatives : In
the case of EBR for example, the number of negatives ex-
ceeds the positives by a factor of 5, indicating high region
density. As a consequence, there is an increased probabil-
ity for picking different correspondences cd, which explains
the high percentage of set differences. For MSER, there are
fewer negatives than positives and correspondingly, set dif-
ferences are lowest among all detectors.

In order to reduce cd,d and thus to improve localization
accuracy, several strategies for the removal of error-prone

IBR EBR MSER HARAFF HESAFF ∅∑
corresp. 5370 14051 7053 4123 11089 8337∑
cand. ≥ 2 2324 10471 1650 2512 8410 5073

cd,d

cd
24% 34% 13% 27% 30% 25.6%

Table 2. Number of all correspondences (top row), correspon-
dences with > 1 candidates (middle row) and percentage of set dif-
ferences between overlap-based and descriptor-based assignment
(bottom row).

correspondences are discussed in the following. In the case
of nearest-neighbor matching, two regions are assigned to
each other if their descriptors dm and dn are best matches
and the distance d between them is below a threshold:

d = min{dm,n|dm,n = ‖dm − dn‖ ≤ dmax} (3)

Figure 12a shows the distribution of descriptor distances d
for the difference set cd,d and for the intersection cd ∩ co.
It can be seen, that correspondences in cd,d have a signifi-
cantly higher descriptor distance. According to the distribu-
tion, a threshold of d = 0.30 has to be selected in order to
preserve 80 % of all correspondences in cd ∩ co while cd,d

is reduced by 50 %. For this setting, the expected region
overlap error will be below eo ≈ 0.2 according to figure
12d with a spread of σeo

≈ 0.05. According to table 3, the
new ratio cd,d

cd
after thresholding is at 14.2 % (compared to

25.6 % in table 2 when no threshold is used).
The second strategy is based on descriptor uniqueness,

where thresholding is applied to the ratio

ud =
‖dm − dn‖
‖dm − do‖

, ud ≤ umax (4)

with dn and do as the best and second-best matches to dm.
The resulting distributions of ud are shown in figure 12b. As
with nearest-neighbor matching, a linear dependency exists
between ud and eo. In order to preserve a similar num-
ber of correspondences, a threshold of ud = 0.75 was se-
lected. The expectable eo and the spread σeo

according to
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Figure 11. Distribution of region overlap errors eo for descriptor-based correspondences (cd,d,solid line) and overlap-based correspon-
dences (cd,o,dashed line).

figure 12e are almost identical to nearest-neighbor match-
ing, while the ratio cd,d

cd
is reduced to 14.6%.

Thirdly, a new strategy - shape uniqueness - is intro-
duced in this paper, which evaluates the geometrical over-
lap of neighboring regions. Using the definition of the area
overlap error from equation 1, shape uniqueness us is de-
fined as the minimum overlap between a region rm and its
neighbors within the same frame:

us = 1−min{ei,i
o (m,n)|ei,i

o (m,n) ≤ eo,max} , (5)

where both m,n ∈ {1...M} and M is the total number of
regions. The resulting distributions of us can be seen in fig-
ure 12c. In order to obtain a similar number of correspon-
dences as with nearest-neighbor matching and descriptor
uniqueness, a threshold of us = 0.75 was selected. While
eo is almost identical to before, the spread σeo

as seen in fig-
ure 12f is significantly lower, especially for small values of
us. This enables a more precise estimation of eo for a given
threshold on us. While the number of correspondences is
roughly equivalent to the other strategies, the ratio cd,d

cd
is

reduced to only 6.2%.

IBR EBR MSER HARAFF HESAFF ∅
d = 0.30∑

cand. corresp. 11059 86834 10121 11728 42125 32373∑
final corresp. 1272 6047 1264 1649 5804 3207

cd,d

cd
10% 18% 5% 18% 20% 14.2%

ud = 0.75∑
cand. corresp. 11059 86834 10121 11728 42125 32373∑
cand. ≥ 2 1565 6049 1308 1680 5557 3232

cd,d

cd
13% 18% 6% 18% 18% 14.6%

us = 0.75∑
cand. corresp. 8822 40013 8604 5676 15900 15803∑
cand. ≥ 2 1517 6216 1343 1633 5228 3187

cd,d

cd
5% 9% 2% 7% 8% 6.2%

Table 3. Number of candidate (top rows) and final correspondences
with > 1 assignment candidates (middle rows), percentage of set
differences between overlap-based and descriptor-based assign-
ment (bottom rows) for all three selection methods.

The major advantage of this new measure is the possibil-
ity to apply it to each image individually prior to matching.
Thereby, the number of correspondences and thus assign-
ment complexity can be significantly reduced. As seen in
table 3, this is especially advantageous in the case of high
region densities, as with HESAFF or EBR. For the latter,

86834 candidate correspondences had to be evaluated with
regard to descriptor similarity d or descriptor uniqueness ud

in order to obtain ≈ 6050 correspondences. By threshold-
ing all regions with shape uniqueness us ≤ 0.75 before the
assignment step, the number of candidate correspondences
could be reduced by almost 50% to 40013 while preserv-
ing a similar amount of final correspondences. For the three
sets of final correspondences with more than 2 candidates,
both ep and eo have been compared in figure 13. For all
detectors, the set based on ud shows the highest error both
in ep and in eo. Except for eo with EBR and MSER, shape
uniqueness provides the highest localization accuracy.

5. Summary and Outlook

In this work, five popular region detectors have been
compared with regard to localization accuracy in position
and shape. Based on carefully estimated ground truth ho-
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Figure 12. Left:Distribution of descriptor-based and shape-based
measures for the removal of error-prone correspondences. Right:
Dependencies between measures and region overlap error eo.
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Figure 13. Localization accuracy in position (top) and scale (bottom). The curves show the differences between descriptor distance d,
descriptor uniqueness ud and the newly introduced shape uniqueness us.

mographies, correspondences between frames have been as-
signed based on the area overlap error. The image set con-
sisted of 6 sequences categorized into two disjoint groups.

Concluding, the best detector with regard to both shape
and position accuracy on all 6 sequences is MSER, followed
with some distance by HESAFF. Considering only position
accuracy, EBR and IBR performed worst. With regard to
shape accuracy, EBR and HARAFF showed the highest er-
rors. Except for HESAFF and HARAFF, localization ac-
curacy in both position and shape was generally worse on
the textured sequences. Further, it has been shown that for
IBR, EBR, HARAFF and HESAFF, the position accuracy
linearly depends on region scale. While the latter remains
constant over scale for MSER, the overlap error has shown
significantly higher for smaller regions. Based on these re-
sults, scale can be used as a pre-selection criterion for the
removal of error-prone regions as a prerequisite to match-
ing.

When descriptor distance is used for candidate assign-
ment instead of area overlap, a different set of correspon-
dences results with lower accuracy. For EBR, the differ-
ences between both methods are most significant, closely
followed by HESAFF. It has been shown, that the percent-
age of set differences is related to region density, which is
highest for EBR and HESAFF and lowest for MSER. In or-
der to improve the accuracy of descriptor-based correspon-
dences, three measures for the removal of error-prone re-
gions have been discussed: While for both descriptor dis-
tance and descriptor uniqueness correspondences must be
known, the newly introduced measure shape uniqueness is
pre-computed on each image individually. Thus, the com-
plexity of the matching task could be reduced by more than
50% on the investigated sequences. While the number of fi-
nal correspondences is very similar for all three methods,
set differences and localization error are lowest if shape
uniqueness is used.

In future work, the affine salient region detector by Kadir
et al. [2] will be included into the evaluation. Also, differ-

ent region descriptors will be tested with regard to set differ-
ences such that a suitable descriptor may be chosen for each
detector. Further, it will be investigated if shape uniqueness
is a suitable measure for the automated adaptive configura-
tion of detector parameters in real-time applications.
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