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Abstract

This paper presents a robust algorithm to deblur two

consecutively captured blurred photos from camera shak-

ing. Previous dual motion deblurring algorithms succeeded

in small and simple motion blur and are very sensitive to

noise. We develop a robust feedback algorithm to perform

iteratively kernel estimation and image deblurring. In ker-

nel estimation, the stability and capability of the algorithm

is greatly improved by incorporating a robust cost function

and a set of kernel priors. The robust cost function serves

to reject outliers and noise, while kernel priors, including

sparseness and continuity, remove ambiguity and maintain

kernel shape. In deblurring, we propose a novel and robust

approach which takes two blurred images as input to infer

the clear image. The deblurred image is then used as feed-

back to refine kernel estimation. Our method can success-

fully estimate large and complex motion blurs which cannot

be handled by previous dual or single image motion deblur-

ring algorithms. The results are shown to be significantly

better than those of previous approaches.

1. Introduction

Motion deblurring is a highly ill-posed problem where

the observed blurred image B is the convolution of un-

known latent image I with an unknown blur kernel k, plus

noise n:

B = I ⊗ k + n.

Deblurring a single image is difficult when the kernel is un-

known. Blind deconvolution works only for low frequency

blur kernels. Image prior is used to estimate the blur kernel

from real images [5, 10]. However, these approaches are not

robust enough and sometimes heavy human interactions are

involved [8].

Methods using multiple images to perform blur esti-

mation have been proposed in [1, 4, 13, 15]. They seek
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Figure 1. Dual-image deblurring given two blurred images. Full

images are shown in Figure 8.

to utilize the correlation among blurred images, based on

the assumption that all blur observations come from the

same latent image. Promising results have been obtained

using multiple-image deblurring algorithms but they are

still limited to simple directional motion. Algorithm us-

ing blur/noisy image pair [18] yields good kernel estima-

tion and deblurring results, but it needs an exposure bracket-

ing function which is not available in many consumer level

cameras, thus limiting the application range.

In this paper, we propose a dual-image deblurring algo-

rithm which takes the advantage of burst capture capability

of both compact and DSLR cameras. In kernel estimation,

we propose a robust cost function to reject noise and out-

liers. We also apply a continuity prior together with sparse-

ness prior to maintain kernel shape and resolve ambiguity.

We will show that the estimation of blur kernels is greatly

improved. After the motion kernels have been estimated,

we propose a novel deblurring algorithm, which uses two

blurred images to produce a clear image. The deblurring

algorithm is robust to both kernel noise and image noise.

It also greatly suppresses ringing artifacts while preserving

image details. The estimation of blur kernels are further

refined given the deblurred image in the iterative feedback

procedure.

Because the proposed dual-image kernel estimation and

dual-image deblurring modules are both robust, their com-

bination will compensate each other to improve the accu-

racy. The feedback iteration robustly corrects estimation

errors and gradually recovers image and kernel details. We

will show by synthetic and real examples that the our ap-

proach greatly outperform previous approaches.
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This paper is organized as follows: We start in Section 2

by reviewing and analyzing previous dual image deblurring

framework [13]. After we have analyzed the limitations of

previous work, we present the robust kernel estimation al-

gorithm in Section 3. We then describe the dual-image de-

blurring algorithm in Section 4. The feedback approach is

then presented in Section 5 and our results are shown in

Section 6. This paper is concluded in Section 7.

2. Analysis of Previous Work

In this section we briefly review and analyze previous

dual image kernel estimation algorithm [13]. Assuming the

blurring process for two observations B1 and B2 can be

written as follows:

B1 = I ⊗ k1 + n1, B2 = I ⊗ k2 + n2, (1)

where I is the latent clear image. k1,k2 are two motion blur

kernels to be solved by minimizing the following energy

function:

E(k1,k2) = Ed(k1,k2) + α (Ereg(k1) + Ereg(k2)) , (2)

where the data energy

Ed(k1,k2) = ‖B1 ⊗ k2 − B2 ⊗ k1‖
2
,

and regularization Ereg(ki) = ‖ki‖
2

are both quadratic.

Although good results have been shown in previous papers,

this scheme is very limited.

First of all, quadratic cost function works well only when

the estimation noise is Gaussian. In the data energy, the es-

timation noise is non-Gaussian even we assume the original

observation noise is Gaussian. We substitute Equation 1

into the error term defined in the data energy and we com-

pute the estimation noise

nest = B1 ⊗ k2 − B2 ⊗ k1

= n1 ⊗ k2 − n2 ⊗ k1, (3)

where it can be easily seen that the actual estimation noise

associated with the blur process is highly non-Gaussian.

The second limitation of the formulation is that the solu-

tion is ambiguous. Suppose (k1,k2) is the correct solution,

then all motion kernel pairs (k1 ⊗ k
′,k2 ⊗ k

′) also mini-

mize the data energy Ed as long as the common blur kernel

k
′ is non-negative. Although the regularity term Ereg helps

to smooth kernel values in order to reduce noise, it does

not help to resolve the ambiguity, because convolving one

common kernel k′ may even reduce Ereg while keeping Ed

unchanged.

The reason why [4, 13] achieve good results despite the

limitations we describe above is that they mainly deal with

directional motion, which is relatively simple and restrains

k1

k2

k1

k2

(a) (b) (c) (d) (e)

Figure 2. Kernel estimation under two pairs of synthetic motion.

(a) Clear image. (b) Two pairs of ground truth kernels. (c)–(e)

Estimation results at different noise levels. (c) σ = 0.0001. (d)

σ = 0.001. (e) σ = 0.01. We assume the range of image intensity

to be [0, 1].

the ambiguity. We will show, by synthetic examples, that

line motion can be easily resolved in noise-free situation.

But this method is not robust when there exists observation

noise, or the motion blur is complex.

As shown in the first two rows of Figure 2(c), the es-

timated line motion are close to the ground truth. If we

use realistic complex blur kernels (resized from [5]) to

synthesize motion blur, the results are very ambiguous as

shown in the third and fourth rows. Furthermore, if noise

n1, n2 ∼ N(0, σ2) is added to the observations B1 and B2,

the estimation fails quickly when the noise level increases.

We analyze the reason why traditional approaches are

adversely affected by noise, by examining the quadratic

data energy of Equation 2 which is equivalent to E(k) =

σ 0.0001 0.0005 0.001 0.005 0.01 0.02

e 0.0362 0.0560 0.1176 2.068 8.168 32.81

Table 1. The minimum eigenvalue e of AT A+α2I increases as the

noise level σ increases. We use the image and simple line motion

kernel in Figure 2 and set α2 = 0.03.

k
T (AT A + α2I)kT where A = [A2,−A1] is the combi-

nation of Toeplitz matrices and k = [k1,k2]. Ideally, the

solution is the eigenvector (with a scale/shift) correspond-

ing to the minimum eigenvalue which ideally equals to α2.

We compute the minimum eigenvalue of matrix AT A+α2I

at different noise levels. It can be seen in Table 2, with

the increase of noise level, the minimum eigenvalue also in-

creases. In other words, the existence of noise affects the

optimality of the correct solution, that is, making the esti-

mation very vulnerable to local minima, as shown in Fig-

ure 2.



3. Robust Kernel Estimation

Observation noise and outliers are important issues in

motion deblurring when we deal with real-world images.

In this section, we introduce a robust approach to estimate

blur kernels. We propose to use a robust cost function as the

estimator, which effectively rejects noise and outliers. Be-

sides incorporating kernel sparseness prior to resolve ambi-

guity, we also propose a kernel continuity prior to increase

the estimation robustness.

3.1. Robust Cost Function

We have shown that the quadratic cost function is not ro-

bust to non-Gaussian noise and we propose to use a more

robust cost function. Robust statistics has been applied to a

number of vision problems [2, 6, 9], where robust estima-

tors has been proposed which are less sensitive to noise and

outliers. In this work, we use the Lorentzian estimator [3]:

ρ(r) = log

(

1 +
1

2

(r

ε

)2
)

. (4)

The quadratic cost function and the robust cost function

are compared in Figure 3. When the error is small, the cost

of robust estimator grows faster than quadratic, and when

the error is large, it increases at a pace slower than linear.
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Figure 3. Comparing the quadratic and Lorentzian cost functions

and their derivative functions. (a) Quadratic. (b) Lorentzian.

We then define the data energy of the dual deblur prob-

lem as follows:

Ed(k1,k2) =

∫

Ω

ρ(B1 ⊗ k2 − B2 ⊗ k1)dΩ, (5)

where ρ(·) is the robust cost function defined above.

In our implementation, we use an iterative reweighted

least square (IRLS) approach to approximate the robust cost

function. The residual comes from the data energy r = Ak.

We define the diagonal reweighting matrix W with ele-

ments

wii =
2

2ε2 + r2
i

. (6)

The reweighted data energy now becomes Ed(k) =
k

T AT WAk. Signals which are predicted accurately will be

given larger weights in the next iteration, while the weights

of outliers will be reduced. This procedure effectively over-

comes noise and outliers, and will be evaluated in Sec-

tion 3.3.

3.2. Kernel Prior: Sparseness and Continuity

While the robust cost function improves the data energy

in estimating blur kernel, we should also impose better ker-

nel regularities in kernel estimation. It is well known that

the kernel should be sparse, i.e., there are only a few large

values in the kernel, while most values are zero. The sparse-

ness prior, as described in [5], can be formulated by fitting

a mixture of exponential distributions on the kernel values:

p(kj) ∝
∑

m

wmλme−λmkj

, 0 < kj < 1 (7)

and the sparseness energy defined on kernel ki can be writ-

ten as:

Es(ki) = −α
∑

j

(log p(kj
i )). (8)

The sparseness prior effectively prevents the kernel from

being too smooth and can be implemented by IRLS using

similar techniques in [11]. However, another problem arises

when using sparseness prior: the estimated kernel some-

times becomes too sparse with only a few isolated dots, as

shown in Figure 4.

One important observation of the motion blur is that the

motion is continuous, which reflects the fact that the CCD

sensors are continuously charged during camera shaking.

It is therefore desirable that the value of the blur kernel is

spatially smooth.

We propose a kernel continuity prior to constrain the

spatial smoothness of kernel in shape. It is defined by the

anisotropic diffusion tensor where we treat the kernel k as

a 2D image,

D =
∇k

⊥∇k
⊥

T

‖∇k‖
, (9)

where ∇k
⊥ is the vector perpendicular to the local gradient

∇k. The energy which regularizes the kernel continuity is

thus defined as:

Ec(k) =

∫

Ω

∇k
T
D(∇k)∇kdΩ. (10)

Note that it differs from the regularization term Ereg(k),
which only smoothes the values of the kernel elements. The

anisotropic diffusion tensor has a nice property, where the

amount of diffusion depends on local geometry. As de-

scribed in [16, 17], the diffusion can be implemented by

a local 2D Gaussian convolution at each iteration. The size

and orientation of Gaussian convolution are adaptive to lo-

cal structure of the blur kernel at the current iteration.

The total energy of kernel estimation is summarized as:

E(k1,k2) = Ed(k1,k2) +

2
∑

i=1

(Es(ki) + Ec(ki)), (11)

and it is minimized by iteratively applying the conjugate

gradient updates for the data and sparseness energy and

the anisotropic diffusion. This process converges usually

within 50 iterations.



3.3. Evaluation

We summarize this section by evaluating the proposed

kernel estimation approach. As shown in Figure 4. Using

sparseness prior with quadratic cost gives good estimation

at medium noise level but fails at higher noise level. Com-

bining the robust cost function and kernel continuity prior

with sparseness, kernels can be well estimated at very high

noise level.

σ = 0.01 0.03 0.03 0.03 0.03 0.03

(a) (b) (c) (d) (e)

Figure 4. Evaluation against noise. (a) Using sparseness prior and

quadratic cost function, at two different noise levels. (b) and (c)

Estimation using robust cost function, sparseness and continuity

priors. Please refer to Figure 2 for the ground truth kernels. (d)

and (e) Noisy patches cropped from the grayscale blurred images.

We further test the robust data energy against outliers.

We occlude the clear image with two different occluders

before applying motion blur, as shown in Figure 5. The

proposed kernel estimation algorithm automatically down-

grades the weight of outliers thanks to the robust cost func-

tion. As shown by the estimated kernels, the proposed ro-

bust kernel estimation algorithm is not sensitive to outliers.

(a) (b) (c) (d)

Figure 5. Robust outlier rejection. (a) Two blurred images are oc-

cluded differently. (b) Weight map of the second IRLS iteration.

(c) Final weight map. (d) Estimated kernels.

4. Dual-image Deblurring

One of the most robust 2D deconvolution techniques is

the Richardson-Lucy (RL) algorithm [12, 14], which com-

putes the maximum likelihood estimate of the clear im-

age. However, it usually generates ringing artifacts in the

deblurred image. In [11], a deconvolution algorithm us-

ing natural image prior is introduced to reduce ringing ar-

tifacts providing accurate blur kernel. The blurred/noisy

approach [18] deblurs image using gain controlled RL al-

gorithm to suppress ringing. Because we take two blurred

images as input, our approach is different.

We use the estimated blur kernels together with two

blurred images to reconstruct the clear image. In this dual-

image deblurring algorithm, a deconvolution energy is de-

fined:

E(I) = ρ1(I ⊗ k1 − B1) + ρ2(I ⊗ k2 − B2) + Es(I), (12)

where Es(I) is the sparseness prior of image gradients as

used in [11]. One important advantage of our approach is

that we make use of the strong constraint that the deblurred

image should be consistent with both blurred observations.

However, there might exist outliers or inconsistence be-

tween two images. In order to deal with this, we design

the correlated robust cost functions ρ1(·), ρ2(·) which have

similar property as that we used in kernel estimation.

In dual-image deblurring, outliers are the set of pixels

inconsistent between two blurred images, such as the two

artificially added birds in Figure 5. We should first identify

outliers and avoid inconsistent solution by selecting pixels

to deblur from only one blurred image at these locations.

We implement the robust cost functions by reweighted least

square and correlate the weighting matrices W and W ′. We

rewrite Equation 12 as follows:

E(I) = ‖W (I ⊗ k1 − B1)‖
2+‖W ′(I ⊗ k2 − B2)‖

2
+Es(I).

We then define the residuals and uncorrelated weights:

r = I ⊗ k1 − B1, vi =
2

2ε2 + ri
2

r′ = I ⊗ k2 − B2, v′i =
2

2ε2 + r′i
2
. (13)

The correlated reweight matrix W and W ′ are diagonal with

elements:

wii =

{ vi

vi+v′

i

, vi ≥ τ or v′i ≥ τ

P, vi < τ and v′i < τ
,

w′

ii = 1 − wii. (14)

The threshold τ is set to reject outliers. When the

weights v and v′ from either image is large, pixels from both

images are used to reconstruct the clear image. At locations

where the weights from both images are small, the algo-

rithm switches to single image deconvolution. P = {0, 1}
is a predefined indicator to decide which image the algo-

rithm relies on when outlier/inconsistence is detected.

We use the blurred images and estimated kernels from

Figure 5 to perform deblurring. As shown in Figure 6,

our algorithm improves significantly over single-image RL

method [12] and algorithm using sparseness prior [11].



They exhibit either visible ringing artifacts, or loss of de-

tails. On the contrary, there are much fewer artifacts and

details are well retained in our result. We also compute the

PSNRs of the deblurred images, and the dual-image ap-

proach has much higher PSNR than other two methods.

Single image RL Single w/ prior Dual-image w/ prior

(a) 26.14dB (b) 30.30dB (c) 32.64dB

W/O rejection With outlier rejection Ground truth

(d) (e) (f)

Figure 6. Deblurring synthetic images. (a)-(c) compare deblurring

result with previous approaches. The second row shows the resid-

ual comparing to the ground truth. (d)-(f) show the effectiveness

of dual-image deblurring with outlier rejection.

5. Robust Feedback Algorithm for Joint Ker-

nel Estimation and Image Deblurring

We have presented robust kernel estimation and deblur-

ring algorithms in previous sections. As we have demon-

strated, our dual-image deblurring algorithm produces good

results even when the estimated kernels are not perfectly

accurate, because it can correct errors by enforcing consis-

tence between two observations. We believe that the priors

used in kernel estimation and those used in image deblur-

ring provide different information and the deblurred image

can be used to help the kernel estimation. In this section,

we present a novel feedback approach to iteratively refine

the kernel estimation as well as the deblurred images.

After we have obtained the clear image I from Section 4,

we feed it back to the kernel estimation step, where a feed-

back energy is defined as:

Ef (ki) =

∫

Ω

ρ(I ⊗ ki − Bi)dΩ. (15)

(a) 32.64dB (b) 35.39dB

Figure 7. Deblurred result before and after feedback. The second

row shows the residual comparing to the ground truth.

We use the robust cost function again, because it can also

account for inaccurately estimated pixels values in the de-

blurred image I which can be suppressed as outliers.

The feedback energy is combined with the original data

energy and kernel priors. Now we write the kernel estima-

tion energy as:

E(k1,k2) = Ed(k1,k2) +
∑

i
Ef (ki)

+
∑

i
(αsEs(ki) + αcEc(ki)), i = 1, 2. (16)

We now summarize the proposed feedback approach as

in Algorithm 1.

Algorithm 1 Feedback Approach

Step 1: Initial kernel estimation using two blurred images.

Step 2: Deblurring using two images and estimated kernels.

Step 3: Kernel refinement.

Repeat Step 2 and 3 until convergence.
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To illustrate the effectiveness of the feedback algorithm,

we compare the close-up views of the deblurred results be-

fore and after executing the feedback iterations. The visual



(a) (b) (c) (d)

Figure 8. Deblurring MAP photos. (a) Two blurred inputs. (b) Deblurred results of (a), using single image kernel estimation [5] and

RL deblurring algorithm. (c) Deblurred image using the proposed approach. (d) Top: estimated kernels from two blurred images in (a)

respectively using single image kernel estimation. Bottom: estimated kernels using proposed approach. Kernel size is 19 by 19.

(a) (b) (c)

Figure 9. Comparing deblurring algorithms using the estimated kernels from our approach. (a) Single image deblurring results using RL

algorithm. (b) Single image deblurring results using image priors [11]. (c) Dual-image deblurring results.

artifacts are further reduced after feedback. The increasing

PSNR indicates that it improves the image accuracy as well

as the kernel accuracy. We will show in Section 6, where the

feedback approach refines kernel estimation and deblurring

for very challenging real example.

6. Experiments

We have tested our algorithm on synthetic data and now

we carry out experiments on a variety of real objects. The

photos were taken by consecutive shooting at the same ex-

posure time. We interactively align the blurred images us-

ing Photoshop [7] to rectify rotation and large translation

between image pair.

The first example is MAP shown in Figure 8. We com-

pare kernel estimation with single image algorithm. Two

blur kernels are independently estimated as described in [5].

We then deblur the two input images using the RL algo-

rithm. We can see that the single image approach estimates

reasonable kernels but they are not accurate enough. The

kernels estimated from the proposed approach are much

more accurate as shown in the figure. The deblurred image

from our dual-image deblurring algorithm is much better

than that from the single image approach.

Using the MAP images, we also compare the deblurring

results using the proposed dual-image algorithm with pre-

vious single image algorithms, where the same kernels esti-

mated from our approach are used. From the close-up views

in Figure 9, we can see that RL algorithm still produces vis-

ible ringing artifacts, even if the kernel is very accurate. The



(a) (b)

(c) (d)

Figure 10. Deblurring WALL photos. (a) Two blurred inputs. (b) Left: estimated kernels using single image approach. Kernel size 51 by

51. Middle: estimated kernels using proposed approach, before feedback iterations. Right: refined kernels after feedback iterations. Kernel

size is 99 by 99. (c) Deblurred images using kernels estimated from single image approach and RL deblurring algorithm. The input images

are downsampled to 50% size. (d) Deblurred image using the proposed approach.

reason is that there exist image noise and loss of high fre-

quency detail in both image and kernel. Using image pri-

ors in single-image deblurring can reduce artifacts but this

method may oversmooth the image. Our result exhibits few

artifact and preserves details very well, as shown in Fig-

ure 9(c), because the proposed approach successfully makes

two input images complementary to each other.

We show one challenging example WALL in Figure 10.

The blurred images are very noisy and the motion blur is

quite large (50 ∼ 75 pixels). Because the noise model in [5]

may not afford to work at the original resolution, we down-

sample the input images to half resolution and run the sin-

gle image algorithm to estimate blur kernels, which is sug-

gested in the implementation of [5]. We tried our best to

choose image region and tune parameters but the output ker-

nel estimates seem not good enough. On the contrary, we

runs the proposed approach at the original resolution, and it

outputs much better kernels given two blurred images. Our

approach robustly estimates good kernels in the initial iter-

ation and they are refined after several feedback iterations.

Without the feedback iterations, the kernels are not accurate

enough. In the end, the dual-image approach successfully

outputs very clear image as shown in Figure 10.

We finally test our algorithm on another very challeng-

ing example FLOWER. There are several difficulties: the

input blurred photos have pixels closed to saturation; small

depth variation of scene; the camera position is not strictly

fixed. We show in Figure 11 that our approach can still out-

put good kernel estimation and deblurring results despite of

these difficulties. This example shows the robustness of the

proposed approach against outliers and noise, and it can be

applied to a wide range of real-world images.

The running time of our algorithm is linear with the im-

age size, kernel size and the number of iterations. For a

small size problem with image size 320X240, and kernel

size 25X25, each feedback iteration takes 3 minutes on a

Intel P4 3.2G desktop machine. It usually requires about

5 to 10 feedback iterations to converge depending on the

difficulty of the input data.



(a) (b) (c)

Figure 11. Deblurring FLOWER photos. (a) Two blurred inputs. (b) Deblurred result using the proposed approach. (c) Estimated kernels.

Kernel size is 49 by 49.

7. Conclusions

We have presented a novel dual-image motion deblurring

algorithm. The individual modules, which include robust

dual-image kernel estimation and dual-image deblurring al-

gorithms outperform previous approaches respectively. The

feedback approach proposed in this paper combines kernel

estimation and deblurring to iteratively refine the results.

We have shown by synthetic and real examples the effec-

tiveness of our approach. Future work may include speed-

ing up the system and investigating automatic alignment al-

gorithms combined with deblurring, so that our approach

can be applied to multiple input images and videos.
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