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Abstract

We introduce a new image representation that encom-
passes both the general layout of groups of quantized local
invariant descriptors as well as their relative frequency. A
graph of interest points clusters is constructed and we use
the matrix of commute times between the different nodes of
the graph to obtain a description of their relative arrange-
ment that is robust to large intra class variation.
The obtained high dimensional representation is then

embedded in a space of lower dimension by exploiting the
spectral properties of the graph made of the different im-
ages. Classification tasks can be performed in this embed-
ding space. We expose classification and labelling results
obtained on three different datasets, including the challeng-
ing PASCAL VOC2007 dataset. The performances of our
approach compare favorably with the standard bag of fea-
tures, which is a particular case of our representation.

1. Introduction
The progress that has been made in the field of content-

based image retrieval and object recognition during the last
decade is significant. However, a widely usable solution to
these problems is far from being established. Actual state-
of-the-art approaches do not scale well to large numbers
(tens of thousands) of object classes. One can think of a
number of professional end users, such as press agencies,
marketing companies or spatial data analysts, for whom
both the objects contained in the image, their layout as well
as their posture are of interest. Addressing all these chal-
lenges together is a difficult task.
Graph representations of visual data were quite popu-

lar at the early stages of statistical pattern recognition and
computer vision. Despite their ability to describe relatively
complex interactions between groups of data, represented
by nodes, with a variable degree of precision the problems

they raise worked against their favour and they were soon
largely abandoned. The pioneer work of [20] represents
shape parts of object models as graph nodes and their ar-
rangement as edge attributes, and notes the difficulty of
matching “networks” to one another. This is one of the
issues that spontaneously arise when we want to compare
graphs. In [10] node-to-node graph matching is modelled
as an energy minimisation discrete problem and is solved
by continuation. However, the O(N4) complexity of the
algorithm, when N is the number of nodes, makes it in-
tractable for real-life problems where N is of the order of
a few thousands. In fact, the practical issue of computa-
tional intractability is recurrent when graphs are involved
and a number of methods [14],[12] based on properties of
the transition matrix, of dimension N(N + 1)/2, however
successful on synthetic data, simply cannot be efficiently
implemented on standard actual computers.

From the point of view of the possible applications
to computer vision, some of the most promising results
in graph theory concern the spectral properties of graphs
[4],[5]. In [19], graph nodes are clustered by the Lapla-
cian cut and measures on these clusters are used to clas-
sify satellite images according to the degree of urbaniza-
tion. The relationship between the graph Laplacian and
the commute times between nodes [3] also opens interest-
ing perspectives, and applications to image segmentation,
video tracking [18] and dimensionality reduction [5],[16]
have been demonstrated.

The state of the art of image representation is dominated
by the bag of words paradigm [6],[8]: local features of in-
terest, also called keypoints, are extracted from the image
and quantized to form an histogram of codebook entries.
The resulting representation discards the information rela-
tive to the spatial organisation of the keypoints and is there-
fore very robust to intra-class variability. The discriminative
power of the interest points and the quality of the codebook
ensure the ability to differentiate image classes [17],[21].
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In [11], the spatial organization of the keypoints is taken
into account by constructing a multi-scale bag of keypoints
representation. The image representation provided by [1]
contains properties of local parts as well as the spatial re-
lations between parts. In these two examples results show
that incorporating a certain level of information concerning
the image layout in the representation can increase image
labelling performance.
We propose in this paper a new image representation

which contains information concerning both the appearance
and layout of the image content. This representation is
based on statistical properties of graphs of interest points. It
intrinsically encodes in a loose manner the spatial arrange-
ment of the interest points as well as their frequency rela-
tively to a descriptor vocabulary codebook. In this respect
our approach encompasses the bag of features representa-
tion.
The remainder of this paper is organized as follows: we

present graph commute times and the associated results for
dimensionality reduction in section 2. We then use these
results in two different contexts: first, we introduce a novel
high dimensional image descriptor based on commute times
between groups of keypoints in the image (Section 3). Se-
cond, we classify images according to their new represen-
tation by embedding a graph of images in a new space,
thereby assigning a descriptor of low dimension to each im-
age (Section 4). Finally, we present labelling results and
compare them to the state of the art in section 5, while dis-
cussion is the last section of our paper.

2. Commute times in a graph
Graph-based representations have been considered in the

context of computer vision: a practical way to describe the
structure of a graph is to use the matrix of distances between
graph nodes. Distances between nodes are frequently de-
fined as the length of the shortest path that separates them.
However, in problems where the presence or the accuracy
of graph nodes is uncertain, as it will be the case here, the
shortest path distance lacks robustness and does not provide
any statistical information about the structure of the graph.
In this respect the notion of commute times between graph
nodes is preferable.
Let us denote Γ = (V,E, Ω) a weighted graph where

V is the set of vertices, or nodes, indexed by i ∈ {1 . . . N},
E ⊂ V ×V is the set of weighted edges and Ω is theN×N
weighted symmetric adjacency matrix:

Ω(i, j) =

{
w(i, j) if (i, j) ∈ E
0 otherwise (1)

where w(i, j) = w(j, i) is the weight of edge (i, j). Given
1 ≤ i0 ≤ N , we define the random walk (Yn)0≤n started at
i0 as follows:

Y0 = i0, (2)

P [Yn+1 = j |Yn = i] =

{ wij

di
if (i, j) ∈ E

0 otherwise (3)

where di =
∑N

k=1 wik is the degree of node i. The hitting
time HT (i, j) is defined as the average number of steps of
the random walk (Yn) started at node i required to reach
node j for the first time, and the commute time is the “sym-
metrized” hitting time:

HT (i, j) = E [min {n : Yn = j} |Y0 = i] (4)
CT (i, j) = HT (i, j) + HT (j, i) (5)

Note that the commute time is a metric and that it can
take infinite values if the graph is not connected. It has
been shown ([3], see [18] for a summary) that the commute
time matrix CT can be expressed as a function of the eigen-
vectors and eigenvalues of the normalised Laplacian of the
graph which is defined as the N × N matrix L:

∀i, j ∈ [1, N ] , L(i, j) =

{
1 − wii

di
if i = j

−wij√
didj

if i �= j (6)

We denote (φ1, . . . φN ) the eigenvectors of L associated to
the eigenvalues (λ1, . . . λN ). We can demonstrate (see ap-
pendix A) that the eigenvalues of L are non-negative. We
consider the case when the graph is connected, i.e: for eve-
ry pair of nodes there exists a path that links them. In this
case, it has been proven (see [4]) that there is only one zero
eigenvalue. We can thus write 0 = λ1 < λ2 ≤ · · · ≤ λN . It
has been proved [3],[18] that the elements of the commute
time matrix can be expressed as follows:

∀i, j, CT (i, j) = vol

N∑
k=2

1

λk

(
φk(i)√

di

− φk(j)√
dj

)2

(7)

with vol =

N∑
k=1

dk (8)

where φk(i) denotes the ith coordinate of eigenvector k.
Thus, the only operation required to compute the com-

mute time matrix is the extraction of the eigenvectors and
eigenvalues of L. We will use these results in section 3 to
obtain a representation of the spatial layout of the interest
points in the image, and thus a representation of the image
structure.
As emphasized by [16], it is possible to view the eigen-

vectors (φk) of L as functions on the vertices of the
graph. In this light, equation 7 can thus be considered



as an L2 distance function between vectors of coordinates√
vol
di

(
φ2(i)√

λ2
. . . φN (i)√

λN

)
. In equation 7 we can neglect the

terms corresponding to high eigenvalues (low values of 1
λk
)

and obtain an embedding of the graph nodes in a space of
arbitrary dimension inferior to N . The sharper the increase
of the sequence (λk)1<k≤N the better the approximation.
In section 4 we will apply this method to the dimension-

ality reduction of the image representation.

3. Image representation
Our image representation consists in computing proper-

ties of a graph built on interest points of the image; interest
points are first collected in the image to constitute the set
of nodes of what we call a “feature graph”. Then the cor-
responding “collapsed graph” is built by associating each
node of the feature graph to an entry of a descriptor code-
book. Finally the symmetric matrix of commute times be-
tween the nodes of this collapsed graph is computed to ob-
tain the final image representation which encodes both the
relative frequency of the codebook entries to which the fea-
tures are associated, as in the bag of features representation,
as well as their spatial proximity, in a sense that will be de-
fined.

3.1. Keypoints detection and description

Here, the selection of the keypoint detection and descrip-
tion strategy is directly linked to the nature of the investi-
gated data, and not to the algorithm itself. All possible com-
binations of feature detectors and descriptors can be used in
the context of our approach, as long as it is possible to com-
pute a distance between descriptors and to create a descrip-
tor codebook i.e: a quantization of the descriptor space. In
particular, the selection of the invariances (rotation, scale,
affine, illumination, etc.) to which the detectors and de-
scriptors are subject should be investigated in detail. To this
end we forward the reader to work dedicated to comparing
the performances of various feature detectors and descrip-
tors [13],[15].
In each image a variable number N of features

(Xi)1≤i≤N is collected. We define these features as:
∀i,Xi = (xi, yi, σi, Di), where (xi, yi) is the feature po-
sition in the image, σi its scale and Di its descriptor vector.
Moreover, we denote by ki the index of the codebook en-
try associated to Di: ki = argmin1≤k≤K (||Qk − Di||),
where (Qk)1≤k≤K is our codebook.

3.2. Feature graph

We want to arrange the set of interest points extracted
from the image in a graph that will preserve their general
layout, the “feature graph”. More precisely, we want to
strongly connect nodes that are likely to belong to the same

object. To this end, we consider that features belonging to
the same object have close spatial positions as well as de-
scriptor vectors. We will therefore connect graph nodes for
which a certain distance Δ function of the spatial and con-
tent proximity will be small. We chose to define this dis-
tance Δ between features Xi and Xj as the weighted pro-
duct of their normalised spatial distance and their descriptor
distance:

Δ(Xi, Xj) = Δdesc(Xi, Xj)
αΔgeo(Xi, Xj)

1−α (9)
Δdesc(Xi, Xj) = ||Di − Dj || (10)

Δgeo(Xi, Xj) =
√

(xi−xj)2+(yi−yj)2

σiσj
(11)

Parameter α can be adjusted to construct feature graph that
depend more or less on the spatial layout and the descrip-
tors similarity. Its optimal values will depend on the image
classes (see section 5). Naturally the definition of Δdesc

depends on the type of features and could be chosen to be
a sum of squared differences or a χ2 distance for instance;
see [21] for a performance review of the different possible
distances. Moreover, we should note that the definition of
Δ proposed in this paper can be amended to encode other
types of distances between features as well.
The Δ distance1 will be used to determine the presence

of edges between graph nodes as well as their weight: we
connect each node to its M closest neighbours and each
edge weight is defined as w(i, j) = e

−Δ(Xi,Xj)

σ , where σ is
a normalisation factor chosen appropriately (in practice σ
depends only on the descriptor distance Δdesc). It should
be noted that each node is connected to at least M other
nodes: see figure 2 for an illustration.
A feature graph is represented in figure 1: the graph

nodes have been embedded in a space of dimension 3 ac-
cording to section 2. The difference in colour of the nodes
belonging to the same object (e.g: water) can be explained
by the fact that α �= 0.
The feature graph in itself can hardly be used to describe

the image for various reasons. In particular, the feature
graph representation is not unique because the order of the
interest points is arbitrary, so any representation based on
the transition matrix or the commute time matrix can be
ruled out. Also, if we decided to rely on the graph repre-
sentation to compare images we would have to use graph
matching techniques, such as [12], which quickly become
intractable when it comes to graphs containing thousands of
nodes, as it is the case here. Still, the information contained
in the commute times matrix is a powerful description of the
structure of the feature graph, thus of the image itself. Con-
sequently, we will base our representation on the matrix of
commute times of a normalised graph, in which each node
represents a cluster of similar features.

1Δ does not satisfy the conditions to be a metric, but for its conveniency
we shall nonetheless use the term “distance”.



Figure 1. The nodes of the feature graph are embedded in R
3 fol-

lowing the approach described in section 2, with α = 0.5 and
M = 10. They are represented here as (R,G,B) values. Parts of
the graph between which commute times are high have very differ-
ent colours. Graph edges are not shown for the sake of readability.
(best viewed in colours) [9]

3.3. Collapsed graph
The matrix of commute times of the feature graph cannot

be used as an image descriptor, but it is possible to compute
instead the matrix of commute times between groups of in-
terest points, where each group corresponds to a codebook
entry. In this perspective, we would compute the commute
times between the distributions of nodes θk, k ∈ [1,K],
with:

∀i ∈ [1, N ], θk(i) =

{
di

volk
if ki = k

0 otherwise
(12)

volk =

N∑
i=1

ki=k

di (13)

Given a random walk (Yn) started at a random node Y0

following distribution θk, we want to determine the average
number of steps required to reach a point of θk′ and come
back to θk for the first time. This comes down to computing
the hitting time:

HT (θk, θk′) = E [min {n : θk′(Yn) �= 0} |Y0 ∼ θk] (14)

The resolution of this problem with the Laplacian of the
graph is a difficult problem and, to our knowledge, there
exists no closed form solution that can be implemented in
a computationally feasible way. However, we can approx-
imate the commute times between distribution of nodes by
computing the commute times between the nodes of the col-
lapsed graph Γc. Γc is the graph that is obtained by group-
ing (“collapsing”) the nodes of Γ associated to the same
codebook entry into a single node (see figure 2). The col-
lapsed graph contains thus K nodes (where K is the size
of the codebook) and we define the weight ωkk′ of the edge
between nodes k, k′ as:

ωkk′ =
N∑

i=1
ki=k

N∑
j=1

kj=k′

wij (15)

Figure 2. Toy example of collapsed graph, with parameters N =

25,M = 2,K = 5. (best viewed in colours)

The idea underlying the collapsed graph is to describe
the proximity of image regions: how can we represent the
fact that roads frequently stretch through urban areas in
satellite images, or that water features often lie between
sand and sky features in pictures of coastal scenes? We
measure this notion of proximity by computing the com-
mute times between different groups of features, each group
containing features that were assigned to the same code-
book entry of the features vocabulary.
Once the collapsed graph has been built we compute the

commute times between each pair of nodes as described in
section 2. The hypothesis required to obtain result illus-
trated by equation 7 is that the graph (in our case the col-
lapsed graph) should be connected. If this is not the case, we
first compute the commute times between nodes belonging
to common connected components of the collapsed graph.
Then the commute times between nodes belonging to dif-
ferent connected components is set to infinity. Moreover,
the commute time from one node to itself is set to 0 if it is
present in the collapsed graph, and infinity otherwise.
Figure 3 shows the relationship between the commute

times computed in the collapsed graph and the experimental
commute times between the distribution of nodes associated
to the different codebook entries in the feature graph. The
correlation is not linear but suffices to justify our approxi-
mation
TheK ×K symmetric matrix CTc of commute times of

the collapsed graph is a representation of the image that we



Figure 3. Commute times in the collapsed graph as a function of
the empirically measured commute times between node groups in
the feature graph. Commute times measures can be acquired by
randomly walking on the graph.

normalise to obtain the final representation χ:

∀k, k′ ∈ [1,K] , χ(k, k′) = exp

(−CT (k, k′)
K

)
(16)

This normalisation is done in order to obtain a consistent
representation for which: χ(k, k′) = 0 if no feature is as-
sociated to the codebook entries k or k′; χ(k, k) = 1 if
codebook entry k exists in the collapsed graph.
Therefore, if the feature graph is entirely disconnected,

the matrix χ contains only zero values except on its diago-
nal, where χ(k, k) = 1 if at least one feature is assigned
to codebook entry k. In this particular case our image re-
presentation is equal to a binary bag of features. This will
allow us to compare our image representation to the bag of
features representation simply by changing the value of M
(Section 5).
It should be noted that despite its high dimensionality,

χ can be made memory-efficient by taking into account its
sparsity since in practice it often contains less than 10% of
non-zero values. We will nonetheless reduce the dimension-
ality of χ in order to proceed to the classification step.

4. Dimensionality reduction and image classifi-
cation
We apply the dimensionality reduction method described

in section 2 to a fully connected graph in which the nodes
are the image descriptors (χi) and the weight μij between
two nodes (i, j) is a function of the proximity of the image
descriptors:

∀i, j, μij = exp

(
−1

τ

K∑
p,q=1

|χi(p, q) − χj(p, q)|
χi(p, q) + χj(p, q)

)
(17)

where τ is a normalisation factor appropriately selected (for
instance the mean proximity between image descriptors).
The output of this step is a set of points in a low dimen-
sional space, each one of them corresponding to an image.
Of course, this dimensionality reduction method can be ap-
plied to any kind of high dimensional image representation
or data description.

5. Image classification and labelling results
We evaluate the quality of our image representation by

trying to complete classification and labelling tasks on three
different datasets. Each dataset is equally divided in a train-
ing set and a test set and performance is reported on the test
set only. The datasets are detailed below.
The high resolution satellite image dataset is com-

posed of 128 images containing roads and 103 images of
vegetation. The 60 cm panchromatic images were acquired
by satellite Quickbird in the area of Beijing, China.
The indoor scene dataset is a subset of the Fei-Fei &

Perona [8] dataset. It is composed of 930 images belonging
to one of four classes: bedroom, kitchen, living room and
office. The training and testing sets contain respectively 464
and 466 images. Each test image has to be classified in one
of the four classes.
The vehicle dataset is a subset of the PASCAL

VOC2007 classification challenge dataset [7]. It contains
1331 challenging images coming from the aeroplane, boat,
bicycle, bus, motorbike, and train classes: these images dis-
play a high intra class variability and heavy background
clutter. Object instance(s) can come from one or more
classes in each image.
In our experiments we use scale and rotation-invariant

SURF (Speeded Up Robust Features, [2]) of dimension 64.
The number of points extracted with this detector is typi-
cally of the order of 1000 − 2000. The features quantiza-
tion can be done in various ways [17] but we chose to use
simple k-means on the set of features collected in 10% of
the training images. Bag of features approaches have been
shown to be more efficient with codebook sizes of the order
of a thousand [17]; however, we have seen that if K is the
codebook size the dimension of the image descriptor will
be K(K + 1)/2. Thus a value of K = 500 seems to be
a good compromise between dimensionality and computa-
tional tractability.
The dimensionality of the representations is reduced to

20. Images are then assigned real valued predictions for
each class by summing one versus one linear SVM contri-
butions. In the classification task each image is assigned
to the class for which the prediction is highest. In the la-
belling task each image has a real valued prediction for each
class and receiver operator characteristic (ROC) curves can
be drawn by changing the threshold on the prediction val-
ues.



Figure 4. Sample images from the Fei-Fei & Perona indoor
scene classes dataset [8] and the vehicles subset of the PASCAL
VOC2007 challenge [7]

5.1. Parametric evaluation and comparisonwith the
bag of features

We first validate our approach by computing our im-
age representations on the high resolution satellite im-
age dataset. The parameters are assigned default values:
α = 0.5, M = 4. After the dimensionality reduction em-

bedding we can plot the first two coordinates of the repre-
sentation. As we can see (figure 5) the separation between
road images and vegetation images is sharp. In fact, the
images that lie at the border of the separation are ambigu-
ously or incorrectly annotated: they are either road images
containing a lot of vegetation or vegetation images contain-
ing relatively small roads or straight paths. Correct classifi-
cation rates are nonetheless very good: 93.20% and 97.30%
for the vegetation and road images respectively.

Figure 5. High resolution satellite image database: vegetation im-
ages (green squares) and road images (orange circles) after em-
bedding of the image representations in two dimensions.

The quantitative contribution of our approach can be
observed in the classification results of the indoor scene
dataset as a function of M , the minimum number of con-
nections per node in the feature graph (see figure 6). The
value M = 0 corresponds to a binary histogram of quan-
tized local descriptors, aka: the bag of features representa-
tion. As M is increased the feature graph becomes more
connected and the information due to the layout of the dif-
ferent groups of nodes gains greater importance in the ima-
ge representation (outside the diagonal of χ) relatively to
the histogram of quantized features (diagonal of χ). What
we observe is that an increase ofM causes variations in the
classification performances. These variations can be posi-
tive or negative, depending on the classes and the value of
M . This reveals two phenomena: first, it shows that tak-
ing into account the image layout can raise the ambiguity
between image classes that have similar bag of features re-
presentations (see bedroom and office classes). For the two
others (kitchen and living room) adding spatial information
only increases confusion: the content of these images is spa-
tially too chaotic and our image representation is an overkill
compared to the simple bag of features. Second, the extent



Class M = 0 M = 4

Aeroplane (126) 0.855 0.855
Bicycle (127) 0.722 0.743
Boat (100) 0.752 0.762
Bus (89) 0.722 0.726

Motorbike (125) 0.813 0.842
Train (134) 0.749 0.786

Table 1. Area under curve (AUC) scores of the vehicle classes from
the PASCAL VOC2007 challenge for M = 0 (binary bag of fea-
tures) andM = 4.

to which the proximity between image regions should be
taken into account varies between classes: a low value of
M means that only the interactions between regions that
are both spatially close and very similar will be integrated
into the image representation.
The influence of parameter α in the construction of the

feature graph can be seen on figure 6. A value of α = 1
means that connection between interest points will depend
only on the similarity of their descriptors: this leads to fea-
ture graphs containing several disconnected subgraphs in
which the most similar interest points tend to be grouped.
On the contrary, a value of α = 0means that only the spatial
organisation of the interest points will decide on the connec-
tions of the feature graph. Again, this quantitative compari-
son shows that capturing the information of the layout of the
interest points is not evenly important for all image classes.
Adjusting the α parameter can lead to substantial perfor-
mance gain but is not critical. For the kitchen class, these
measures confirm the previous observation that adding in-
formation about the spatial organisation in the image repre-
sentation is superfluous.
Finally we tested our approach on the challenging vehi-

cle classes of the PASCAL VOC2007 challenge. The ad-
dressed task is that of labelling, since objects coming from
different classes can be contained in each image. Our ap-
proach with parameters α = 0.5 andM = 4 compares well
with the binary bag of features: the area under curve (AUC)
of the ROC is increased by up to 3.7 points in the case of the
train class. Admittedly, this increase is not major: this is due
to the fact that our representation is better suited for image
classification than for labelling, as it cannot cope with the
localisation of objects in images.

6. Conclusions
In this paper we have presented a new compact, self-

contained representation of image content. It is based on
the commute times between groups of descriptors and en-
compasses both geometry and content. Such representation
adapts naturally to the observed image content and can be
used for indexing, retrieval or recognition. It can also be
adapted to specific tasks by properly choosing the interest

point detectors and descriptors, using a customised defini-
tion of the weights and the connections of the feature graph,
and setting appropriate values for the parameters α andM .
Understanding the relationship in a formal way between

the full and the collapsed graph in terms of commute times
is an ongoing research effort towards the solidification of
this new image representation. Such an action will lead to-
ward the representation of parts of images in the purpose of
completing object localisation tasks.

A. Spectrum of the normalised Laplacian ma-
trix

The normalised Laplacian L can be written as a function
of the un-normalised Laplacian L:

∀i, j, L(i, j) =

{
di − wii if i = j
−wij otherwise

(18)

L = T−1/2LT−1/2 (19)

Since L is symmetric its eigenvalues are real. More-
over, L is (weakly) diagonally dominant: ∀i, |L(i, i)| =∑

j �=i |L(i, j)|. Gershgorin’s circle theorem states that all
eigenvalues of L are non-negative and therefore L is posi-
tive semi-definite. Thus L is positive semi-definite as well
because the di are non-zero in a connected graph. We also
know that the eigenvalues of L are real because L is sym-
metric, so they are non-negative.
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M Bedroom Kitchen Liv.Ro. Office Average
(108) (105) (145) (108) (466)

0 66.2 56.67 72.66 60.00 64.63
1 74.54 43.33 66.44 49.30 59.14
2 73.61 48.57 70.93 60.93 64.20
3 72.69 48.10 69.20 63.72 63.98
4 71.30 49.05 71.97 64.19 64.85
5 72.69 49.52 70.93 61.86 64.41
6 72.22 48.57 70.93 61.86 64.09
7 72.69 50.00 70.59 62.33 64.52
8 72.69 47.62 70.93 62.79 64.20
9 72.22 49.05 71.28 61.86 64.31
10 67.13 50.00 68.51 57.21 61.40

α Bedroom Kitchen Liv.Ro. Office Average
(108) (105) (145) (108) (466)

0 72.22 46.19 68.17 62.79 62.91
0.1 71.76 48.57 69.55 62.79 63.77
0.2 72.22 48.57 69.90 61.86 63.77
0.3 70.37 48.10 69.90 61.86 63.23
0.4 71.30 50.00 69.90 61.86 63.88
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