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Abstract

This paper presents three novel methods that enable bi-
lateral filtering in constant time O(1) without sampling.
Constant time means that the computation time of the filter-
ing remains same even if the filter size becomes very large.
Our first method takes advantage of the integral histograms
to avoid the redundant operations for bilateral filters with
box spatial and arbitrary range kernels. For bilateral filters
constructed by polynomial range and arbitrary spatial fil-
ters, our second method provides a direct formulation by
using linear filters of image powers without any approx-
imation. Lastly, we show that Gaussian range and arbi-
trary spatial bilateral filters can be expressed by Taylor se-
ries as linear filter decompositions without any noticeable
degradation of filter response. All these methods drastically
decrease the computation time by cutting it down constant
times (e.g. to 0.06 seconds per 1MB image) while achiev-
ing very high PSNR’s over 45dB. In addition to the com-
putational advantages, our methods are straightforward to
implement.

1. Introduction

Fast realization of the edge preserving bilateral filter,
which is a non-linear filter imposed both in domain and
range, is important for many vision tasks. There are sev-
eral methods to decompose certain nonlinear filters into a
sum of separable one dimensional filters or cascaded rep-
resentations [1]. This can be done by using of either an
eigenvalue expansion of the 2D kernel [3] or application
of Singular Value Decomposition [2]. There are many ap-
proaches [4], [5] that aim to benefit from the parallel pro-
cessing platforms and reconfigurable hardware.

The bilateral filter was introduced by Tomasi et al. [6] as
a non-iterative means of smoothing images while retaining
edge detail. It involves a weighted convolution in which
the weight for each pixel depends not only on its distance
from the center pixel, but also its relative intensity. Elad [7]
showed that the Bayesian approach is also in the core of
the bilateral filter and described the bilateral filtering as a

single iteration of the diagonal normalized steepest descent
algorithm.

As nicely stated in [8], the fundamental property that
concerns us is the runtime per pixel, as a function of the
(spatial) filter size r. This corresponds to the performance
a user will experience while adjusting the filter size (or ker-
nel radius), and is the primary differentiating characteristic
between bilateral filtering algorithms.

Due to the joint spatial and range filtering, the bilateral
filters are computationally very demanding. For reference, a
brute-force implementation can calculate each output pixel
in O(r2) time and becomes unusably slow for even moder-
ate radii. The well known Photoshop c© CS2’s Surface Blur
implementation, which is a bilateral filter, exhibits O(r)
performance characteristic similar to Huang’s column-row
histograms used in median filters [9].

In their excellent benchmark paper, Paris and Du-
rand [10] analyzed accuracy in terms of bandwidth and sam-
pling, and derive criteria for downsampling in space and in-
tensity to accelerate the bilateral filter by extending an ear-
lier work on high dynamic range images [11]. Their method
approximates the bilateral by filtering subsampled copies of
the image with discrete intensity kernels, and recombining
the results using linear interpolation. In other words, this
method treats the intensity image as a 3D surface, applies
Gaussian smoothing to binary and intensity modulated sur-
face, divides them to determine the filtered intensity values
at the original surface location. It becomes faster as the size
increases due to the greater subsampling of the surface. The
exact output is dependent on the phase of the subsampling
grid and the discretization leads to further loss of precision
particularly on high dynamic range images. This algorithm
is dissected later in [12].

One of the fastest bilateral filter implementation whose
runtime converges to O(log r) was developed by Weiss [8]
using a hierarchy of partial distributed histograms using a
tier-based approach. Even though complexity has been low-
ered, simplicity has been lost due to filter size and opti-
mal histogram count specific implementation requirements.
This method is limited to rectangular spatial kernels and box
filters. Another concern is the imperfect frequency response
of their spatial box filter.
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Here, we describe a constant time bilateral filtering
method. To our knowledge, the presented O(1) algorithm
is the most efficient bilateral filter yet developed. This
means that it will perform better than one of higher com-
plexity as the kernel size increases. Given the trend to-
ward higher-resolution images, which will correspondingly
require higher filter kernel sizes, filtering in large kernels as
fast as the small ones makes the described algorithm future-
proof.

We construct an integral histogram and use the integral
histogram to find the bilateral convolution response of a
rectangular box filter with uniform domain kernel, where
the intensity differences can be weighted with any arbitrary
range function. The integral histogram enables computa-
tion of histograms of all possible kernels in a given image.
It takes advantage of the spatial positioning of data points
in a Cartesian coordinate system, and propagate an aggre-
gated function starting from an origin point and traversing
through the remaining points along a scan-line. Histograms
of image windows can be computed easily by using the inte-
gral histogram values at the corner points of those windows
without reconstructing a separate histogram for every single
one of them. For more generic Gaussian and polynomial
range functions on arbitrary domain kernels, we apply Tay-
lor series expansion of the corresponding norms. This sec-
ond method can use “any” spatial kernel for bilateral filter-
ing without increasing the complexity. We show that such
bilateral filters can be expressed in terms of spatial linear
filters applied on original image powers.

In the following section, we discuss the details of the
adaptation of the integral histogram and Taylor series ex-
pansion. Then, we give a comparison of the computational
complexity and present typical filtering results.

2. Bilateral Filtering
A filter f is a mapping defined in a d-dimensional Carte-

sian spaceRd. It assigns an m-dimensional response vector
y(p) = [y1, ..., ym] to each point p = [x1, ...xd] using the
given data I bounded within N1, ..., Nd and 0 ≤ xi < Ni.
Generally, only a small set of points within a region of sup-
port S is used to compute this response. The region of sup-
port, which is centered around the point p, is also called
as kernel. Without loss of generality, we consider the set
of filters that maps to a scalar value, i.e. m = 1 and
y(p) = y1. Even though we discuss single channel im-
age filtering (d = 2,m = 1), the method presented here can
be easily extended to higher dimensions, color images and
temporal video filtering.

A 2D image filter centered at the image point p applies
its coefficients f(k) to the values of the underlying image
points k+p in its kernel k = [kx, ky] ∈ S. For rectangular
kernels, the coordinate of the center point can be assigned
as the origin i.e. S : −r/2 ≤ kx, ky ≤ r/2 where r is the

Figure 1. Bilateral filter has spatial and range components.

filter size. In case the values of the coefficients depend only
on the spatial locations, the filter corresponds to a spatial
filter. If the filter can be represented by a linear operator,
e.g. as a matrix multiplication on its kernel, it is also called
as a linear filter. For instance, a 2D Gaussian smoothing
operator is a linear filter in which the coefficients’ values
change according to their spatial distances from the center
point. Given the above notation, the response of a spatial
filter can be expressed as

y(p) = κ−1
∑
k∈S

f(k)I(p + k) (1)

where κ =
∑

f(k) is a scalar term to avoid bias. Note that,
the above equation is same as the convolution of f and I .
For simplicity, the filter is often normalized;

∑
f(k) = 1.

Bilateral filters, on the other hand, combine both spatial
and range filtering. The coefficients of a range filter g(p,k)
vary according to the intensity differences between the cen-
ter and remaining points in the kernel instead of the spatial
distance. The range filter is a function of the intensity differ-
ence i.e. g(I(p)−I(p+k)). In other words, a bilateral filter
multiplies the intensity value of an image point in its kernel
S by the corresponding spatial filter coefficient f(k) and
also a range filter coefficient g(p,k). Thus, the response of
the bilateral filter is defined as

yb(p) = κ−1
b

∑
k∈S

f(k)I(p+k)g (I(p)− I(p+k)) (2)

where the normalizing term κb =
∑

f(k)g(I(p)−I(p+k))
is a scalar function of the intensity differences. As visible,
the range filter may have a different value at each image
point. Unlike the spatial filters, the normalizing term κb

is not constant either. An illustration of the spatial and bi-
lateral filters are given in Fig. 1. Due to the above range
filtering property, the bilateral filter is not a linear filter and
its response cannot be obtained by simple matrix multipli-
cations. This is the main reason why it is computationally
very demanding.



2.1. O(1) Bilateral with Constant Spatial Filters

For now, lets assume we already have the intensity his-
togram hp extracted for the current kernel S at an image
point p. In Section 2.4, we explain how to obtain such his-
tograms of all possible spatial kernels in constant time.

We can rewrite Eq. 2 for a bilateral filter that have a con-
stant spatial filter f(k) = c (box filter) and an arbitrary
range filter g(p,k), which we call as ArBs bilateral, as

yb(p) = cκ−1
b

∑
k∈S

I(p+k)g (I(p)− I(p+k)) (3)

and κb =
∑

g(I(p)−I(p + k)). Fortunately, this response
can be directly computed from the histogram h of the cor-
responding kernel as

yb(p) = cκ−1
b

∑
i

hp(i)g(I(p)− i) (4)

and
κ−1

b =
∑

i

hp(i) (5)

where the range function is accumulated over the bin val-
ues instead of the direct intensity differences. As shown,
this exact formulation does not depend on the kernel size r.
Even better, all of the scalar terms can be computed sepa-
rately in constant time from the integral histogram [13]. In
addition, any arbitrary range filter g including Gaussian and
more complicated functions can be imposed.

Weiss’s method [8] give the cost of the same ArBs bilat-
eral filter in O(log r). Here, our method decreases this cost
down to a constant time O(1). This is the fastest bilateral
filter that reported so far. Besides, his algorithm is limited
to r≤127 filters. Our filter size is not limited (up to image
size).

2.2. O(1) Bilateral with Arbitrary Spatial Filters

The integral histogram based formulation cannot be ap-
plied to the bilateral filters that have non-constant spatial
filters. Lets first consider a polynomial range filter that has
the following definition

g(p + k) = [1− (I(p)− I(p+k))2]n (6)

where n is the order of the polynomial. For n = 1, we can
obtain the corresponding bilateral filter, which we call as
PrAs, from Eq. 2 as

yb(p) = κ−1
b

[∑
f(k)I(p+k)−I2(p)

∑
f(k)I(p+k)

+2I(p)
∑

f(k)I2(p+k)−
∑

f(k)I3(p+k)
]

(7)

By denoting the power images as I1 =I(p), I2 =I(p)I(p),
etc. and their corresponding linear filter responses y1 =

∑
f(k)I(p+k), y2 =

∑
f(k)I2(p+k), etc., the above

Eq. 7 can be rewritten as

yb = κ−1
b

[
(1−I2)y1+2Iy2−y3

]
(8)

where we dropped the index p from the right-side of the
equation for simplicity. Similarly, the normalizing term can
be found as κb = 1−I2+2Iy1−y2. Note that, the spatial
filter f is not constrained and any desired filter function can
be chosen.

For quadratic polynomial range function (n = 2), PrAs
bilateral filter of Eq. 2 can be written in the same manner as

yb = κ−1
b

[
(1−2I2+I4)y1+4(I−I3)y2

+ (6I2−2)y3−4Iy4+y5

]
(9)

where κ−1
b =1−2I2+I4+4(I−I3)y1+[6I2−2)y2−4Iy3+

y4. Equations 8, 9 give the corresponding bilateral filters
with polynomial range filters in terms of the spatial filters
without any approximations.

Another common type of bilateral filters, GrAs, use
Gaussian range filters for additional smoothness. We ap-
ply the Taylor series expansion of the Gaussian function to
approximate such bilateral filters. This method again does
not have any restriction on the spatial filter. Gaussian filters
are differentiable and can be expressed in terms of linear
transforms. The Gaussian range filter is given by

exp
(
−α[I(k+p)− I(p)]2

)
. (10)

Above equation can be rewritten as

exp(−αI2(p)) exp
(
−α[I2(p+k)−2I(p)I(p+k)]

)
(11)

where the first term exp(−αI2(p)) does not depend on the
range kernel. This term also appears in the normalizing
term, thus, it does not have to be computed separately.

By applying the Taylor expansion to Eq. 11, we obtain
the bilateral filter expansion up to the second order deriva-
tives as

yb ≈ κ−1
b

[
y1+2αIy2+α(2αI2−1)y3

−2α2Iy4+0.5α2y5

]
(12)

and, up to third order derivatives as

yb ≈ κ−1
b

[
y1+2αIy2+(2α2I2−α)y3−2α2(I− 2

3
αI3)y4

+α2(0.5−2I2α)y5 + α3Iy6−(α3/6)y7

]
(13)

where the normalizing terms have similar forms containing
the same terms.

Therefore, a bilateral filter can be interpreted as the
weighted sum of the spatial filtered responses of the powers
of the original image.



2.3. Constant Time Spatial Filters

There are various ways of computing the 2D spatial lin-
ear filter responses. The box filter, also known as ‘mov-
ing average’ is a simple linear filter with a rectangular ker-
nel where all kernel coefficients are equal. This filter can
be easily computed in constant time O(1) by using an in-
tegral image. An integral image IΣ is the accumulated
sum of original image intensities. The sum of any re-
gion

∑
I(p) can be found by only three arithmetic oper-

ations involving the values of the integral image at the cor-
ners p++,p−+,p+−,p−− of the region, e.g.

∑
I(p) =

IΣ(p++)−IΣ(p+−)−IΣ(p−+)+IΣ(p−−).
The ramp filters, e.g. triangular filter or Bartlett window

can be constructed as a superposition of two box filters with
the same size. The computational complexity of a ramp
filter is twice the complexity of a box filter, thus they can be
applied in constant time O(1), and the results are visually
very similar to Gaussian filter.

The response of the polynomial filters f(k) = 1 − kn

can also be computed in constant time O(1) using a set of
integral images. For square distance norm, we get

y1(p) =
∑
k∈S

f(k)I(p+k) =
∑
z∈Sz

f(z−p)I(z)

=
∑
z∈Sz

(1−(z−p)2)I(z)

=
[
1−p2

] ∑
z∈Sz

I(z)+2p
∑
z∈Sz

zI(z)−
∑
z∈Sz

z2I(z)

where Sz is the new kernel around z−p. The sums
∑

I(z),∑
zI(z),

∑
z2I(z) can be computed directly from the cor-

responding integral images. Since these sums require only
fixed number of operations at the corner points of the rect-
angular regions in integral images, the total computation
time is independent from the region size. The complexity
is O(1). This is valid for bilinear interpolating filters too.

Several other linear spatial filters can be computed by
FFT in constant time in terms of the filter size [14]. Per-
point computation complexity of the underlying FFT algo-
rithms depends only on the padded image size. For each big
enough input image size, starting from certain convolution
kernel size, FFT-based convolution is more advantageous
than a straightforward implementation. Gaussian filter on
a square kernel is separable, i.e. 2D filtering it can be de-
composed into a series of 1D filtering. When the filter size
is relatively small (less than few dozens), the fastest way to
calculate the filtering result is direct 1D convolution. The
filter symmetry can be exploited to reduce the number of
multiplications by a factor of 2. When a filter size is large,
direct convolution becomes expensive, and FFT-based con-
volution is the best choice.

To guarantee a constant time processing, we also pro-
pose to subsample the separable 1D linear spatial filters to

Figure 2. Propagation of integral histogram. Yellow indicates al-
ready traversed points. At each step, the current integral histogram
is obtained from the integral histogram values of the three neigh-
bors, and the bin that corresponds to current point’s value is in-
creased by one.

a constant 15 taps asymmetrically (more taps towards cen-
ter), which is shown to be sufficiently accurate in our exper-
iments.

2.4. Integral Histograms

The integral histogram first introduced by Porikli [13].
It involves a propagation of point-wise histograms on a se-
quence of image points followed by an intersection of (four)
histograms to determine the histogram of any (rectangular)
regions.

Integral histogram H(pm, b) where b = 1..B at an im-
age point at the mth position along a sequence of points
p0,p1, ..,pm is defined as

H(pm, b) =
m⋃

j=0

Q(I(pj)) (14)

where Q(.) is the corresponding bin of the current point,
and ∪ is the union operator that is defined as follows: the
value of the bin b of H(pm, b) is equal to the sum of the pre-
viously visited points’s histogram bin values, that is the sum
of all Q(I(pj)) while j < m. In other words, H(pm, b)
is the histogram of the region between the origin and cur-
rent point; 0 ≤ pj

x ≤ pm
x , 0 ≤ pj

y ≤ pm
y . Note that,

H(pN , b) is equal to the histogram of all data points since
pN = [N1, N2] is the last point in the image. Therefore, the
integral histogram can be written recursively as

H(px, py, b) = H(px−1, py, b) + H(px, py−1, b)
−H(px−1, py−1, b)+Q(I(px, py)).(15)

using the initial condition H(0, 0, b) = 0, which means all
the bins are empty at the origin.

The scan requires updating the integral histogram for
such data points that their left, upper, and upper-left neigh-



bors are already scanned in case of an image data. The in-
tegral histogram at a point is obtained by three arithmetic
operations for each bin of using the integral histogram val-
ues of the three neighbors as shown in Fig. 2. The integral
histogram values of the previous point is copied to the cur-
rent point before the propagation.

The histogram of a region T can be computed using the
propagated integral histogram values at the boundary points
(p+

x , p+
y ), (p−x , p+

y ), (p+
x , p−y ), (p−x , p−y ) of the region simply

as

h(T, b) = H(p+
x , p+

y , b)−H(p−x , p+
y , b)

−H(p+
x , p−y , b) + H(p−x , p−y , b). (16)

As opposed to the conventional histogram computation, the
integral histogram method does not repeat the histogram ex-
traction for each possible region, thus histogram extraction
is not depend on the filter kernel size r.

3. Experiments
We tested our filters wits several 1 MB gray-level and

color images depicting typical scenes of natural land-
scapes, human faces, architecture, etc. as shown in Figs. 7
and 9 top rows. To evaluate numerical accuracy, we
use the peak signal-to-noise ratio (PSNR). For two in-
tensity images y1, y2 = [0; 1], this ratio is defined as
10 log10(N1N2/

∑
p |y1(p)−y2(p)|2). Considering inten-

sity values encoded on 8 bits, if two images differ from one
gray level at each pixel, the resulting PSNR is 48dB. It is as-
sumed [10] the PSNR values above 40dB often corresponds
to almost invisible differences, thus, we selected it as a qual-
ity threshold.

We compared our implementations against PhotoShop
CS2, which features an implementation of Huangs O(r)
algorithm [9], against Pixfoliate, a PhotoShop plugin dis-
tributed by Weiss implementing his O(log r) algorithm [8],
and against full kernel (FFT convolution) C++ implementa-
tions provided by Paris and Durand for their sampling based
approach [10]. Timing was conducted on a PowerMac G5
1.6 GHz for Weiss’s method, and on a P4 3.2 GHz for the
others.

Paris and Durand’s method provides low computation
times especially for larger kernels thanks to the downsam-
pling, where small sampling ratios correspond to limited
approximations and high ratios to more aggressive down-
samplings. We kept the sampling rate proportional to the
Gaussian bandwidth (ss/σs≈ sr/σr) in our tests as recom-
mended in [10]. This method also has a truncated, faster
version that uses spatial convolution.

The computation times are given in Fig. 3 in log-log
scale. As visible, our methods have clearly O(1) time com-
plexity and they are significantly faster than the other ap-
proaches.

Figure 3. Our O(1) methods have faster processing times.

As described in the previous section, there are three O(1)
versions: I) ArBs; bilateral filters with arbitrary range (in-
cluding Gaussian, etc.) and the box spatial filters (Eqns. 4,
5, 16), II) PrAs; bilateral filters with polynomial range and
arbitrary spatial filters (Eqs. 8, 9), III) GrAs; bilateral filters
with Gaussian range and arbitrary spatial filters (Eqns. 12,
13).

For ArBs, we construct the integral histograms for the
whole image. This takes ∼30 millisecond for 32 bins and
∼60 millisecond for 64 bins integral histograms on average
per 1 MB single channel image with MSVC++ compiler.
To compute the response for any given spatial filter size, we
apply the intersection rule (Eq. 16) and find the weighted
sum of the histogram with the range kernel. This takes
approximately 0.06 seconds per 1 MB image for 16 bins,
0.125 seconds for 32 bins and 0.25 seconds for 64 bins. We
analyzed the accuracy by comparing our results with the
exact filter. The corresponding PSNR results are given in
Fig. 4. As visible, even the low resolution (e.g. B = 16)
integral histograms provide remarkably high PSNR values
(with PSNR’s over 45 dB). Results above this threshold are
visually very similar to the exact filter responses. We give
the ArBs filter results in the middle rows of Figs. 7, 9. The
range filters are set as Gaussian functions with σ2

r = 0.15
and σ2

r =0.025 with spatial kernel sizes r =31 and r =21,
respectively.

Note that, the integral histogram does not restrict the spa-
tial filter size r when the bilateral filter is applied to each
image point. In other words, it is possible to change the fil-
ter size adaptively at each point while sweeping through the
image if it is desired.

For PrAs bilateral filters, the proposed linear filter based
results are almost identical with the exact versions. These
filters use subsampled 1D linear filters at 15 taps. The com-



Figure 4. PSNR accuracy of the presented O(1) bilateral filter
(with box spatial) given in Eq. 4 in comparison to the exact fil-
ter. As visible, even the low bins, the integral histogram based
method provides remarkably good results above the threshold.

Figure 5. Accuracy of O(1) bilateral filter (with Gaussian spatial
and Gaussian range) in comparison to the exact filter. Colors in-
dicate different powers of derivatives (Eqns. 12, 13,etc) in Taylor
series. For smoother range functions (larger σ2

r ), the proposed fil-
ter becomes almost identical with the exact filter.

putation time varies between 0.2∼ 0.3 seconds depending
on the spatial filter shape and independent of the filter size.

For GrAs bilateral filters, we applied Taylor series ex-
pansion with linear subsampled filter. To evaluate the ap-
proximation accuracy, we compared the filter responses
against the exact versions. Figure 5 shows PSNR graphs
of bilateral filters with Gaussian spatial (r = 15, σ2

s = 1)
and Gaussian range (0.1 < σ2

r ≤ 0.5) filters at different
powers the derivatives in Taylor series (Eqns. 12, 13, and
fourth order). We observed for smoother range functions,
i.e. σ2

r > 0.12), the proposed filter becomes almost iden-
tical with the exact filter with PSNR’s well above 50dB.
However, for smaller variance values, the approximations
are not valid. The algorithm is still O(1), albeit with a
higher constant by requiring ∼0.35 second per 1 MB im-

Original Our Box (Same as Exact)

Exact Gaussian Bilateral Our Gaussian Bilateral

Figure 6. Filters have almost identical responses as the exact ones.

age. Sample GrAs filter results are given in the bottom row
of the Fig. 9. The range filters are set as Gaussian functions
σ2

r =0.13 with a Gaussian spatial kernel σ2
s =1, r=21.

Figures 6 and 8 show close up views, and effect of σ2
r re-

spectively. Even though we decreased the computation time
to a fraction of the other methods and kept the complexity
in constant time with respect to the filter size, the results are
very similar to exact filter responses.

The computation times given above is for single chan-
nel gray-level images. To process color images, we applied
the same filter to each channel separately and combined the
independent channel responses into a single color vector.
We used a 128-bins histogram for ArBs for each channel.
For the baseline exact bilateral filter, which are utilized in
PSNR comparisons, we constructed the responses in the
RGB color space by computing the L2 vector distance in the
range filter and scaling the color coefficients proportionally.
The computation times of the color images are tripled. We
observed the PSNR’s are still well above 40dB.

On Distributed Histograms
Weiss’ main idea is to operate on multiple columns at

once in the filtering time, as they are all using overlap-
ping kernels. Given a multi-column operating framework,
it stores positive values for the pixels not in column i’s his-
togram and negative values for the pixels in column i’s his-
togram that should not appear in column i + 1’s histogram.
This results in histograms adjacent to the base only keep-
ing track of one positive column and one negative column,
and the histograms r distance away keeping track of r pos-
itive columns and r negative columns. The runtime of this
is O(r) because the outer-most histograms are not gaining
a lot by sharing very few columns with the base and there
is overhead in maintaining a group of partial histograms,



Figure 8. Effect of different range kernel variances for ArBs box
filter: original, σ2

r =0.02, σ2
r =0.2 at r = 10.

especially when r is large.
When it is extended to include multiple tiers of base his-

tograms, it corresponds to a large shared base histogram on
the first tier, a few medium sized partial histograms spaced
7 points apart on the second tier, and many tiny partial his-
tograms at single pixel increments on the third tier. In a
completely theoretical analysis of filtering of huge radii,
keeping hundreds of thousands of partial histograms on 7
tiers, the paper claims the runtime to converge to O(log r).
It also requires keeping one large complete dictionary in the
center column of the sweep to determine if the given neigh-
bor points is outside r columns from the center point. How-
ever, maintaining these dictionaries is a lot slower than the
histograms. Much more time is spent calculating the bilat-
eral filter given the neighborhood as well as managing the
dictionaries that the window movement cost is not nearly as
significant [15].

4. Conclusion
We described three methods that enable constant time

bilateral filtering for gray-level and color images. In addi-
tion to being independent of the filter size, our computation
times are among the fastest reported so far. Our contribu-
tions are threefold:

• We introduced an integral histogram based constant
time bilateral filtering method for ArBs bilateral filters
with arbitrary range (including Gaussian, etc) and box
spatial filter. This method takes advantage of the over-
lapping kernels to avoid redundant operations. It is ac-
curate (PSNR > 45dB) and extremely fast. It also en-
ables setting spatial filter size adaptively at each point.

• We derived formulations for constant time PrAs bilat-
eral filters that have polynomial range and arbitrary
spatial filters by linear filters. These filters give identi-
cal responses as their exact versions. As above, these
filters are very fast; processing time is under 0.3 sec.
for a 1 MB gray-level image independent of the filter
size r.

• We showed constant time GrAs bilateral filters that
have Gaussian range and arbitrary spatial filters (down
to σr = 0.13) can be expressed by Taylor series, which

transform non-linear bilateral filtering into linear filter-
ing of image powers and adaptive setting of linear filter
taps. This expansion is almost identical to the exact fil-
ter (PSNR > 50dB).

Considering the trend toward higher-resolution images,
which will correspondingly require larger filter kernel size,
filtering in large kernels as fast as the small ones makes the
described algorithms necessary and future-proof.
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Figure 7. Top Original images. Bottom O(1) ArBs bilateral with box spatial and Gaussian range (σ2
r = 0.15, f : 31×31). PSNR is

301.88dB (i.e. almost identical to the exact filter result). Images are 1 MB.

Figure 9. Top Original color images. Middle O(1) ArBs bilateral with box spatial and Gaussian range (σ2
r =0.05, f : 21×21). PSNR is

50.61dB. Bottom O(1) GrAs bilateral with Gaussian spatial (σ2
s =1, f : 10) and Gaussian range (σ2

r =0.13). PSNR is 55.12dB. Images
are 1 MB. Each channel is processed independently.


