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1. Including Priors into Flexible Warp-based Inverse Compositional Algorithms

In this note we expand the discussion of Section 4.1 of the main paper on computing the inverse-compositional to additive

parameter update (4 + n) × (4 + n) Jacobian matrix Jp̃. Full details are given for the particularly interesting case of the

thin-plate spline warp [2].

Our starting point is the relationship W(x; p̃ + Jp̃dp̃) ≈ W
(
W(x;−dp̃); p̃

)
, which holds for all points x in the image

plane to first order in dp̃ [1, 4]. Differientiation w.r.t. dp̃ yields
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Equation (1) gives 2 × (4 + n) constraints per image point x.

Since the warp W is uniquely determined by positions of the shape landmarks, it suffices to apply Eq. (1) L times, once

for the spatial position xl, l = 1, . . . , L of each landmark on the mean shape s0. Putting together the L resulting terms in a

single block matrix equation yields
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Denoting as ∂W
∂p̃

∣
∣
∣
(x1:L;p̃)

the (2L) × (4 + n) stacked matrix of derivatives on the left-hand-side and as ∂W
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the stacked block-by-block matrix product on the right-hand-side of the previous equation, we can write it more

compactly as
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Solving this with the method of least squares yields the Jacobian estimate
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which is Eq. (22) of our main paper.

We move forward and show how the matrices involved in Eq. (4) can be computed. Regarding the (2L) × (4 + n)

matrix ∂W
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Jacobian. Applying the chain rule on W(x, p̃) = St

(
W(x,p)

)
and

considering separately the similarity t and deformation p parameters gives
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Taking advantage of the fact that we only need to evaluate the quantities above on the landmark positions xl, it is easy to

show (c.f . [4, Sec. 4.1.2]) that
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where sp = s0 +
∑n

i=1 pisi is the deformed shape, given the parameters p, s+ denotes the shape s rotated counter-clockwise

by 90o and 1x = [ 1 0 ··· 1 0 ]T is the shape with 1’s in the x-coordinate and 0’s in the y-coordinate.

Regarding the 2L × 2 matrix ∂W
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W(x, p̃) = St

(
W(x,p)

)
gives

∂W

∂x

∣
∣
∣
(x;p̃)

=
∂S

∂x

∣
∣
∣
(W(x,t);t)

∂W

∂x

∣
∣
∣
(x;p)

=

[
1 + t1 −t2

t2 1 + t1

]
∂W

∂x

∣
∣
∣
(x;p)

. (7)

Computation of the deformation field Jacobian ∂W
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depends on the warp family under consideration. For the often used

thin-plate spline warp [2], we can write the warp function W(x,p) in the form of a generalized linear model (c.f . [3, App.

F])
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where the vector k(x) is given by
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U(r) = r2 ln r2 is the spline kernel, and W (p) is determined by requiring that the warp maps s0 to sp. The final result is
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where rx,l = ‖x− xl‖2. We need to evaluate ∂W
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for each landmark point xl. Since the term k(x) does not depend on

the shape parameter p,
dk(x)
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can be pre-computed and be subsequently used in every AAM iteration.

The cost of computing the Jacobian matrix Jp̃ can be analyzed as follows: (a) Computing the (2L) × (4 + n) matrix
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is O (nL). (d) Forming the (4 + n) × (4 + n) least-squares system matrix
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. Overall, the last two operations

dominate the cost of the procedure, whose overall complexity is thus O
(
n2L + n3

)
.
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