
Adaptive and Constrained Algorithms for Inverse Compositional

Active Appearance Model Fitting

— CVPR 2008 Paper Supplemental Material —

George Papandreou and Petros Maragos

School of Electrical and Computer Engineering

National Technical University of Athens, Greece

http://cvsp.cs.ntua.gr

1. Including Priors into Flexible Warp-based Inverse Compositional Algorithms

In this note we expand the discussion of Section 4.1 of the main paper on computing the inverse-compositional to additive

parameter update (4 + n) × (4 + n) Jacobian matrix Jp̃. Full details are given for the particularly interesting case of the

thin-plate spline warp [2].

Our starting point is the relationship W(x; p̃ + Jp̃dp̃) ≈ W
(
W(x;−dp̃); p̃

)
, which holds for all points x in the image

plane to first order in dp̃ [1, 4]. Differientiation w.r.t. dp̃ yields

∂W

∂p̃

∣
∣
∣
(x;p̃)

︸ ︷︷ ︸

2×(4+n)

Jp̃
︸︷︷︸

(4+n)×(4+n)

≈ −
∂W

∂x

∣
∣
∣
(x;p̃)

︸ ︷︷ ︸

2×2

∂W

∂p̃

∣
∣
∣
(x;p̃=0)

︸ ︷︷ ︸

2×(4+n)

. (1)

Equation (1) gives 2 × (4 + n) constraints per image point x.

Since the warp W is uniquely determined by positions of the shape landmarks, it suffices to apply Eq. (1) L times, once

for the spatial position xl, l = 1, . . . , L of each landmark on the mean shape s0. Putting together the L resulting terms in a

single block matrix equation yields









∂W
∂p̃

∣
∣
∣
(x1;p̃)

...
∂W
∂p̃

∣
∣
∣
(xL;p̃)









︸ ︷︷ ︸

2L×(4+n)

Jp̃
︸︷︷︸

(4+n)×(4+n)

≈ −









∂W
∂x

∣
∣
∣
(x1;p̃)

∂W
∂p̃

∣
∣
∣
(x1;p̃=0)

...
∂W
∂x

∣
∣
∣
(xL;p̃)

∂W
∂p̃

∣
∣
∣
(xL;p̃=0)









︸ ︷︷ ︸

2L×(4+n)

. (2)

Denoting as ∂W
∂p̃

∣
∣
∣
(x1:L;p̃)

the (2L) × (4 + n) stacked matrix of derivatives on the left-hand-side and as ∂W
∂x

∣
∣
∣
(x1:L;p̃)

⊙

∂W
∂p̃

∣
∣
∣
(x1:L;0)

the stacked block-by-block matrix product on the right-hand-side of the previous equation, we can write it more

compactly as
∂W

∂p̃

∣
∣
∣
(x1:L;p̃)

︸ ︷︷ ︸

2L×(4+n)

Jp̃
︸︷︷︸

(4+n)×(4+n)

≈ −
∂W

∂x

∣
∣
∣
(x1:L;p̃)

⊙
∂W

∂p̃

∣
∣
∣
(x1:L;0)

︸ ︷︷ ︸

2L×(4+n)

. (3)

Solving this with the method of least squares yields the Jacobian estimate

Jp̃ = −

(
∂W

∂p̃

∣
∣
∣

T

(x1:L;p̃)

∂W

∂p̃

∣
∣
∣
(x1:L;p̃)

)
−1 (

∂W

∂x

∣
∣
∣
(x1:L;p̃)

⊙
∂W

∂p̃

∣
∣
∣
(x1:L;0)

)

, (4)

which is Eq. (22) of our main paper.

We move forward and show how the matrices involved in Eq. (4) can be computed. Regarding the (2L) × (4 + n)

matrix ∂W
∂p̃

∣
∣
∣
(x1:L;p̃)

, we need compute the ∂W
∂p̃

∣
∣
∣
(x;p̃)

Jacobian. Applying the chain rule on W(x, p̃) = St

(
W(x,p)

)
and

considering separately the similarity t and deformation p parameters gives

∂W

∂p̃

∣
∣
∣
(x;p̃)

=

[

∂S
∂t

∣
∣
∣
(W(x,p);t)

∂S
∂x

∣
∣
∣
(W(x,p);t)

· ∂W
∂p

∣
∣
∣
(x;p)

]

(5)

Taking advantage of the fact that we only need to evaluate the quantities above on the landmark positions xl, it is easy to

show (c.f . [4, Sec. 4.1.2]) that

∂W

∂p̃

∣
∣
∣
(x1:L;p̃)

=
[[

sp s+
p 1x 1+

x

]
(1 + t1)

[
s1 . . . sn

]
+ t2

[
s+
1 . . . s+

n

]]

, (6)

where sp = s0 +
∑n

i=1 pisi is the deformed shape, given the parameters p, s+ denotes the shape s rotated counter-clockwise

by 90o and 1x = [1 0 ··· 1 0]T is the shape with 1’s in the x-coordinate and 0’s in the y-coordinate.

Regarding the 2L × 2 matrix ∂W
∂x

∣
∣
∣
(x1:L;p̃)

, we need compute the Jacobian ∂W
∂x

∣
∣
∣
(x;p̃)

. Application of the chain rule on

W(x, p̃) = St

(
W(x,p)

)
gives

∂W

∂x

∣
∣
∣
(x;p̃)

=
∂S

∂x

∣
∣
∣
(W(x,t);t)

∂W

∂x

∣
∣
∣
(x;p)

=

[
1 + t1 −t2

t2 1 + t1

]
∂W

∂x

∣
∣
∣
(x;p)

. (7)

Computation of the deformation field Jacobian ∂W
∂x

∣
∣
∣
(x;p)

depends on the warp family under consideration. For the often used

thin-plate spline warp [2], we can write the warp function W(x,p) in the form of a generalized linear model (c.f . [3, App.

F])

W(x,p) = W (p)
︸ ︷︷ ︸

2×(L+3)

k(x)
︸︷︷︸

(L+3)×1

, (8)

where the vector k(x) is given by

k(x) =
[
U(|x − x1|) . . . U(|x − xL|) 1 x y

]T
, (9)

U(r) = r2 ln r2 is the spline kernel, and W (p) is determined by requiring that the warp maps s0 to sp. The final result is

∂W

∂x

∣
∣
∣
(x;p)

= W (p)
dk(x)

dx

∣
∣
∣
x

= W (p)












2(1 + ln r2
x,1)(x − x1)

T

...

2(1 + ln r2
x,L)(x − xL)T

0 0
1 0
0 1












, (10)

where rx,l = ‖x− xl‖2. We need to evaluate ∂W
∂x

∣
∣
∣
(x;p)

for each landmark point xl. Since the term k(x) does not depend on

the shape parameter p,
dk(x)

dx

∣
∣
∣
x

can be pre-computed and be subsequently used in every AAM iteration.

The cost of computing the Jacobian matrix Jp̃ can be analyzed as follows: (a) Computing the (2L) × (4 + n) matrix

∂W
∂p̃

∣
∣
∣
(x1:L;p̃)

is O (nL). (b) Computing the 2L × 2 matrix ∂W
∂x

∣
∣
∣
(x1:L;p̃)

is O (L). (c) Forming the stacked block-by-block

matrix product ∂W
∂x

∣
∣
∣
(x1:L;p̃)

⊙ ∂W
∂p̃

∣
∣
∣
(x1:L;0)

is O (nL). (d) Forming the (4 + n) × (4 + n) least-squares system matrix

∂W
∂p̃

∣
∣
∣

T

(x1:L;p̃)

∂W
∂p̃

∣
∣
∣
(x1:L;p̃)

is O
(
n2L

)
. (e) Inverting the same system matrix is O

(
n3

)
. Overall, the last two operations

dominate the cost of the procedure, whose overall complexity is thus O
(
n2L + n3

)
.

References

[1] S. Baker, R. Gross, and I. Matthews. Lucas-Kanade 20 years on: A unifying framework - Part 4. Technical Report

CMU-RI-TR-04-14, Robotics Institute, CMU, 2004.

[2] F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Tr. on PAMI,

11(6):567–585, 1989.

[3] T. F. Cootes and C. J. Taylor. Statistical models of appearance for computer vision. http://www.isbe.man.ac.

uk/˜bim/Models/app_models.pdf, 2004.

[4] I. Matthews and S. Baker. Active appearance models revisited. Int. J. of Comp. Vision, 60(2):135–164, 2004.

