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1. Including Priors into Flexible Warp-based Inverse Compositional Algorithms

In this note we expand the discussion of Section 4.1 of the main paper on computing the inverse-compositional to additive
parameter update (4 + n) x (4 + n) Jacobian matrix Jg. Full details are given for the particularly interesting case of the
thin-plate spline warp [2].

Our starting point is the relationship W (x; p + Jpdp) ~ W (W (x; —dp); p), which holds for all points x in the image
plane to first order in dp [1,4]. Differientiation w.r.t. dp yields
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Equation (1) gives 2 x (4 4+ n) constraints per image point x.

Since the warp W is uniquely determined by positions of the shape landmarks, it suffices to apply Eq. (1) L times, once
for the spatial position x;, [ = 1,..., L of each landmark on the mean shape s(. Putting together the L resulting terms in a
single block matrix equation yields
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Denoting as %\g i the (2L) x (4 + n) stacked matrix of derivatives on the left-hand-side and as 2% -
%—Vg 10:0) the stacked block-by-block matrix product on the right-hand-side of the previous equation, we can write it more
compactly as
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Solving this with the method of least squares yields the Jacobian estimate
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which is Eq. (22) of our main paper.
We move forward and show how the matrices involved in Eq. (4) can be computed. Regarding the (2L) x (4 + n)
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considering separately the similarity t and deformation p parameters gives

matrix

Jacobian. Applying the chain rule on W (x,p) = S;(W(x,p)) and
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Taking advantage of the fact that we only need to evaluate the quantities above on the landmark positions x;, it is easy to
show (c.f. [4, Sec. 4.1.2]) that
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where s, = sg + Zz;l p;s; is the deformed shape, given the parameters p, s™ denotes the shape s rotated counter-clockwise
by 90° and 1, = [10 - 1 0]7 is the shape with 1’s in the z-coordinate and 0’s in the y-coordinate.
Regarding the 2L x 2 matrix %—VX‘( " we need compute the Jacobian %—Y{V ip)’ Application of the chain rule on
T1.05P x;p
W(X7 15) = St (W(X7 p)) gives
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Computation of the deformation field Jacobian %—VX ‘( depends on the warp family under consideration. For the often used

thin-plate spline warp [2], we can write the warp function W (x, p) in the form of a generalized linear model (c.f. [3, App.
FD
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where the vector k(x) is given by
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U(r) = r?In7r? is the spline kernel, and W (p) is determined by requiring that the warp maps s to sp. The final result is
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where 7x; = ||x — x;[|2. We need to evaluate %—VX ip) for each landmark point x;. Since the term k(x) does not depend on
x;p
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The cost of computing the Jacobian matrix Jp can be analyzed as follows: (a) Computing the (2L) x (4 + n) matrix

aavﬁv is O (nL). (b) Computing the 2L x 2 matrix %—VX ( . is O (L). (c) Forming the stacked block-by-block
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the shape parameter p,

can be pre-computed and be subsequently used in every AAM iteration.
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matrix product 75 is O (nL). (d) Forming the (4 + n) X (4 + n) least-squares system matrix
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dominate the cost of the procedure, whose overall complexity is thus O (n2L + n‘3)
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e is O (n?L). (e) Inverting the same system matrix is O (n?). Overall, the last two operations
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