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Derivation of (17) in the main paper
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where C denote the skew symmetric matrix with entries ( c®) 0 —C™M ], and the superscript
—c® 0

¢ indicates the first dimension of the vector. Taking the partial derivative of A’ with respect to ¢, we
have
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Taklng the partial derivative of (4) in the main paper with respect to u and v, and assuming 6 8 ; and
at 8 exist and are smooth (which is assumption A3), we have
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As the skew symmetric matrix C is linear with respect to the original vector C, we have
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Substitute (3) and (4) back into the numerator of the first term in the right hand side of (2), we have
dC, 5 OCy . . )
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Similarly, the numerator of the second term in the right hand side of (2) can be simplified as
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Note that o
NTCTC,Co = (Cu x N)T(Cu % Cy). (7)

Because C, || 7,, and C,, || Ty, thus (Cy, x N) LN while (C,, x Cyp) || V. Consequently, the inner product
between the two terms in (7) is zero. Similarly, we have

cINTC,C, =CTCINC, =CICTC N =0. (8)
Thus, (6) can be simplified as

BNICTC,C, + BCINTC,Cy + BCTCTN,Cy + BCTCTCN,

= B(Cy x Np)T(Cu x Cy) + BN x C)T(Cy x Cy) + B(Cu X C)T(Ny X Cy) + B(Cu x Co)T(Cu x N))

= 26(Cy x Co)T(Cyu x Ny + Noy x ).
Thus, substituting (5) and (9) back into (2), we have
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(Cu X Ny + Ny x Cyp) . (10)

Because N, || Cy and Ny, || Cy, thus (Cy X Ny) || (Ny X Cy) || N. Let Cyy X Ny + Ny, X C,y = pN and
Cu x C, = qN, where p and q are scalars. Thus the second term in the right hand side of (10) becomes
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Thus, (10) can be simplified as
ON _ BuN % Cy + BuCu x N (12)

ot |Cu % Cy]

Thus, if 8, = 0 and 3, = 0, the surface evolve isotropically, and the norm does not change over
deformation. By choosing proper parameters u and v, we can let ||Cy|| = 1, ||Cy|| = 1,and C,, L C,. Use
this set of parameterization and assume the right hand coordinate system to be (u x v) || AV, (12) can be
simplified as
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Thus, the second term in the right hand side of (8) in the main paper, i.e., temporal change of norm
due to the deformation, can be simplified as
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Substituting
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into (14), we have
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From (16) or (25) in the main paper, we know < g“ ) = O(At). In addition, as by = O(At), the first
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term in the right hand side of (16) is O(At) while the other terms are O(At?). Using assumption A2,
we can neglect O(At?) with respect to O(At), and (16) becomes,
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