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Abstract

This document contains proofs referenced in the
CVPR’08 paper. They are useful for readers which would
like to check several assertions.

1. Point Reconstruction by Ray Intersection
We show that function αi(P̃) = arccos(d>

i
P̃−oi

||P̃−oi||
) is

not C1 continuous at point P such that αi(P) = 0.
Without loss of generality, we change the coordinate sys-

tem such that di = [0 0 1]> and write

αi(t) = arccos(d>
i D(t)) with D(t) =

[x(t) y(t) z(t)]>

||[x(t) y(t) z(t)]||

and x(t), y(t), z(t) three real C1 continuous functions with
parameter t such that [x(0) y(0) z(0)] = [0 0 1].

Apply the Chain Rule to αi = arccos( z√
x2+y2+z2

) with

arccos′(u) = −1√
1−u2

if |u| < 1 :

α′
i = arccos′(

z
√

x2 + y2 + z2
)(

z
√

x2 + y2 + z2
)′

= −
√

x2 + y2 + z2

x2 + y2
(

z′
√

x2 + y2 + z2
− z

xx′ + yy′ + zz′

(x2 + y2 + z2)
3

2

)

= −z′(x2 + y2 + z2) − z(xx′ + yy′ + zz′)

(x2 + y2 + z2)
√

x2 + y2

=
−1

x2 + y2 + z2
(z′

√

x2 + y2 − z
√

x2 + y2
(xx′ + yy′))

Since [x(t) y(t) z(t)] ≈ [x′(0)t y′(0)t 1], we obtain

α′
i(t) ≈

t

|t|
√

(x′(0))2 + (y′(0))2.

We see that two α′
i limits are obtained if t converges to 0:

one for each possible t sign. Thus, P̃ 7→ αi(P̃) is not C1

continuous at point P such that αi(P) = 0.

2. Virtual Covariance and Uncertainty
This is the proof for the C− expression given by Eq. 3 in

the paper.
The Jacobian of π([x y z]>) = [x/z y/z]> is

Jπ([x y z]>) =

(

1

z
0 − x

z2

0 1

z
− y

z2

)

.

Let di = ||P−oi||. The Jacobian Jαi
at point P of function

αi(P̃) = π(Ri(P̃−oi)) with Ridi =





0
0
1



 ,di =
P− oi

||P− oi||

is equal to

Jαi
(P) = Jπ([0 0 di]

>)Ri = ARi with A =
1

di

(

1 0 0
0 1 0

)

.

Let J be the Jacobian of the function P̃ 7→ [α>
1 · · · α>

I ]>.
The inverse of C(P) = σ2

α(J(P)>J(P))−1 is equal to

C− =
1

σ2
α

J(P)>J(P) =
1

σ2
α

I
∑

i=1

R
>
i A

>
ARi

=
1

σ2
α

I
∑

i=1

1

d2
i

R
>
i (I3×3 − kk>)Ri with k =





0
0
1





Since Ri is a rotation such that Ridi = k, we obtain

C− =
1

σ2
α

I
∑

i=1

I3×3 − did
>
i

||P − oi||2
.

3. Reliability for 3D Modeling of a Scene
We show that R(P) is arbitrarily large in two cases: (1)

nearly parallel di and (2) large values of ||P − oi||.
Let d = mini ||P − oi||. The smallest eigenvalue e of

C− is such that

e ≤ d>
1 C−d1 =

I
∑

i=1

1 − (d>
i d1)

2

σ2
α||P − oi||2

≤
I

∑

i=1

1 − (d>
i d1)

2

σ2
αd2

.
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This inequality and definitions (Eq. 4 and 5 in the paper)

U(P) =

√

X 2
3 (p)

e
, R(P) =

U(P)

mini ||P − oi||

imply

R(P) =

√

X 2
3 (p)

ed2
≥ σα

√

X 2
3 (p)

∑I

i=1
1 − (d>

i d1)2
.

Thus, R(P) is arbitrarily large in case (1). Since case (2)
implies case (1), R(P) is also arbitrarily large in case (2).

4. Geometric Tests
This is the proof for the d2(P1, Π) expression in Eq. 6

of the paper (more details in [1]).
Since C−1(P1) is definite positive, there are the

Choleski factorization C−1(P1) = K
>
K and P̃ such that

P2 = P1 + K
−1P̃. Thus,

d2(P1,P2) = (P1 −P2)
>

C−1(P1)(P1 −P2) = ||P̃||2.

Let Π be the plane n>X + d = 0. We have

P2 ∈ Π ⇐⇒ n>P2+d = 0 ⇐⇒ ñ>P̃+d̃ = 0 ⇐⇒ P̃ ∈ Π̃

with ñ = K
−>n and d̃ = d + n>P1. Now, we see that

d2(P1, Π) = min
P2∈Π

d2(P1,P2) = min
P̃∈Π̃

||P̃||2.

This is the Euclidean distance between 03×1 and the plane
Π̃ : ñ>P̃ + d̃ = 0. Thus,

d2(P1, Π) =
(ñ>03×1 + d̃)2

||ñ||2 =
(n>P1 + d)2

n>C(P1)n
.

5. Comparing Specific and Generic Cameras
We show that virtual uncertainties of generic and specific

camera models are the same iff Eq. 8 in the paper is true.
The proof requires more notations than the paper.

5.1. Definitions of Angles and Coordinate Systems
Let p0

i be points in the i-th generic image. The calibra-
tion function applied to p0

i gives a ray with origin oc
i and di-

rection dc
i in the camera coordinate system. We define αc

i in
this coordinate system by αc

i (X
c) = π(Rdc

i
(Xc−oc

i )) with
a rotation Rdc

i
such that Rdc

i
dc

i = [0 0 1]> and π([x y z]>) =

[x/z y/z]>. Function αc
i is C2 continuous and ||αc

i (X
c)||

is the tangent of the angle between Xc − oc
i and dc

i .
Let (Ri, ti) be the i-th pose of the camera in the world

coordinate system (Ri is a rotation and ti a translation). The
world coordinates of oc

i ,d
c
i are ow

i = Rio
c
i +ti,d

w
i = Rid

c
i .

There are similar notations Xw = RiX
c
i + ti for any point

Xw in the world coordinate system. We define αw
i by

αw
i (Xw) = αc

i (R
>
i (Xw − ti)) and obtain

αw
i (Xw) = π(Rdw

i
(Xw − ow

i )) with Rdw

i
= Rdc

i
R
>
i .

Thus, αw
i is C2 continuous and ||αw

i (Xw)|| is the tangent
of the angle between Xw −ow

i and dw
i . This function is the

function αi introduced by Eq. 1 in the paper.

5.2. Link Between Projection and Angle Error
Here we assume that the image projection p(Xc) of a

point Xc in the camera coordinate system is a well defined
and C1 continuous function.

In this part, we would like to define a C1 continuous
function φi such that φi ◦ p = αc

i . Let pi be a point with
the corresponding observation ray (o′c

i ,d
′c
i ) by the calibra-

tion function. We assume that the camera is central as in
Section 4 of the paper: o′c

i = oc
i . The image by αc

i of a ray
point Xc(λ) = oc

i + λd′c
i is equal to π(Rdc

i
d′c

i ) and does
not depend on λ. Thus we define φi(pi) by π(Rdc

i
d′c

i ) with
d′c

i obtained by the calibration function applied to pi. Now,
φi is well defined, φi ◦ p = αc

i is true, and φi is C1 contin-
uous since αi (and the calibration function) is (assumed to
be) C1 continuous.

5.3. Definitions of Virtual Covariances
Let Pw be a point in the world coordinate system. The

virtual covariance matrix of the generic camera model re-
quires p0

i = p(R>i (Pw − ti)) and is defined by

Cα(Pw) = σ2
α(

I
∑

i=1

J>
αw

i

(Pw)Jαw

i
(Pw))−1.

Let pi be the function pi(X
w) = p(R>i (Xw − ti)). The

virtual covariance matrix of the specific camera model has
a similar definition:

Cp(P
w) = σ2

p(

I
∑

i=1

J>
pi

(Pw)Jpi
(Pw))−1.

The Chain Rule provides equations

C−1
α (Pw) =

1

σ2
α

I
∑

i=1

RiJ
>
αc

i

(Pc
i )Jαc

i
(Pc

i )R
>
i

C−1
p (Pw) =

1

σ2
p

I
∑

i=1

RiJ
>
p (Pc

i )Jp(P
c
i )R

>
i

which will be useful latter with Pc
i = R

>
i (Pw − ti).

5.4. Comparing Virtual Covariances
We see that the condition Cα = Cp is equivalent to

0 =

I
∑

i=1

Ri{
1

σ2
α

J>
αc

i

(Pc
i )Jαc

i
(Pc

i ) −
1

σ2
p

J>
p (Pc

i )Jp(P
c
i )}R>i



for all rotations Ri and points Pc
i . We would like

1

σ2
α

J>
αc

i

Jαc

i
− 1

σ2
p

J>
p Jp = 0 ⇐⇒ Cα = Cp.

The implication “=⇒” is obvious and we focus on the im-
plication “⇐=”. Let Pc and Pw be points in the cam-
era and world coordinate systems, respectively. We set
Pc

i = Pc for all i. For all rotations Ri, there is a ti such
that Pc

i = R
>
i (Pw − ti). Under these conditions, Cα = Cp

implies

0 =
I

∑

i=1

Rif(Pc)R>i with f =
1

σ2
α

J>
αc

i

Jαc

i
− 1

σ2
p

J>
p Jp

for all rotations Ri. We see that Rif(Pc)R>i is constant for
all rotations Ri. Thus, there is λ ∈ R such that f(Pc) =
λI3×3. We deduce that

0 =

I
∑

i=1

Rif(Pc)R>i = λ

I
∑

i=1

RiR
>
i = λI

and λ = 0. Now, implication “⇐=” is obvious.
The relation φi ◦ p = αc

i implies Jφi
Jp = Jαc

i
and

J>
p (

1

σ2
α

J>
φi

Jφi
− 1

σ2
p

I2×2)Jp = 0 ⇐⇒ Cα = Cp

We assume that Jp is full rank and obtain

1

σ2
α

J>
φi

Jφi
=

1

σ2
p

I2×2 ⇐⇒ Cα = Cp.

5.5. Condition in the Paper
Let Pw,Xw be 3D points. Functions αc

i , α
w
i are defined

by p0
i = pi(P

w). Eq. 8 (in the paper) is

||αw
i (Xw)|| ≈ σα

σp

||pi(X
w) − pi(P

w)||.

Using notations Pc
i = R

>
i (Pw−ti) and Xc

i = R
>
i (Xw−ti),

Eq. 8 is

||αc
i (X

c
i )|| ≈

σα

σp

||p(Xc
i ) − p(Pc

i )||

with p0
i = p(Pc

i ). We have p0
i = p(Pc

i ) =⇒ αc
i (P

c
i ) = 0

using the αc
i definition. Thus, Eq. 8 is equivalent to

||αc
i (X

c
i ) − αc

i (P
c
i )|| ≈

σα

σp

||p(Xc
i ) − p(Pc

i )||.

Since φi is C1 continuous and αc
i = φi ◦p, we approximate

φi by its linear Taylor expansion at point p(Pc
i ) and obtain

||Jφi
(p0

i ).(p(Xc
i ) − p(Pc

i ))||2 ≈ σ2
α

σ2
p

||p(Xc
i ) − p(Pc

i )||2

for all p(Xc
i ) in a neighborhood of p(Pc

i ). The quadratic
forms in both sides are equal and we see that Eq. 8 is equiv-
alent to

J>
φi

Jφi
≈ σ2

α

σ2
p

I2×2.

This concludes the proof.
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