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Abstract

Recent work in multiple view geometry has focused on
obtaining globally optimal solutions at the price of compu-
tational time efficiency. On the other hand, traditional bun-
dle adjustment algorithms have been found to provide good
solutions even though there may be multiple local minima.
In this paper we justify this observation by giving a simple
sufficient condition for global optimality that can be used
to verify that a solution obtained from any local method is
indeed global.

The method is tested on numerous problem instances of
both synthetic and real data sets. In the vast majority of
cases we are able to verify that the solutions are optimal,
in particular for small-scale problems. We also develop a
branch and bound procedure that goes beyond verification.
In cases where the sufficient condition does not hold, the
algorithm returns either of the following two results: (i) a
certificate of global optimality for the local solution or (ii)
the global solution.

1. Introduction
Multiple view geometry problems are core problems in

computer vision and they have been studied for quite some
time. The standard way of solving these problems relies
on some heuristic method for obtaining an initial estimate,
followed by a refinement method that minimizes the sums
of squares reprojection error [6]. Due to the local minima
problem, global optimization methods have attracted a lot
of attention in recent years, see [4] for a survey. Although
these methods are guaranteed to compute globally optimal
solutions, they are in general slow due to their complexity,
e.g., [3, 7, 11]. This makes them less practical since they
can not compare with the speed of local, iterative methods
such as bundle adjustment [16, 2, 9]. In this paper, we anal-
yse a class of multiview problems that we refer to as pro-
jective least-squares problems and develop a simple test to
verify global optimality. Our experimental results show that
local optimization techniques will generally yield a global
solution, especially for small-scale problems.

In multiview geometry, an alternative solution to the

problem of local minima is to minimize the maximum resid-
ual, the so called L∞-error instead of the L2-error. It has
been shown in [10, 8] that a large number of multiview ge-
ometry problems are instances of quasiconvex minimization
problems. These problems have no (strict) local minima
(other than the global one) and can be solved efficiently us-
ing local optimization methods [1]. While the L∞-norm of
reprojection errors is a geometrically meaningful criterion,
it is still desirable to find the least squares solution (that is,
the L2-solution) since it is statistically optimal. Under the
assumption of independent, Gaussian noise the L2-solution
gives the maximum likelihood estimate.

Although practically useful methods that guarantee
global solutions are rare - the factorization algorithm [15]
for affine cameras being one exception - it has been em-
pirically found that local methods usually work well with
proper initialization [6, 2, 14]. In this paper we present a
framework that allows us to verify that an obtained local
solution is indeed global. The verification idea was first in-
troduced in [5] for the triangulation problem with spherical
cameras, and it was also suggested that the approach might
work for other problems. Here we generalize this approach
in several directions. Our main contributions are:

• Our framework deals with a whole class of multiview
geometry problems and we give conditions that are
provably stronger than the ones given in [5] for trian-
gulation.

• We do not stop at verification of optimality. It is shown
how the verification test can be embedded in a branch
and bound algorithm that always gives an answer. Ei-
ther (i) a certificate of optimality for the local solution
or (ii) the global solution is returned.

• We perform an extensive set of experiments on sev-
eral data sets to explore the limitations of the method.
Results are given for triangulation, homography es-
timation, camera resectioning and structure and mo-
tion with known rotations. Our main conclusion is that
in most cases the verification test succeeds, even for
problems with many cameras and several hundred of
point features involved.
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2. Projective Least-Squares

2.1. Bounding the Location of the L2-Optimum

Let the functions fi(x) represent the squared error resid-
uals when the L2 error cost is considered, that is,

f(x) =

m
∑

i=1

fi(x). (1)

In [10, 8], it was shown that the error residuals fi(x) for
a large number of multiview geometry problems are qua-
siconvex and this is the class to which our analysis is re-
stricted. The property of quasiconvexity guarantees that any
(strict) local minimum is also a global minimum. However
since the sum of quasiconvex functions is not necessarily
quasiconvex the L2-error (1) may have multiple local min-
ima.

The goal of this paper is to determine a region in which
the the global minimum must lie and to show that the L2-
error function is in fact convex in this region. Now suppose
we have obtained (through local optimization) a local min-
imum f(xlocal) = ε2max with a minimizer xlocal. As noted
in [5], clearly the global minimum must lie in the region

R = {x ∈ R
n; fi(x) ≤ ε2max for i = 1, . . . ,m }, (2)

since each residual must be smaller than the sum of all the
residuals. Now since the functions fi are quasiconvex the
region R is a convex region which must contain the global
minimum. Our goal is to reject the hypothesis that there
exists another local minimum, different from xlocal with a
lower objective value. Hence if we can show that f(x) is
convex on R we know that our local minimum is in fact
global.

2.2. The Hessian of the Perspective Error Function

Since a differentiable function is (strictly) convex if and
only if its Hessian is positive definite we will now turn
our attention to the Hessian of the perspective function. If
(X,Y, Z) are the coordinates of a point in 3D-space then
we define the perspective error function as

π(X,Y, Z) =
X2 + Y 2

Z2
. (3)

The mapping π : {(X,Y, Z) ∈ R
3;Z > 0} 7→ R

2 is the
squared distance from the image center to the perspective
projection of a 3D-point onto the image plane. The con-
straint Z > 0 reflects the fact that 3D-points should be lo-
cated in front of the camera.

In this class of so called projective least-squares prob-
lems, the error residuals in (1) can always be related to (3)

by an affine change of coordinates

Xi = aT
i x + ãi (4)

Yi = bT
i x + b̃i (5)

Zi = cT
i x + c̃i (6)

fi(x) = π(Xi, Yi, Zi), (7)

where x ∈ R
n. Note that the dimensionality of x depends

on the particular application, e.g., n = 3 in triangulation,
n = 8 in homography estimation, n = 11 in camera resec-
tioning etc.

The Hessian ∇2π(X,Y, Z) of the perspective error func-
tion can be written as

∇2π(X,Y, Z) =
2

Z2





1 0 −2X
Z

0 1 −2Y
Z

−2X
Z

−2Y
Z

3 (X2+Y 2)
Z2



 .

(8)
To simplify the notation later on, we introduce the param-
eters d = Z and ε =

√
X2+Y 2

Z
. Here d is the depth and

ε is the distance from the image center to the projection of
(X,Y, Z). The matrix ∇2π can be difficult to handle since
it is not diagonal. However for our purposes we shall see
that it is enough to use a lower bounding matrix D such that
∇2π � D. It was shown in [5] that the diagonal matrix

D(X,Y, Z) =
2

d2





1/3 0 0
0 1/3 0
0 0 −3ε2



 (9)

can be used to bound ∇2π(X,Y, Z). Indeed it is easy to
verify that the eigenvalues of ∇2π − D are non-negative,
and hence ∇2π − D � 0.

For a general error residual fi we apply the coordinate
change (4)-(7) to obtain

fi(x) =
(aT

i x + ãi)
2 + (bT

i x + b̃i)
2

(cT
i x + c̃i)2

. (10)

Using the chain rule (twice) we may compute the Hessian
∇2fi(x). Since the coordinate change is affine, the expres-
sion for the Hessian takes on a particularly pleasing form.
Let Wi be the n × 3 matrix with columns ai, bi, ci, then

∇2fi(x) = Wi∇
2π(Xi, Yi, Zi)W

T
i (11)

where Xi, Yi and Zi depends on x through (4)-(7). Note
that Wi is independent of x. Now if ∇2π − D � 0
holds, then it follows that the same must be true for
Wi(∇

2π(Xi, Yi, Zi) − D(Xi, Yi, Zi))W
T
i � 0. Denote

Di(x) = D(Xi, Yi, Zi). Hence the matrix WiDi(x)WT
i

can be used as a lower bound on ∇2fi(x), that is,

∇2fi(x) � WiDi(x)WT
i . (12)
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The main point is that if WiDi(x)WT
i is positive semidef-

inite, then the Hessian ∇2fi(x) is likewise. As Di(x) is a
diagonal matrix, we can also write

WiDi(x)WT
i =

2

3di(x)2
(

aia
T
i + bib

T
i − 9εi(x)2cic

T
i

)

.

(13)
Note that di and εi depends on x through (4) − (6).

2.3. Sufficient Conditions for Convexity

Next we will develop conditions that ensure convexity of
the L2-error function in the domain R in (2).

Recall that a function is convex if its Hessian is positive
semidefinite over its domain. The Hessian of f(x) in (1)
can be written

∇2f(x) =
∑

i

∇2fi(x). (14)

Hence the goal is to show that this sum is positive semidef-
inite. From the previous section we know that ∇2fi(x) �
WiDi(x)WT

i and the same holds true for the sum
∑

i

∇2fi(x) �
∑

i

WiDi(x)WT
i . (15)

Therefore, to ensure convexity, it is enough to show that the
right hand side of (15) is positive semidefinite in the region
R ⊂ R

n. Inserting (13) into the right hand side of (15) we
obtain
∑

i

2

3di(x)2
(

aia
T
i + bib

T
i − 9εi(x)2cic

T
i

)

� 0. (16)

According to the definition of positive semidefinite the fol-
lowing should hold

yT
∑

i

(

aia
T
i + bib

T
i

di(x)2
− 9εi(x)2

cic
T
i

di(x)2

)

y ≥ 0, (17)

for all y 6= 0 and all x ∈ R ⊂ R
n. Now for a fixed

y, the terms yT aia
T
i y = (aT

i y)2 and yT bib
T
i y = (bT

i y)2

are constant and non-negative over the domain. Hence
yT (

aia
T
i +bib

T
i

di(x)2 )y attains its minimum for the largest feasi-
ble depth di,max. Such bounds for di(x), specifically

di,min ≤ di(x) ≤ di,max, (18)

may be computed by solving two simple linear programs
(or SOCPs depending on the choice of residuals) over R,
see Section 3.1. Therefore the terms in (17) can be bounded
by

yT (
aia

T
i + bib

T
i

di(x)2
)y ≤ yT (

aia
T
i + bib

T
i

d2
i,min

)y, (19)

yT cic
T
i

di(x)2
y ≥ yT cic

T
i

d2
i,max

y. (20)

Furthermore, since εi(x) ≤ εmax, it follows that if

yT
∑

i

(

aia
T
i + bib

T
i

d2
i,max

− 9ε2max

cic
T
i

d2
i,min

)

y ≥ 0 (21)

holds for all y, then the function is convex in the domain of
interest. Finally, it is a well known fact that, if we restrict y
to ||y|| = 1, then the minimum of the left hand side is equal
to the smallest eigenvalue of the matrix, and therefore it is
sufficient to test if

λmin

(

m
∑

i=1

(

aia
T
i + bib

T
i

d2
i,max

− 9ε2max

cic
T
i

d2
i,min

))

≥ 0.

(22)

2.4. Comparison to the Triangulation Bounds of [5]

In [5], Hartley and Seo studied the problem of triangu-
lation with calibrated cameras. One may assume that the
camera matrices are of the form Pi = [Ri ti] where Ri is
a rotation matrix. Hence the coordinate change (4)-(6) is
given by

(aT
i , ãi) = (R1

i , t
1
i ) (23)

(bT
i , b̃i) = (R2

i , t
2
i ) (24)

(cT
i , c̃i) = (R3

i , t
3
i ) (25)

where Rj
i denotes row j of Ri and tji is the j’th coordinate

of ti. The bound which was obtained in [5] can be written
in our notation as

λmin

(

∑

i

aia
T
i + bib

T
i

d2
i,max

)

≥ 9ε2max||
∑

i

cic
T
i

d2
i,min

||, (26)

using the relation I = aia
T
i + bib

T
i + cic

T
i . The norm on

the right hand side is the same as the maximum eigenvalue
of
∑

i

cic
T
i

d2

i,min

. Now it is easy to see that unless the eigen-
vectors corresponding to the minimal eigenvalue on the left
hand side also happen to be eigenvectors corresponding to
the maximum eigenvalue of

∑

i

cic
T
i

d2

i,min

, (22) is a strictly
stronger bound than (26). That is, (26) implies (22) but not
the other way around. In [5], a weighting function is also
introduced to improve the bound in (26). However, such
weighting functions have no effect on our bound. It is easy
to show that the test will give the same answer regardless of
any weighting.

The most important difference to [5] is, however, not that
our bound is stronger, but that (i) we can handle a larger
class of problems and (ii) we are able to go beyond verifi-
cation, see Section 4.
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3. Verifying Optimality
3.1. Bounding the Depths

Each residual fi(x) in (10) satisfies fi(x) ≤ ε2max. Since
each fi(x) is a quasiconvex function, the constraint can be
rewritten as a convex constraint. The maximum and mini-
mum depths over R may be computed by solving the fol-
lowing convex programs for i = 1, ...,m,

max or min cT
i x + c̃i

||aT
j x + ãj , b

T
j x + b̃j || ≤ εmax(cT

j x + c̃j), j = 1, ...,m.

This type of program is a so called Second Order Cone
Program (SOCP) and it is easily solvable using commonly
available software packages, for example, SeDuMi [13].

Slightly looser bounds on the depths can be obtained
by instead solving the following linear programs for i =
1, ...,m,

max or min cT
i x + c̃i

|aT
j x + ãj | ≤ εmax(cT

j x + c̃j)

|bT
j x + b̃j | ≤ εmax(cT

j x + c̃j), j = 1, ...,m.

Linear programming is considerably faster than SOCP. For
our experiments, we have tried both methods of bounding
the depths but we have not found any significant difference
between the resulting depths.

3.2. A Further Improved Sufficient Condition

If the minimum and maximum depths differ a lot the con-
dition derived in (22) may become weak, and insufficient to
prove convexity, even though the original problem is con-
vex. We will take a step back and derive an improved pro-
cedure for verifying optimality.

Consider again the sufficient condition in (16). As be-
fore, we may replace ε(x) by εmax to obtain another suf-
ficient condition. This condition is equivalent to verifying
that

m
∑

i=1

µi

(

aia
T
i + bib

T
i − 9ε2maxcic

T
i

)

� 0, (27)

is fulfilled for 1
d2

i,max

≤ µi ≤ 1
d2

i,min

, i = 1, . . . ,m.
The bounds on µi determine a hyperrectangle in R

m. If
condition (27) is fulfilled when evaluated at all extreme
points (corners) of this hyperrectangle, it follows by con-
vexity that the condition is fulfilled for the whole domain

1
d2

i,max

≤ µi ≤
1

d2

i,min

, i = 1, . . . ,m.
This condition is stronger than (22) in the sense that if

(22) is satisfied then (27) will automatically be satisfied, but
the other way around might not be true. However, there is
a price to pay. There are 2m extreme points to check and
if the number of residuals m is large then this is simply
intractable.

3.3. Projective Coordinate Change

By changing projective coordinate systems, we will
reparametrize the domain of the error function f(x). This
may turn a non-convex function into a convex function. It is
easy to see that affine coordinate changes do not affect con-
vexity so it is enough to restrict our attention to transforma-
tions that change the plane at infinity. Cheirality conditions
also apply, that is, all 3D-points must remain in front of the
cameras. See [6] for more details on projective geometry.

Even if there exists a transformation T : P
n 7→ P

n which
makes the error function f(x) convex over the transformed
domain T (R), it is a hard optimization problem to find it.
Note that the maximum and minimum depths change when
the plane at infinity is transformed, so it is required that
the bounding depths are recomputed as well. We have tried
different strategies and have found that maximizing λmin

in (22) directly over the set of (feasible) planes at infinity
works well. As the objective function is not differentiable,
random search directions are applied to the current solution
in order to iteratively find better and better solutions. If the
minimum eigenvalue becomes non-negative, then the con-
vexity condition holds.

3.4. Test Procedure

The following steps are performed in order to verify op-
timality:

1. Compute a local minimizer xlocal (with bundle adjust-
ment).

2. Compute maximum/minimum depths over R in (2),
see next section for details.

3. Test if the convexity condition in (22) holds.

For most problem instances (see experimental section),
this test will give a positive answer and we are done. If the
condition is not fulfilled, then we cannot draw any definite
conclusion. Still, there is more we can do.

4. Test a stronger convexity condition, see Section 3.2.

If this test also fails, then again, one cannot draw any con-
clusion. Either xlocal is not the global minimizer or the suf-
ficient conditions are simply too weak. In Section 4 we will
show how one can determine which is the correct conclu-
sion using a more sophisticated procedure. The price to pay
is computational effort.

5. Change projective coordinate systems and test condi-
tion (22) again, see Section 3.3.

Convexity is not invariant under projective transformations,
so by changing coordinate systems it may in some cases be
possible to verify convexity.
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4. Computing the Global Solution

When the procedure for verifying optimality fails, it is a
bit unsatisfactory that the reason for failure is unclear. Ei-
ther there exists a better local minimum or the sufficient
condition is too weak. In this section we will devise an al-
gorithm that will always give an answer to the problem at
hand.

The strength of condition (22) depends on the size εmax

of the region R defined in Section 2.1. For large scale re-
constructions, with potentially thousands of residuals, it is
possible that εmax may become large, and the error function
f(x) is non-convex.

The idea is to reduce the feasible domain R into two
smaller domains R1 and R2 and then try to verify optimal-
ity in each domain separately. We may also find other (lo-
cal) minimizers in the subdomains which can turn out to be
the actual global solution, denoted xglobal, we are looking
for. The process is iterated until convergence.

Let i ∈ {1, . . . ,m}. Then, for every η ∈ (0, 1), exactly
one of the following two hypotheses will be true:

1. fi(x
global) ∈ [ 0, ηε2max ].

2. fi(x
global) ∈ ( ηε2max, ε2max ], which implies that fj ≤

(1 − η)ε2max for all j ∈ { 1, . . . ,m } \ {i}.

The two hypotheses will generate two convex regions
R1 ⊂ R

n and R2 ⊂ R
n whose union will be smaller than

the original domain, that is, R1 ∪ R2 ⊂ R. In order to
prove optimality, it is sufficient to verify optimality for the
two regions R1 and R2.

The branching of regions into smaller regions will gen-
erate a tree of nodes. Each residual fi(x) in every node will
have a lower and an upper bound. For each node, the test
procedure described in Section 3.4 is applied. Of course, if
the minimizer xlocal is already in the domain, there is no
need to recompute it. The following things can happen:

• The feasible region is empty. This node in the tree
needs no further examination.

• The sum of upper bounds of squared residual error is
lower than ε2max. If the domain is non-empty, one can
conclude there is a lower-residual solution compared
to f(xlocal) = ε2max.

• The sum of lower bounds of squared residual error is
higher than ε2max. Such domains cannot contain the
global solution and can be discarded.

• The convexity test holds and hence the L2 error func-
tion is convex on the domain. One can conclude that
there is only one possible local minimum. The node
needs no further examination.

• The convexity test fails. The node needs to be
branched upon again and put in the list of nodes to
examine.

This is a classical branch and bound scheme. There are
many possible branching strategies. We simply choose to
branch on the residual with the largest interval length and
we set η = 1/2 in the experiments. Convergence follows
from the fact that there always exists an open set containing
the global minimum where the function is convex.

5. Experiments
Synthetic Data. To test the sensitivity to noise of the
verification test (steps 1-3 in Section 3.4), we artificially
generated a number of synthetic instances of triangulation,
homography estimation and camera resectioning (i.e., un-
calibrated camera pose) which are projective least-squares
problems. The data was generated by randomly placing 3D-
points inside the unit cube of R

3 and the cameras were ran-
domly placed on the sphere of radius 2 directed at the origin.
For homography estimation, the 3D-points were placed on
the plane z = 0 and the cameras were located on the same
side of the plane. The size of the obtained images is around
2× 2 units. Finally we added noise with (varying) standard
deviation σ to the image measurements.

Figure 1 shows the fraction of problems that could be
verified to be optimal as a function of σ, using the basic
bound (22). Each local minimizer was computed with bun-
dle adjustment. For each noise level we ran 250 instances of
the problem. As can be seen, we are able to verify optimal-
ity for much higher noise levels in the triangulation case.
One likely reason is that for similar noise levels, the sum of
squared residuals ε2max will be larger for resectioning and
homography estimation compared to triangulation since we
have a larger number of residuals. For triangulation, bun-
dle adjustment finds verifiable solutions for noise levels up
to 0.05 units (which corresponds to measurement errors of
2.5% of the image size), whereas for resectioning and ho-
mography estimation, the corresponding number is 0.005
pixels (0.25%).

Note that it is not possible to decide whether there is a
local minimum (with residual error less than ε2

max) if the
verification test is unsuccessful. All we can say is that we
are certain that there is none if the test is successful.

Notre Dame. This data set was originally created in [12]
and it was also used to verify optimality for triangulation by
Hartley and Seo in [5]. We perform an experimental com-
parison of the bounds derived in this paper (cf. Section 2.4).

Out of 277887 triangulated 3D-points, 229 instances
could not be verified with the bound of Hartley and
Seo (26). With our primary bound in (22), 224 instances
were unsuccessful and after applying the stronger secondary
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Figure 1. Synthetic experiments. Fraction of solutions that could be verified vs. the standard deviation of the noise level. Left: triangulation,
middle: homography estimation, right: resectioning. (A noise level of 0.01 corresponds to a pixel error of 0.5 % of the image.)

bound derived in Section 3.2, 174 cases remained. By trans-
forming the plane at infinity, another 134 cases could be
proven to be optimal. The remaining 40 triangulation prob-
lems were proven to be global solutions by the branch and
bound method in Section 4. Only a few branching steps
were required to provide the certificate of optimality. Note
that all 277887 problem instances were proven to be glob-
ally optimal and not a single local optimum was found! See
Table 1 for a summary of the results. Each problem instance
takes on the average less than 2.0 milliseconds to verify on
a 3.2GHz Pentium written in C++ (excluding the time for
branch and bound).

In the case of triangulation, the practical difference be-
tween the bound by Hartley and Seo compared to our pri-
mary bound is minor. However, when adapting the bound
of Hartley and Seo to other problems with more degrees of
freedom, we have found that the difference is significant.
For example, almost all the instances of structure and mo-
tion with known rotation in Tables 1-5 were unsuccessful.

Dinosaur. This turn-table sequence consists of 36 images
with 328 given point features. The complete 3D reconstruc-
tion was computed with standard structure from motion rou-
tines (including refinements by bundle adjustment).

The multiview geometry problems tested were triangu-
lation, camera resectioning and structure and motion with
known rotations. See Table 2 for a summary of results. Both
camera resectioning and triangulation work very well for
this type of scene and camera motion. It was not possible to
prove optimality for the whole sequence (assuming known
rotations), only for up to 22 images. Note that this setup
is still a large structure and motion problem: 22 cameras
and several hundreds of 3D points. When going beyond 22
images, the primary bound was not sufficient. We did not
apply the secondary bound, projective transformations nor
branch and bound due to the size of the setup. We also tried
verifying 100 random pairs of images with common feature
points in this pair, and similarly 100 random triples with all
common feature points, with 100% success rate. Only pairs
and triples with at least 10 feature points were selected.

The Christ Statue. The images were collected from
various tourist photographs of this well-known statue and
reconstructed with standard structure and motion routines.
Similar experiments as for the Dinosaur sequences were
performed with similar success rates, see Table 3.

Corridor. The forward camera motion for this 11-image
sequence is quite different from the other sequences. Veri-
fying global optimality for triangulation and camera resec-
tioning turned out to be no problem, but for the other multi-
view problems it was more difficult, see Table 4.

There are several 3D planes in the scene and we took
all the point features on the left frontal wall and computed
all pairwise 3 × 3 homographies for this plane using bun-
dle adjustment. Out of the

(

11
2

)

= 55 pairs, 27 were suc-
cessfully verified with the primary bound. The secondary
bound was not applied since there are way too many resid-
uals (around 100 correspondences). Using projective coor-
dinate changes, we were able to verify all but 6 homogra-
phies. The 6 remaining pairs were verified using the branch
and bound with only one branching step in each case.

The known rotation case turned out to be more difficult,
which is consistent with the findings in [17]. Not a sin-
gle test was successful for the primary bound. We did not
apply the other methods due to the size of the setup. The
whole sequence has 11 cameras and more than 4000 im-
age points, so just computing all the depth bounds takes
time. (The size for the LP constraint set is approximately
4 × 4000 = 16000 since each image coordinate gives rise
to two inequality constraints, see Section 3.1).

Arnold. A final experiment with 6 images of a poster was
tested, see Figure 2 and Table 5. In this scene, all 3D fea-
ture points are on a plane, and hence uncalibrated camera
resectioning is impossible. Triangulation of all 3D points
(in total, 1639 points) as well as all pairwise homographies
(15 in total) induced by the plane were successfully verified
by the primary bound. The results with known rotation were
as follows. 9 out of 15 pairwise images were successfully
verified and 17 out 20 image triples were verified.
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To summarize, reconstruction problems with small di-
mensions can always be handled with little extra compu-
tational effort (the primary bound generally works) while
for larger problems the picture is more mixed. The success
rate depends on the geometry of the scene as well as the
motion of the camera. Images taken with a wide baseline
seem to be more easily verifiable compared to other camera
motions. As the number of residuals increases, it becomes
harder to verify optimality - just as expected.

6. Conclusions
We have shown how to compute global solutions for

multiple view geometry problems. The goal of getting glob-
ally optimal solutions in the maximum likelihood sense is
actually tractable even for large scale problems. From a
practical point of view, one can conclude that it is relatively
inexpensive (in terms of computational effort) to guarantee
optimality for problems with small dimensions (like trian-
gulation and camera resectioning) while for larger problems
the picture is more mixed. The experiments indicate that it
is relatively cheap to verify optimality for problems with
large baselines.

Another conclusion is that for projective least-squares
problems, the local minima problem does not seem to be
a major problem. However, we should bear in mind that our
experiments are biased since they are based on sequences
that have been successfully reconstructed with standard
structure and motion methods. So, bad solutions have al-
ready been eliminated with (good) heuristics. With the tools
proposed in this paper, one could identify if a bad solution
was due to the local minima problem or if it was caused by
some other problem (for example, outliers).

Acknowledgments. This work has been funded by the Eu-
ropean Research Council (GlobalVision grant no. 209480), the
Swedish Research Council (grant no. 2007-6476) and the Swedish
Foundation for Strategic Research (SSF) through the programme
Future Research Leaders.

References
[1] S. Agarwal, N. Snavely, and S. Seitz. Fast algorithms for L∞

problems in multiview geometry. In Conf. Computer Vision
and Pattern Recognition, Anchorage, USA, 2008.

[2] C. Engels, H. Stewénius, and D. Nistér. Bundle adjustment
rules. In Photogrammetric Computer Vision (PCV), 2006.

[3] A. Fusiello, A. Benedetti, M. Farenzena, and A. Busti.
Globally convergent autocalibration using interval analy-
sis. IEEE Trans. Pattern Analysis and Machine Intelligence,
26(12):1633–1638, 2004.

[4] R. Hartley and F. Kahl. Optimal algorithms in multiview
geometry. In ACCV, pages 13–34, 2007.

[5] R. Hartley and Y. Seo. Verifying global minima for L2 min-
imization problems. In Conf. Computer Vision and Pattern
Recognition, Anchorage, USA, 2008.

Figure 2. One image of the Arnold sequence with feature points.

[6] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004.

[7] F. Kahl, S. Agarwal, M. K. Chandraker, D. J. Kriegman, and
S. Belongie. Practical global optimization for multiview ge-
ometry. Int. Journal Computer Vision, 79(3):271–284, 2008.

[8] F. Kahl and R. Hartley. Multiple view geometry under the
L∞-norm. IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 30(9):1603–1617, 2008.

[9] N. Kai, D. Steedly, and F. Dellaert. Out-of-core bundle ad-
justment for large-scale 3d reconstruction. In Conf. Com-
puter Vision and Pattern Recognition, Minneapolis, USA,
2007.

[10] Q. Ke and T. Kanade. Quasiconvex optimization for robust
geometric reconstruction. IEEE Trans. Pattern Analysis and
Machine Intelligence, 29(10):1834–1847, 2007.

[11] C. Olsson, F. Kahl, and M. Oskarsson. Branch and bound
methods for Euclidean registration problems. IEEE Trans.
Pattern Analysis and Machine Intelligence, 31(5):783–794,
2009.

[12] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: Explor-
ing photo collections in 3d. ACM SIGGRAPH, 25(3):835–
846, 2006.

[13] J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for opti-
mization over symmetric cones. Optimization Methods and
Software, 11-12:625–653, 1999.

[14] J.-P. Tardif, A. Bartoli, M. Trudeau, N. Guilbert, and S. Roy.
Algorithms for batch matrix factorization with application to
structure-from-motion. In Conf. Computer Vision and Pat-
tern Recognition, Minneapolis, USA, 2007.

[15] C. Tomasi and T. Kanade. Shape and motion from image
streams under orthography: a factorization method. Int.
Journal Computer Vision, 9(2):137–154, 1992.

[16] B. Triggs, P. McLauchlan, H. R.I, and A. Fitzgibbon. Bundle
adjustment - a modern synthesis. In Vision Algorithms’99,
pages 298–372, in conjunction with ICCV’99, Kerkyra,
Greece, 1999.

[17] A. Vedaldi, G. Guidi, and S. Soatto. Moving forward in
structure from motion. In Conf. Computer Vision and Pat-
tern Recognition, Minneapolis, USA, 2007.

1222



Problem Instances Method Unsuccessful tests
Triangulation 277887 points Hartley and Seo (26) 229

Primary bound (22) 224
Secondary bound (27) 174

Projective change 40
Branch and bound 0

Table 1: Results for Notre Dame.
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Problem Instances Method Unsuccessful tests

Triangulation 328 points Primary bound (22) 0
Resectioning 36 cameras Primary bound (22) 0

Known rotation 36 images Primary bound (22) 1
22 images Primary bound (22) 0

100 random pairs Primary bound (22) 0
100 random triples Primary bound (22) 0

Table 2: Results for Dinosaur.

Problem Instances Method Unsuccessful tests
Triangulation 185 points Primary bound (22) 0
Resectioning 76 cameras Primary bound (22) 0

Known rotation 100 random pairs Primary bound (22) 12
Projective change 11

100 random triples Primary bound (22) 3
Projective change 3

Table 3: Results for the Christ Statue.

Problem Instances Method Unsuccessful tests
Triangulation 737 points Primary bound (22) 0
Resectioning 11 cameras Primary bound (22) 0
Homography 55 pairs Primary bound (22) 28

Projective change 6
Branch and bound 0

Known rotation 11 images Primary bound (22) 1
55 pairs Primary bound (22) 55

165 triples Primary bound (22) 165
Table 4: Results for Corridor.

Problem Instances Method Unsuccessful tests
Triangulation 1639 points Primary bound (22) 0
Homography 15 pairs Primary bound (22) 0

Known rotation 15 pairs Primary bound (22) 6
20 triples Primary bound (22) 3

Table 5: Results for Arnold.
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