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Abstract
Feature misalignment in object detection refers to

the phenomenon that features which fire up in some
positive detection windows do not fire up in other pos-
itive detection windows. Most often it is caused by
pose variation and local part deformation. Previous
work either totally ignores this issue, or naively per-
forms a local exhaustive search to better position each
feature. We propose a learning framework to mitigate
this problem, where a boosting algorithm is performed
to seed the position of the object part, and a multiple
instance boosting algorithm further pursues an aggre-
gated feature for this part, namely multiple instance
feature. Unlike most previous boosting based object de-
tectors, where each feature value produces a single clas-
sification result, the value of the proposed multiple in-
stance feature is the Noisy-OR integration of a bag of
classification results. Our approach is applied to the
task of human detection and is tested on two popular
benchmarks. The proposed approach brings significant
improvement in performance, i.e., smaller number of
features used in the cascade and better detection accu-
racy.12

1. Introduction
Pose articulation and local part deformation are

among the most difficult challenges which confront ro-
bust object detection. For scanning-window-based ob-
ject detectors, they produce one common issue which
we call feature misalignment. It refers to the phe-
nomenon that features which fire up in some positive
detection windows do not fire up in other positive de-
tection windows.

Holistic methods [1,8,15,19,25] that concatenate lo-
cal visual descriptors in a fixed order, such as HOGs [1],
are inevitably cursed by this phenomenon. Part-based
approaches such as [7, 11, 22] handle misalignment by
training part classifiers and assembling their responses.

1The majority of this work is carried out when Zhe Lin is an
intern at Microsoft Live Labs Research.

2We illustrate and demonstrate our approach mainly in the
context of human detection while the general approach we pro-
pose can be directly applied to many other object categories such
as bikes, cars, animals, etc.

(a) Global or Holistic (b) Local, Part-based

Figure 1. Multiple instances. (a) An example of global
(holistic) instances (9 instances from uniform neighbor-
hood); (b) An example of local (part-based) instances for a
two-part object (only 12 are shown among 9×9 instances).
It is obvious that part-based multiple instances better cap-
ture articulation of a deformable object since each part can
have independent placement.

Even though they can handle part misalignment some-
how, training a classifier for every part might be com-
putationally expensive. Intuitively, adopting a part-
based representation in the holistic method, if appro-
priately modeled, may largely alleviate the feature mis-
alignment issue.

Previous work [2, 4, 6, 18] has approached this prob-
lem by allowing object parts to scale and/or shift spa-
tially for better feature alignment, and leveraging ma-
chine learning algorithms to determine the optimal con-
figuration of the visual parts. However, most of these
approaches [4,6,18] manually picked the object parts to
learn the configuration. There is no guarantee that the
manual part selection would be optimal for detection.

On the other hand, some boosting-based ap-
proaches [5, 16, 19, 23, 25] implicitly select visual parts,
but they do not take feature misalignment into consid-
eration. Meanwhile, multiple instance learning [14, 21]
has been demonstrated to effectively handle object mis-
alignment at the holistic level (i.e., the whole detection
window). A natural question to ask is: can we extend
the idea of multiple instance learning to handle the
problem of feature misalignment? The answer is indeed
quite straightforward by allowing multiple instances at
the part levels. Figure 1 illustrates the difference be-
tween global [14, 21] and local part-based multiple in-
stance schemes.
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Hence, we introduce a framework for learning part-
based object detectors which are robust to feature mis-
alignment, and thus are robust to pose variation and
local part deformation. The main idea is the introduc-
tion of a more powerful feature, or equivalently weak
learner, into the Boosting framework for object detec-
tion. The new feature, called a multiple instance fea-
ture, is the Noisy-OR aggregation of the classification
results of a bag of local visual descriptors. Essentially,
each bag of local visual descriptors is considered as one
local part of the targeted object.

To efficiently utilize multiple instance features, in
contrast to Dollar et al .’s work [2], which runs mul-
tiple instance learning on a randomly selected set of
parts, we propose a novel seed-and-grow scheme. In
essence, at each feature selection step of boosting, we
first select an optimal ordinary feature, e.g., a decision
stump or a decision tree. Then based on the position
of the ordinary feature, we grow out to define the local
part (i.e., a bag of descriptors). A multiple instance
boosting algorithm [21] is further performed to obtain
the optimal multiple instance feature.

Our learning process is very efficient because of the
proposed seed-and-grow approach. Additionally, we
learn from multiple instances of both negative and pos-
itive examples and thus learning is done through very
tight and fair competition between positive and neg-
ative bags. An overview of our training and testing
algorithms is shown in Figure 3. Our main contribu-
tions are three-fold:

• A novel boosting-based learning framework to au-
tomatically align features for object detection.

• Multiple instance features for modeling part mis-
alignment/deformations.

• A seed-and-grow scheme to efficiently construct
the multiple instance feature.

The approach is applied to the task of human de-
tection (see a survey [13]) and classification results are
obtained on commonly used pedestrian benchmarks.
2. Multiple Instance Features
2.1. Aggregating Multiple Instances

A multiple instance feature basically refers to an ag-
gregation function of multiple instances. More specifi-
cally, given a classifier C, it is the aggregated output,
y, of a function, f , of classification scores, {yj}j=1...J ,
of multiple instances, {xj}j=1...J :

y = f(y1, y2, ...yJ) = f(C(x1), C(x2), ...C(xJ )). (1)

Suppose we have a set of labeled bags {xi, ti}i=1...n

where label ti ∈ {0, 1}. A bag xi consists of a set of

instances: xij , j = 1...Ni. The number of bags is n, and
the number of instances is N =

∑n
i=1Ni. Given a real-

valued (real-valued output) classifier C, the score yij of
an instance xij can be computed as: yij = C(xij). The
probability of an instance xij being positive is modeled
by the standard logistic function [21] as: pij = p+

ij =
1

1+exp(−yij)
.

In [9], a multiple instance learning problem is formu-
lated as the maximization of diverse density which is a
measure of intersection of the positive bags minus the
union of negative bags. The diverse density is proba-
bilistically modeled using a Noisy-OR model for han-
dling multiple instance learning problems. Under this
model, the probability of a bag being positive is given
by pi = 1−∏Ni

j=1(1−pij). We modify this by taking the
geometric mean to avoid numerical issues when Ni is

large, so instead, we use pi = 1− (
∏Ni

j=1(1− pij))
1/Ni

.
Intuitively, the model requires that at least one in-
stance in each positive bag has a high probability, while
all instances in each negative bag have low probabili-
ties. In terms of scores, the multiple instance aggre-
gated score yi is computed from instance scores yij as:

yi = log

⎛
⎝(∏

k

(1 + eyij)

)1/Ni

− 1

⎞
⎠, (2)

which can be easily derived from the relation between
pi and yi, i.e. pi = 1

1+exp(−yij)
. We refer to the above

aggregated score computed from Equation 2 as multi-
ple instance feature.
2.2. Learning Multiple Instance Features

Learning multiple instance features involves estima-
tion of the function f and instance classifier C. As-
suming that the aggregation function f is given as
the Noisy-OR integration, we can learn the instance
classifier C via multiple instance boosting (MILBoost),
which was originally introduced in [21], as an applica-
tion of the diverse density to rare event detection prob-
lems to handle misalignment of examples in training
images. In MILBoost, each training example is repre-
sented as multiple instances residing in a bag, and the
bag and instance weights are derived under the Any-
boost framework [10] which views boosting as gradient
descent.

Given an adaboost classifier C = {λt, ht(·)}t=1...T ,
the score yij of an instance xij is computed as a
weighted sum of scores from all weak classifiers ht(x):

yij = C(xij) =
∑

t

λtht(xij), (3)

where ht(x) ∈ {−1,+1} and the weight λt > 0.
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The overall likelihood assigned to a set of labeled
training bags is

L(C) =
∏

i

pi
ti(1− pi)

1−ti . (4)

Hence, the learning task is to design a boosted classifier
C so that the likelihood L(C) is maximized. This is
equivalent to maximize the log-likelihood

logL(C) =
∑

i

ti log pi + (1− ti) log (1− pi). (5)

According to the Anyboost framework [10], the weight
of each example is given as the partial derivative of the
likelihood function (which can be regarded as a nega-
tive cost function) w.r.t. a change in the instance score
yij . Hence, the instance weights wij can be derived (see
appendix for the detailed derivation) as:

∂ logL(C)
∂yij

= wij =
1
Ni

ti − pi

pi
pij , (6)

where the weights for positive and negative examples
are w+

ij = 1
Ni

ti−pi

pi
pij and w−ij = − 1

Ni
pij , respectively.

Interestingly, the formula for the weight values are ex-
actly 1/Ni-scaled versions of the ones derived in [21].
The boosting process is composed of iterative weight
updates and additions of weak hypotheses. Based
on [10,21], each round of boosting is conducted through
the following two steps:

• search for the optimal weak classifier h(x) ∈ {−1,+1}
which maximizes the energy function ψ(h):

ψ(h) =
∑

ij

wt
ijh(xij) (7)

under the current weight distribution wt
ij and set the

optimal weak hypothesis as ht+1.

• given the previous classifier Ct(x) =
∑t

τ λtht(x)
and the currently chosen weak classifier ht+1, search
for the optimal step size λ∗t+1 so that L(Ct(x) +

λt+1ht+1(x)) is maximized, and set Ct+1(x) =
Ct(x) + λ∗t+1h

t+1(x).

We learn multiple instance features at the part level,
and adopt them as potential weak classifiers for learn-
ing boosted deformable object detectors, which is dis-
cussed in Sec. 3 in detail.
3. Part-based Object Learning

Modeling deformable objects as a composition of
parts is a well-studied approach to object recognition.
For example, the pictorial structure model [3] rep-
resents an object as a set of visual parts placed in
a deformable configuration, where the appearance of
each part is modeled separately and deformation is
modeled as a set of spring-like connections between
parts. In object detection, most existing part-based

Figure 2. An example of part-based object model learning.
The learning process consists of iterative modules of dis-
criminative part selection and part classifier learning.

approaches [7, 11, 12, 22] manually decompose an ob-
ject into semantic parts such as head-shoulder, torso,
and legs. In contrast, we aim for automatically select-
ing discriminative parts through training on labeled
examples.
3.1. Learning Framework

Suppose the object of interest to be modeled con-
sists of L parts (L is given). Each part is assumed to be
square or rectangular blocks or regions3. The learning
algorithm should automatically figure out the most dis-
criminative combination of L parts (or regions) among
the set of Np candidate visual parts: P = {P1, ...PNp}.
A part Pj is represented as a set of instances which cor-
respond to a set of locally neighboring (possibly over-
lapping) local image regions.4 From each instance (an
image region) of a part, a predefined feature set Fj

is computed and a subset of those features are chosen
to contribute to the final strong classifier. From each
selected part, a fixed number of weak classifiers are
learned and added to the final strong classifier.

Our object model learning framework is visualized in
Figure 2. It adopts an efficient seed-and-grow scheme
to boost multiple instance features. The framework
first selects the most discriminative part by locating a
seed feature from the whole feature pool, and then
training the part’s classifier using multiple instance
boosting by adding features to that part (i.e. growing).
The two modules are repeated to progressively select
parts and learn their classifiers. Note that the learning
process focuses on a single part (region) at a time, i.e.,
multiple instances are only considered for the currently
active part. After a part is learned, all features belong
to that part are removed from the current feature pool
so that it will not be selected again. The first feature
(or weak classifier) for the next part is chosen from the
remaining (unexplored) feature pool as in the ordinary

3The regions can be arbitrary regions in a detection window
and need not to be semantic object parts.

4Given a potential part and a training example, a bag in-
cludes (feature) instances extracted from a set of neighboring
local image regions around the part’s default location. The set
of neighboring image regions can be obtained either by jittering
the default part region or uniformly sampling regions in spatial-
scale space around the default location.
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boosting approach. Then the region (or block) corre-
sponding to that part is localized. Next, subsequent
(2nd, 3rd,...) weak hypotheses of that localized part
are learned using MILBoost [21] (see Sec. 2.2). In this
boosting framework, part selection and weak classifier
training are simultaneously performed. Part selection
provides a weak learner pool for the current boosting
round. The final strong classifiers are constructed by
boosting multiple instance features from selected parts.
The multiple instance features are directly used as ad-
ditive weak hypotheses to construct the final strong
classifier (see Figure 3).
3.2. Weak Classifiers for Multiple Instance Features

As mentioned before, for constructing a cascade
classifier, the training algorithm needs to repeatedly
add weak learners ht(x) to the classifier C. Each
weak learner ht(x) is chosen based on the criterion
of maximizing ψ(h) =

∑
ij w

t
ijht(xij). Instead of bi-

nary stumps [20], we use more informative domain-
partitioning weak classifiers as in [17], where each weak
hypothesis makes its prediction based on a partitioning
of a feature’s domain X into disjoint regions X1, ...XK .
Suppose we partition the domain of h(x) into K bins
and assign binary values ck = {+1,−1} to each bin
k = 1, 2..K, i.e., ck = h(x) for x ∈ Xk. The goal is to
find the optimal weak hypothesis h∗(x) (consisting of
the K − 1 partition thresholds and the binary values
{ck}k=1,2...K) such that ψ(h) is maximized. Finding
partition thresholds is equivalent to learning a binary
decision tree with �log2K� levels, e.g. for K = 8, we
learn a three-level decision tree classifier. For each fea-
ture, a greedy optimization process is applied to adjust
the partition thresholds (by an iterative binary split-
ting algorithm) and optimal score values ck for the par-
titioned intervals are determined so that ψ(h) can be
minimized for that feature.

For each k and for b ∈ {−1,+1}, let

W k
b =

∑
ij:xij∈Xk∧tij=b

wij . (8)

Then, ψ(h) in Equation 7 can be rewritten as:

ψ(h) =
∑

k

∑
ij:xij∈Xk

wijh(xij) =
∑

k

ck(W k
+ +W k

−).

(9)
This means that we only need to choose ck based on
the sign of W k

+ +W k
−, i.e., ck = sgn(W k

+ +W k
−).

All that remains is to estimate the step size αt for
the chosen weak hypothesis ht(x) = h∗(x) so that the
objective function L(C + λtht) is maximized. This is
done by line search in some interval [0, γ] (γ = 5 and
search step size as 0.01 are shown to be adequate in
our experiment).

Figure 4. Visualization of an example feature selection pro-
cess (better viewed in color). Red, green and blue square
blocks denote 1st, 2nd and 3rd scale/resolution level fea-
tures respectively. Columns from left to right indicate fea-
tures selected in different stages of the learning algorithm,
and the final column shows accumulated evidence.

The resulting step sizes λt from the above process
are uniformly assigned to all intervals of a feature’s do-
main. This poses the question of how we can generalize
it to confidence-rated step sizes (nonuniform step sizes
λk

t for different interval k). We introduce a greedy op-
timization to improve the step sizes as follows:

• initialize step sizes λt,k = λt, k = 1, 2...K

• for k=1:K

– search over an interval (λt−δ, λt +δ), find max-
imum likelihood estimation λt,k = λ∗t,k so that

L(C, λ∗t,1, ..., λ
∗
t,k−1, λt,k, ...λ

K
t ) is maximized.

• endfor

• return λ∗t,1, ..., λ
∗
t,K .

The overall training and testing algorithms are shown
in Figure 3. We assume that both positive and nega-
tive examples consist of multiple instances and reside
in bags so that a discriminative classifier can be learned
via a tight competition between positive and negative
examples. An example visualization of part selection
is shown in Figure 4. As we can see, most discrim-
inative parts are selected in legs, head, head-shoulder
areas and more features are chosen from salient regions
around human silhouette boundaries.

4. Implementation

We use multi-scale, multi-resolution shared HOG
feature descriptors as the feature pool of our object
learning and detection algorithms. The descriptor is
a multi-resolution generalized version of histograms of
oriented gradients (HOGs) [1] and is formed by ex-
tracting and concatenating dense descriptor elements
from multiple resolutions. A descriptor element is a
36-dimensional vector computed from a 2× 2-cell spa-
tial block. Descriptor elements computed at higher
pyramid levels correspond to larger spatial blocks at
lower resolutions. We concatenate all descriptor ele-
ments (from three different resolution levels in which
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TRAINING ALGORITHM
Input:

� Labeled training examples {xi, ti}i=1...N , where ti ∈ {0, 1}.
� The number of parts to learn L and a pool of candidate parts Pj , j = 1, 2..Np. Each part j corresponds to a set

of bags {xij , ti}i=1...N , where each bag xij consists of instances {xijk, ti}i=1...N .

Initialization:

� Initialize weights wi, i = 1...N such that wpos =
Nneg

Npos+Nneg
and wneg = − Npos

Npos+Nneg
.

� Set F 1 ← F , classifier C ← φ (empty set), and example scores yi ← 0, i = 1...N , where F = F1 ∪ F2... ∪ FNp is
the set of all features from all candidate parts.

Training:
For l = 1...L:

� From F l, form a weak learner h (corresponding to a feature fmn) to maximize
∑N

i=1 wih(xi) under the ordinary
adaboost setting (no multiple instances are allowed), and set hl

1 = h.

� Localize a part based on feature fmn and set the part index as IDX(l) = m.

� Train a MILBoost classifier Cl, y = Cl(x) =
∑Tl

t=1 λ
l
th

l
t(x) =

∑Tl
t=1 c

l
t(x).

� Update the overall strong classifier as: C ← C + C l.

� Use Equation 2 to compute the multiple instance features yil for all i = 1...N .

� Update example scores by boosting multiple instance features yil, i = 1...N , yi ← yi + yil.

� F l+1 = F l − Fm. (remove all features belonging to part m from the current feature pool.)

� Set the rejection threshold rth(l) of stage l as the minimum positive score: minti=1{yi} .

Output: Overall classifier C = {Cl}l=1...L and the set of rejection thresholds {rth(l)}l=1...L.

TESTING ALGORITHM
For a test example x, set the initial score y = 0
For l = 1...L:

� Use Equation 2 to compute the multiple instance feature yl, and update the score y ← y + yl.

� if y < rth(l), reject; else continue.

Decide positive if l = L and y ≥ rth(L); else negative. Detection confidence: prob = 1
1+exp(−y)

.

Figure 3. Part-based Object Learning and Testing Algorithms.

consecutive levels differ by a factor of 2) which are rel-
evant to a detection window to form the descriptor for
that window. Hence, for a typical 64× 128 pedestrian
detection window, there are total of 105+21+3 = 129
spatially overlapping blocks. The dimensionality of the
descriptor is 36× 129 = 4644.5

In the object learning algorithm implementation
(see Figure 3), each training and testing example xi

represents a 64× 128 image patch, and each candidate
part Pj is defined as a HOG block (one of 129 multi-
resolution blocks) and its feature pool Fj consists of
36 features (i.e. HOG features of a block). The overall
set of features is F = F1 ∪ F2... ∪ FNp and the feature
set of each part Pj is represented as the feature pool
Fj = {fj1...fjd} for part j. Each part j of an example
xi is modeled as a bag denoted as xij and instances of
the bag is denoted as xijk . We fix the number of weak
learners for a part to be a constant (Tl = T, l = 1, 2...L)
in our current implementation.

5In this section and the algorithm in Figure 3, the meanings
of subscripts i, j, k are example, part and part instance, respec-
tively, and are different from previous sections.

In practice, instead of adding a fixed number of
weak classifiers for each part, we use an adaptive
method by adding weak learners until the contribution
of the next weak hypothesis falls below some threshold
δ > 0, i.e. terminate adding weak hypothesis when∑

ik wijkht(xijk) < δ (where i, j, and k denote exam-
ple, part, part instance, respectively) or the step size
is small λt < δ.

5. Experiments

5.1. Datasets
We use the INRIA person dataset6 [1] and the MIT-

CBCL pedestrian dataset7 [12, 15] for performance
evaluation. In these datasets, training and testing sam-
ples all consist of 64 × 128 image patches. Negative
samples are randomly selected from raw (person-free)
images; positive samples are cropped (from annotated
images) such that persons are roughly aligned in lo-
cation and scale. The MIT-CBCL dataset contains

6http://lear.inrialpes.fr/data
7http://cbcl.mit.edu/software-datasets/

PedestrianData.html
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(b) INRIA dataset(nwls per part=24)
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Figure 5. Performance evaluation results on the INRIA dataset (nwls means number of weak classifiers). (a) Evaluation of
our part-based detectors (18 weak classifiers for a part) with increasing numbers (72-432) of weak classifiers. (b) Evaluation
of our part-based detectors (24 weak classifiers for a part) with increasing numbers (96-576) of weak classifiers. (c) Evaluation
of our (multi-line-search) part-based detector. (d) Two detectors trained using our part-based approach are compared to
HOG-Ker.SVM [1], HOG-Lin.SVM [1], HOG Cascade [25], and Classification on Riemannian Manifolds [19]. The results
of [1] are approximate and are obtained from the original paper, and the results of [19, 25] are obtained by running their
original detectors on the test data. (e) Evaluation of the two detectors (trained on the INRIA dataset) on the MIT dataset.

Table 1. Other comparison results on the INRIA dataset.
Miss rates(%) (with respect to FPPW values) are com-
pared. Results of [2, 6, 8, 14] are approximate and are ob-
tained from their original papers for comparison purposes.

FPPW [2] [14] [6] [8] nwls432 nwls648

1e-6 N/A N/A 20.9 16.0 16.0 20.6
1e-5 15.0 7.2 12.7 6.0 12.5 9.0
1e-4 4.0 4.2 5.8 2.5 4.0 4.0
1e-3 1.5 <1.5 1.6 <1.0 0.7 0.4

924 front/back-view positive images, and the INRIA
dataset contains 2416 positive training samples and
1218 negative training images plus 1132 positive testing
samples and 453 negative testing images. Compared to
the MIT dataset, the INRIA dataset is much more chal-
lenging due to significant pose articulations, occlusion,
clutter, viewpoint and illumination changes.

5.2. Performance Evaluation
In training and testing, we quantize the scale space

by a factor of σ = 21/4 = 1.1892 and scan windows by a
stride of 8 pixels. Negative examples are generated by
exhaustively scanning the original negative images. We
use Detection-Error-Tradeoff (DET) curves [1], plots of
miss rates versus false positives per window (FPPW)
for detection performance evaluation. Note that all

of our result curves are generated using 1281 different
thresholds (−64 : 0.1 : 64) applied to the final strong
classifier.
5.2.1. Evaluation on the INRIA Dataset

Figure 5(a) and 5(b) show performance of our de-
tectors learned with 18 and 24 weak classifiers, respec-
tively. We can see that the deeper into the cascade
(i.e. the more parts learned for the cascade), the bet-
ter the performance achieved, while the difference gets
smaller and performance generally converges at some
point (after adding certain number of parts). This indi-
cates that parts learned in earlier stages of the cascade
take much more important role than ones learned in
later stages. Figure 5(c) shows performance of our de-
tectors extended using multi-line-search-based learning
algorithm. The same trends of performance improve-
ment and convergence are observed as in the cases of
Figure 5(a) and 5(b). On the other hand, even though
richer weak classifiers are learned and fewer parts are
required to complete training, the performance does
not improve compared to the results of detectors us-
ing binary decision tree (Figure 5(a) and 5(b)). This
implies that heavily exploring information in small por-
tions of all available parts can lead to over-fitting; in-
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stead it might be better to choose an appropriate num-
ber of weak learners for each part so that broader in-
formation can be utilized in training by exploring more
visual parts.

Figure 5(d) shows performance comparison of our
approach with previous techniques [1, 19, 25]. Both of
our listed detectors perform better than the other ap-
proaches. The results are also compared to [2, 6, 8, 14]
on individual FPPW values (see Table 1). The table
indicates that our approaches are comparable to the
most recent pedestrian detectors.
5.2.2. Evaluation on the MIT Dataset

For cross validating on different datasets, instead of
training on the MIT dataset, we use two of our trained
detectors on the INRIA dataset and tested them on the
MIT dataset; the result is shown in Figure 5(e). Even
though we have not directly trained on this dataset,
the performance of our detectors achieve near perfect
detection performance, comparable to the detector [1]
which is directly trained on the MIT dataset. This
indicates that our detectors have good generalization
performance.
5.3. Analysis on Training and Testing

We also provide detailed analysis of our soft cascade
learning and testing results using the cascade classi-
fier inria-dim4644-nwls432. Figure 6(a) shows fea-
ture information contents w.r.t. the number of weak
learners in the cascade. We can see that the infor-
mation content8 of weak classifiers monotonically de-
creases in each part and increases to a high value at
every part-to-part switching point. In contrast, in the
part-level, as shown in Figure 6(b), a part’s informa-
tion content tends to decrease to 0. This is reasonable
because we constrain the feature pool to a selected part
when learning part classifiers (corresponding to the in-
ner loop of the learning algorithm), while a part’s outer
loop is a greedy boosting algorithm, where each part is
a weak classifier.

The distribution and occurrence frequency of fea-
ture types in the cascade are shown in Figure 7. More
than half of the features are chosen from the 2nd and
3rd scales/resolutions as shown in Figure 7(a). The
importance of features extracted at lower resolutions
(higher scales) is more clearly illustrated in Figure 7(b)
by showing the selection frequencies of each feature
type. Higher scale features are much more likely to
be chosen than the 1st scale features. This further
validates the usefulness of multi-scale, multi-resolution
descriptors. Figure 8(a) shows the score traces of the
first 5000 test windows based on the learned soft cas-
cade classifier. We observe that most of the positive

8defined as ν =
∑

k |ck|, the larger ν is the more evidence the
weak classifier contribute to final scores on average.
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Figure 6. Analysis on the learning result.
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Figure 8. Analysis on the testing results. (a) An example of
score traces for 5000 (1132 positive and 3868 negative) test
examples based on our learned soft cascade; (b) Detection
time w.r.t. the number of weak learners.

and negative test windows are well separated in earlier
stages of the cascade.

5.4. Computational Requirements
Our system is implemented in C++. Typically, the

training process takes less than half a day and testing
a 320 × 240 image (scanning 913 windows) less than
0.3 seconds. Figure 8(b) shows a plot of computational
time with respect to the number of weak classifiers.
The propagation through the cascade classifier takes
a negligible amount of time compared to feature com-
putation. Our testing approach can be further opti-
mized for speed using the multiple instance pruning
techniques [24].

5.5. Qualitative Results
Some qualitative results of our detectors on the IN-

RIA test images are shown in Figure 9. Given raw
detection results, windows are simply merged based on
their overlapping ratios.
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Figure 9. Some qualitative detection results.

6. Conclusion

We proposed a part-based, deformable object model
learning approach. The approach models object shape
articulations by considering multiple instances for each
part. Multiple part instances are generated by jittering
default local image patches spatially around its neigh-
borhood. Specifically, it selects the most discrimina-
tive visual parts and learns deformable part detectors
in a single, unified boosting framework. The frame-
work is constructed as soft cascade learning with part-
level multiple-instance boosting. In contrast to previ-
ous holistic detection approaches which need a large set
of training examples for handling variations in pose ar-
ticulation and obtaining reasonable detectors, our ap-
proach is more flexible in dealing with large pose vari-
ation or labeling misalignment in the training set. Our
approach models an object as a set of parts, but is still
sensitive to severe occlusion, hence the combination of
our approach with occlusion analysis schemes would
make detection of occluded objects more accurate. Ad-
ditionally, it is possible to extend current part transfor-
mation (spatial translation) to more general cases (e.g.
similarity or affine transformation) in order to better
handle shape articulations.

Appendix

Derivation of Equation 6:

∂ logL(C)
∂yij

=
∂ (
∑

i ti log pi + (1 − ti) log (1− pi))
∂yij

=
ti
pi

∂pi

∂yij
− 1− ti

1− pi

∂pi

∂yij
=

ti − pi

pi(1− pi)
∂pi

∂pij

∂pij

∂yij

=
ti − pi

pi(1− pi)
1
Ni

1− pi

1− pij
pij(1− pij) =

1
Ni

ti − pi

pi
pij .
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