
View-Invariant Dynamic Texture Recognition using a Bag of Dynamical Systems

Avinash Ravichandran, Rizwan Chaudhry and René Vidal
Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA

Abstract

In this paper, we consider the problem of categorizing
videos of dynamic textures under varying view-point. We
propose to model each video with a collection of Linear
Dynamics Systems (LDSs) describing the dynamics of spa-
tiotemporal video patches. This bag of systems (BoS) rep-
resentation is analogous to the bag of features (BoF) repre-
sentation, except that we use LDSs as feature descriptors.
This poses several technical challenges to the BoF frame-
work. Most notably, LDSs do not live in a Euclidean space,
hence novel methods for clustering LDSs and computing
codewords of LDSs need to be developed. Our framework
makes use of nonlinear dimensionality reduction and cluster-
ing techniques combined with the Martin distance for LDSs
for tackling these issues. Our experiments show that our
BoS approach can be used for recognizing dynamic textures
in challenging scenarios, which could not be handled by
existing dynamic texture recognition methods.

1. Introduction
Dynamic textures are video sequences of complex scenes

such as water on the surface of a lake, a flag fluttering in the
wind, etc. The constant change in the geometry of the these
objects poses a challenge for applying traditional vision
algorithms to these video sequences. Over the past few
years, several algorithms have been proposed for vision tasks
such as registration, segmentation and categorization of such
scenes. Among these tasks, the categorization of such video
sequences is of specific interest to us, because it is critical to
surveillance applications, such as detecting fires in tunnels,
leaks in pipes on ships, etc.

Doretto et al. in [6], showed that dynamic textures can be
modeled using a LDS. Using the LDS representation, several
categorization algorithms have been proposed based on the
LDS parameters, which live in a non-Euclidean space. One
popular genre of methods first defines a distance or a kernel
between the model parameters of two dynamical systems.
Once such a distance or kernel has been defined, classifiers
such as nearest neighbors or support vector machines (SVM)
[7] can be used to categorize a query video sequence based

on the training data. Among these methods, Saisan et al.
[12] used distances based on the principal angles between
the subspaces generated by the parameters of the LDSs. Vish-
wanathan et al. [15], used Binet-Cauchy kernels to compare
the parameters of two LDSs. Further, Chan et al. used both
the KL divergence [1] and the Martin distance [2] as a metric
between dynamical system. Finally, Woolfe et al. [18] used
the family of Chernoff distances and distances between cep-
strum coefficients as a metric between LDSs. Other types
of approaches for dynamic texture categorization, such as
Fujita et al. [8], divide the video sequences into blocks and
compare the trajectories of the states in order to perform the
inference. Alternatively, Vidal et al. [14] extended boosting
to LDSs by using dynamical systems as weak classifiers.

Although there exists several methods for dynamic tex-
ture categorization, most of these methods have validated
their performance on the database from [12], which consists
of 50 classes with 4 video sequences per class. However, if
one examines this database, several of the classes are from
a single category, e.g., water, but from different viewpoints.
Thus, in reality there are only 9 different semantic categories.
In addition to the lack of intraclass variability, most exist-
ing methods work with a manually extracted subsequence
at the center of the video, as opposed to using the whole
video sequence. In this paper, we aim to address a more
challenging problem, namely the categorization of dynamic
textures with invariance to changes in view point. To the best
of our knowledge, apart from [18], which addressed shift
invariance, there is no other work addressing the dynamic
texture categorization problem with invariance to viewpoint.

The bag of features (BoF) approach for object recognition
has been shown to handle variability in viewpoints, illumi-
nation and scales. Recently, the BoF method was extended
to categorizing video sequences [5, 17, 16, 9], wherein tra-
ditional image features were replaced by spatiotemporal
features. Specifically, once feature points are extracted, a
descriptor is formed based on gradients in a spatiotemporal
neighborhood around the feature point. After this step, the
pipeline is exactly the same as in BoF for images.

In principle, one could follow the same approach for cat-
egorizing dynamic textures. However, the fact that dynamic
textures can be modeled with a LDS would not be exploited.

1651978-1-4244-3991-1/09/$25.00 ©2009 IEEE

Moreover, videos of dynamic textures tend to be fairly ho-
mogeneous. Even though existing detectors can be used to
find feature points in such video sequences, using gradients
as descriptors may not be discriminative enough.

Paper Contributions. In this paper, we propose to extend
the BoF approach to dynamic textures, by replacing tradi-
tional features by LDSs. By using LDSs as features, we
obtain an alternate representation of these video sequences
which preserves their dynamics, as opposed to image gra-
dients. The fact that the parameters of a LDS live in a
non-Euclidean space poses several challenges to the BoF
framework. We propose a method to form a codebook from
these non-Euclidean parameters by performing nonlinear di-
mensionality reduction and clustering in the space of LDSs.
We evaluate various weighting schemes used to represent a
video sequence using the codebook. We also show that by
using the BoS approach, we are able to recognize dynamic
textures under changes in viewpoint and outperform existing
methods.

2. Preliminaries
In this section, we first introduce the dynamic texture

framework and show how video sequences can be modeled
using this framework. We then introduce the Martin distance
between two LDSs. This distance will serve as our similarity
metric in the Bag of Systems framework.

2.1. Dynamic Texture Model

Given a video sequence or a spatiotemporal patch,
{I(t)}Ft=1, we model it as the output of a LDS as

z(t+ 1) = Az(t) +Bv(t) (1)
I(t) = Cz(t) + w(t), (2)

where z(t) ∈ Rn is the hidden state at time t , A ∈ Rn×n
represents the dynamics of the system, C ∈ Rp×n maps the
hidden state to the output of the system, andw(t) ∼ N (0, R)
and v(t) ∼ N (0, Q) are the measurement and process noise
respectively. The order of the system is given by n and p is
the number of pixels in one frame of the sequence or patch.

Given a video sequence, the model parameters can be
identified using a Principal Component Analysis (PCA)
based approach outlined in [6]. As a consequence of the
identification algorithm, the parameter C belongs to the
Stiefel Manfiold ST(p, n) = {C|C>C = I ∈ Rn×n}. The
advantage of this model is that, it decouples the appear-
ance of the spatiotemporal patch, which is modeled by C,
from the dynamics, which are represented by A. Hence,
given a spatiotemporal patch, we describe it using the tuple
M = (A,C). Such a feature descriptor models both the
dynamics and the appearance in the spatiotemporal patch as
opposed to gradients that only model local texture.

2.2. Subspace Angles Based Distance Between LDSs

In any categorization algorithm, features from a new
query video sequence need to be compared with the fea-
tures from the training set. Given two feature descriptors,
M1 = (A1, C1) and M2 = (A2, C2), we first need to de-
fine a notion of similarity between these two descriptors.
One such family of distances between two LDSs is based
on the subspace angles between the two systems. The sub-
space angles are defined as the principal angles between
the observability subspaces associated with the two model
parameters. The observability subspace is the range-space
of the extended observability matrix of the LDS defined
by O∞(M) = [C>, (CA)>, (CA2)>, . . .]> ∈ R∞×n. The
calculation of the subspace angles between the two models is
performed by first solving for P from the Lyapunov equation
A>PA− P = −C>C, where

P =
[
P11 P12

P21 P22

]
∈ R2n×2n, A =

[
A1 0
0 A2

]
∈ R2n×2n,

C =
[
C1 C2

]
∈ Rp×2n.

The cosines of the subspace angles {θi}ni=1 are calculated as

cos2 θi = i-th eigenvalue(P−1
11 P12P

−1
22 P21). (3)

The Martin distance between M1 and M2 is now defined as

dM (M1,M2)2 = − ln
n∏
i=1

cos2 θi. (4)

3. Bag of Systems
The BoF approach in computer vision draws its inspira-

tion from the document retrieval community. Here, a docu-
ment is hypothesized to be identifiable by the distribution of
certain keywords. In the BoF approach, a similar philosophy
is adopted, wherein feature descriptors are used in lieu of
words. Images are now categorized by observing the distri-
bution of a small collection of features called codewords.

The typical steps followed in the BoF framework are: (1)
features and their corresponding descriptors are extracted
from all the images in the training set, (2) a codebook is
formed using clustering methods such as K-means, where
the cluster centers represent codewords in the codebook, (3)
each image in the training dataset is represented using the
codebook, (4) a classifier is chosen to compare a new query
image to the training set and thus infer its category.

In this section we describe the corresponding BoS ana-
logue of the BoF steps. We wish to point out that our ap-
proach is not a mere change in the feature descriptor. As a
consequence of using the parameters of a LDS as a feature
descriptor, we now have features in a non-Euclidean space.
Therefore, clustering these descriptors is highly challenging.

1652

NLDR

(6σ + 1)× (6σ + 1)× (6τ + 1)

x x

{Fi} {ki}

{ei, ‖ ·‖ 2}{Mi, dM (·, ·)}
RdeGL(n)× ST(p, n)

I(t)

CODEWORDS CLUSTER CENTERSVIDEO SEQUENCE
Figure 1. Overview of the bag of systems framework for categorizing dynamic textures with invariance to changes in view point.

In this paper we propose a framework for codebook forma-
tion by clustering in the space of LDSs. An overview of our
framework is shown in Fig. 1.

3.1. Feature Extraction and Descriptors

The first step in our framework is to extract feature points
from the video sequences. Over the past few years, several
spatiotemporal feature point methods have been proposed.
Laptev et al. [9] extend the Harris corner detector used for
images to video sequences by considering a second moment
matrix of the spatiotemporal gradients. Willems et al. [16]
use the spatiotemporal Hessian. Dollar et al. [5] convolve
the video sequence spatially with a Gaussian filter and tem-
porally with a quadrature pair of 1D Gabor filters. Local
maxima of this response function are then selected as feature
points. Wong et al. [17] model the video sequence with a
LDS and extract features from the parameters of the LDS,
as opposed to directly from the video sequence. A detailed
comparison of these methods can be found in [16]. These
methods however, have concentrated on classifying video
sequences of human activity, gestures and mouse activity.

In this paper, we use existing feature point selection meth-
ods for detecting feature points. However, a key difference
is that we use LDS parameters as a feature descriptor for
a spatiotemporal volume. Once a feature point and its cor-
responding spatiotemporal volume is extracted, a LDS is
identified from this volume as described in §2.1, and repre-
sented using M = (A,C).

3.2. Codebook Formation

In the traditional BoF framework, once feature points and
their corresponding descriptors are extracted, the descriptors
are clustered using an algorithm such as K-means to form the
codebook. However, in our case the descriptors are parame-
ters of a LDS, i.e. (A,C), which lie on a non-Euclidean
space. More specifically, (A,C) ∈ GL(n) × ST(p, n),
where GL(n) is the group of all invertible matrices of size

n and ST(p, n) is the Stiefel manifold. Hence, one cannot
directly apply clustering algorithms that are used in the Eu-
clidean case. However, one could find a low-dimensional
Euclidean embedding of these points and apply the cluster-
ing algorithm in this space.

There exist several techniques for Non-Linear Dimen-
sionality Reduction (NLDR). Some methods such as Locally
Linear Embedding (LLE) [11], work directly with the points
in the higher dimensional space, while other methods such
as Multidimensional Scaling (MDS) [3], Isomap [13] work
with the pairwise distances between the points in the higher
dimensional space. In our case, we exploit the fact that the
space of LDSs is endowed with several distances, e.g., the
Martin distance (§2.2), and use this distance to perform di-
mensionality reduction and clustering to form the codebook.

Given the set of features {Mi}Ti=1, where T represents
the total number of features extracted from the videos in the
training set, we first form the matrix D ∈ RT×T such that
Dij = dM (Mi,Mj). Once pairwise distances are available
between the features, techniques such as Multidimensional
Scaling (MDS), Isomap [13], etc. can be used to obtain a
low-dimensional embedding of these points {ei ∈ Rde}Ti=1,
where de is the dimension of the embedding. This low-
dimensional representation gives us a set of Euclidean points,
which preserve the relationships in the high-dimensional
nonlinear space. Clustering algorithms can be applied to
{ei}Ti=1, as the the low-dimensional space is Euclidean.

After this clustering, we now have K cluster centers
{ki}Ki=1. However, these cluster centers do not correspond
to any of the original LDSs. Moreover, there is no explicit
map to go from the lower dimensional embedding to the
original space. Hence, in order to select our codewords
{Fi}Ki=1, we choose the corresponding systems in the high-
dimensional space whose distance to the cluster center in the
lower dimensional space is the least, i.e.

Fi = Mp, p = arg min
j
‖ej − ki‖2. (5)

1653

In this way, we obtain our codebook C = {F1, . . . , FK},
where Fi = (Ai, Ci).

During the query phase, each detected feature is associ-
ated with model parameters M = (A,C). The membership
to the codeword is given by m = arg mini dM (M,Fi).

3.3. Representing Videos using the Codebook

Once theK codewords are available, each video sequence
needs to be represented using this vocabulary. This is done
using a weight vector W = {w1, w2, . . . wK} ∈ RK . There
are several choices for such a representation.

Let us assume that codeword k occurs Nki times in the
ith video sequence and there are total of Ni codewords in
the ith video sequence. Let V be the total number of video
sequences and Vi be the number of video sequences in which
codeword i occurs. The simplest representation is called the
term frequency (TF) and is defined as

wik =
Nki
Ni

. (6)

A more popular approach is the term frequency - inverse
document frequency (TF-IDF) defined as

wik =
Nki
Ni

ln
(
V

Vi

)
. (7)

Another recently proposed approach termed as the soft-
weighting (SW) is defined as

wik =
k0∑
i=1

Li∑
j=1

1
2i−1

d(Fk,Mj) (8)

where k0 represents the number of neighbors (typically k0 =
4) and Li represents the number of codewords that have Fk
as their ith neighbor. This method as opposed to the TF,
exploits the entire structure of the codebook.

Once a weight vector W is computed, it is normalized by
its L1 norm to become a histogram. In the experimental sec-
tion, we evaluate the various representation schemes outlined
above and comment on their optimality for our approach.

3.4. Classification

The final step in our framework is to classify a new query
video sequence using the training data. Given the training
dataset {(Wi, li)}Vi=1, where li ∈ {1, . . . ,m} is the class
label of the weight vector, our goal is to infer the class label
of a new weight vector Wt. To compare the training weight
vectors and the query weight vector we can use standard
distances between histograms such as the χ2 distance or the

square root distance on the sphere [7], which are defined as

dχ2(W1,W2) =
1
2

K∑
i=1

|w1i − w2i|
w1i + w2i

, (9)

dS(W1,W2) = arccos(
K∑
i=1

√
w1iw2i). (10)

A simple classification approach is the k-nearest neigh-
bors (k-NN) classifier [7], where the query video sequence
is assigned the majority class label of its k closest weight
vectors from the training dataset.

A generative classification approach is the naive Bayes
(NB) classifier used in Csurka et al. [4] . The posterior i.e.
P (l = j|Ii(t)) is proportional to the product of the prior
P (l = j) and the likelihood P (Ii(t)|l = j). Given the fact
that the video sequences Ii(t) can be represented by the
codewords and assuming independence of the codewords,
the likelihood on the codewords are learnt using the equation

P (Fk|l = j) =
1 +

∑
{i|li=j}Nki

K +
∑K
s=1

∑
{i|li=j}Nsi

. (11)

Given a new video sequence In(t), the inference is then
computed as the maximum aposterori estimate of

P (l = j|In(t)) ∝ P (l = j)P (In(t)|l = j) (12)

= P (l = j)
K∏
s=1

P (Fs|l = j)Nsn (13)

A discriminative classification approach is SVM with
kernels. The standard kernel used for the weight vector is the
radial basis kernel, defined as K(W1,W2) = e−γd(W1,W2),
where γ is a free parameter usually learnt by cross validation
and d(W1,W2) is any distance on the space of histograms.

3.5. Implementation Details

In our framework, we use the approach outlined in [5]
for extracting the features. We find this feature detector
more appropriate for dynamic textures than those of [9, 16],
which are based on image gradients. Once a feature point is
detected at a spatial scale σ and temporal scale τ , a volume
of size (6σ + 1) × (6σ + 1) × (6τ + 1) centered around
the feature point is extracted. For each of these volumes, a
dynamic texture model of order n is identified using PCA-
based approach. Unlike [9, 16], we do not have a method
to calculate scales automatically. Hence, we use multiple
values of σ and τ , in order to detect feature points at different
scales. Also, the Martin distance can be applied to systems
of different orders, but requires the dimensions of the output
spaces of the two systems, i.e. the number of pixels in a
frame, to be the same. Hence, we normalize the spatial size

1654

Smoke Boiling Fire Flowers Sea Water Fountain Waterfall

Figure 2. Sample snapshots from the reorganized dynamic texture database. This represents the 8 classes we consider in our framework,
while in the original database these are considered as 22 classes.

of the spatiotemporal volumes to be uniform. We however
do not require the same temporal size for these volumes.

In order to perform the clustering in the low-dimensional
space, we use Hierarchical K-means (HKM)[10]. It is well
known that K-means is sensitive to initialization. Hence,
K-means is run multiple times and the cluster centers with
the minimum intraclass variance are selected as the cluster
centers. Since we want stable codewords, as opposed to
minimum variance, we run HKM multiple times and select
the most frequent cluster centers as our codewords. In our
experiments, since the number of codewords used was small,
we directly use the leaves of the HKM as the cluster centers.

4. Experiments
In this section we present a detailed experimental evalua-

tion of various aspects of our algorithm. We use the dataset
from [12]. This dataset consists of 50 classes of 4 video
sequences each. The state of the art recognition results on
this dataset reported by Chan et al. in [2], is 97.5% by using
the kernel version of the dynamic texture model and 96.5%
by using just the Martin distance on the LDS parameters.

We wish to point out that these numbers are based on
the 50 class structure and the reported results are not on the
entire video sequences, but on a manually extracted patch
of size 48 × 48. However, if one combines the sequences
that are taken from different viewpoints, the dataset can be
reduced to a 9 class dataset with the classes being boiling
water (8), fire (8), flowers (12), fountains (20), plants (108),
sea (12), smoke (4), water (12) and waterfall (16). Here the
numbers represent the number of sequences in the dataset.
Since the number of sequences of plants far outnumbered
the number of sequences for the other classes, we used the
remaining 8 classes in our experiments. Sample frames from
the video sequences in the database are show in Fig. 2.

We show results for four different scenarios in this paper.
We first consider an easy two class problem namely the case
of water vs. fountain. Then a more challenging two class
problem namely the fountain vs. waterfall. Our third set
of experiments is on a four class problem and the last set is
on the reorganized database with 8 classes. All the results
presented in this section have been averaged over 20 trials.

Codebook formation. We experimented with the two
NLDR methods, namely MDS and Isomap. However, we
noticed that, with all other experimental conditions remain-
ing the same, recognition rates by using MDS were higher
than those of Isomap. We also found the optimal codebook
size to be K = 8 and the number of restarts for the HKM to
be 16. Also, the order of the LDSs was set to n = 8 and we
did not optimize this parameter.

Representation and Classification. Once the codebook is
formed, we have 3 choices for representing a video sequence,
namely TF, TF-IDF and SW, and two choices of distances
between histograms, namely χ2 distance and the square root
distance on the sphere. In addition, the classifier can k-NN,
naive Bayes or SVM. Overall this gives us 14 ways to per-
form the inference, given the codebook. In our experiments,
we noticed that the TF-IDF representation exhibited incon-
sistent performance. For some scenarios, this was the best
representation and for others this was the worst. Since we
would like a stable representation, which works across differ-
ent scenarios, we omit this representation in our analyis. We
also noticed that using the square root distance on the sphere
always marginally lowered the recognition rate. Hence, we
present results based only on the χ2 distance.

As a baseline for comparison, we categorize the different
scenarios using the existing single dynamic texture frame-
work as outlined in [2, 12]. We model the entire video se-
quence using a single LDS. We calculate distances between
LDSs using the Martin distance and categorize using both
the nearest neighbor and SVM classifiers. We abbreviate
these methods as DK and DS respectively. The methods
based on the TF representation are abbreviated as TF-1NN,
TF-3NN for the k-NN using k = 1 and k = 3 neighbors, and
TF-SVM for the SVM classification. Similarly the methods
using the SW representation are abbreviated as SW-1NN,
SW-3NN and SW-SVM. Note that for the naive Bayes clas-
sifier there is no representation (TF or SW) that is required.

Water vs. Fountain. These classes are visually very dif-
ferent. Hence, we expect high classification rates for this
problem. We consider 12 video sequences from the two
classes and train using 50% of the data and test using the
rest. The classification results for the various metrics are

1655

TF-1NN SW-1NN TF-3NN SW-3NN NB TF-SVM SW-SVM DK
Water Vs Fountain
Fountain Vs Waterfall
Four Classes
Eight Classes

96.6667 100 97.0833 100 99.5833 100 100 67
69.0625 64.0625 67.5 62.8125 98.125 69.6875 75.625 50
87.0833 83.75 88.9583 81.875 67.9167 85.8333 87.0833 75
59.8864 70.2273 58.2955 72.2727 54.7727 63.0682 79.8864 52.27

0

25

50

75

100

TF-1NN SW-1NN TF-3NN SW-3NN NB TF-SVM SW-SVM

80

63
55

72

58
70

60

8786

68

82
89

8487
76

70

98

63686469

1001001001009710097

Recognition Results

Water Vs Fountain Fountain Vs Waterfall Four Classes Eight Classes

0

25

50

75

100

DK DS

4752

83
75

56
50

100

67

Recognition Results

(a) Results using our approach.

TF-1NN SW-1NN TF-3NN SW-3NN NB TF-SVM SW-SVM DK
Water Vs Fountain
Fountain Vs Waterfall
Four Classes
Eight Classes

96.6667 100 97.0833 100 99.5833 100 100 67
69.0625 64.0625 67.5 62.8125 98.125 69.6875 75.625 50
87.0833 83.75 88.9583 81.875 67.9167 85.8333 87.0833 75
59.8864 70.2273 58.2955 72.2727 54.7727 63.0682 79.8864 52.27

0

25

50

75

100

TF-1NN SW-1NN TF-3NN SW-3NN NB TF-SVM SW-SVM

80

63
55

72

58
70

60

8786

68

82
89

8487
76

70

98

63686469

1001001001009710097

Recognition Results

Water Vs Fountain Fountain Vs Waterfall Four Classes Eight Classes

0

25

50

75

100

DK DS

4752

83
75

56
50

100

67

Recognition Results

(b) Results using [12]

Figure 3. Classification results for the different scenarios.

(a) Our approach (b) Approach from [12]
Figure 4. Confusion matrix for the 8 class scenario.

shown in Fig. 3. Although DK and DS are not designed to be
invariant to view points, we notice that their performance on
this scenario are 67% and 100% respectively. Our proposed
method is also able to achieve 100% classification rate.
Fountain vs. Waterfall. This is a more challenging exam-
ple in which there are no clear appearance differences. We
consider 16 video sequences for each class from the database.
We train using 50% of the data and test using the rest. It
must be noted that in this scenario, the testing involved video
sequence from novel viewpoints, which were not used in the
training. The classification results for the various metrics
are shown in Fig. 3. The baseline results for this case are
50% using DK and 56.25% using DS. Our results for this
scenario significantly outperform the baseline at 98%.

Notice from the two class scenarios that the best method
to use is the naive Bayes approach. The SW-SVM approach
is the second best method and outperforms the baseline.
However, using the naive Bayes for more than two classes re-
sults in poor performance, while the SW-SVM still performs
well, as we will results shown below.
Four Class. This scenario combines the categories from the
above two scenarios along with the sea category. We use a
total of 12 sequences per class and train using 50% of the
data and test using the rest. The classification results for
this scenario are shown in Fig. 3. We see that the proposed

method is still able to outperform the baseline of 75% and
83% using DK and DS respectively. The best classification
result we obtain using the BoS approach is 89%. In this
scenario, one can notice that the increase in the classification
rate is only 6%. This is primarily because there is only one
novel viewpoint in the testing phase. Although the baseline
methods are not invariant to changes in view point, in this
database they are extremely effective in recognizing video
sequences in the same viewpoint.

Eight Class. Our last and most challenging scenario is us-
ing all the classes from the database. We have a total of
88 video sequences with varying number of sequences per
class. Similar to the other scenarios, we trained on 50% of
the dataset and tested on the rest. The classification rates for
this scenario are shown in Fig. 3. Our approach has a clas-
sification rate of 80%, while DK and DS are at 52.27% and
47.73% respectively. The confusion matrix for BoS and DK
is shown in Fig. 4. In our methods, the smoke, fountain and
water categories exhibit lower classification rates than the
other categories. Except for the case of the water category,
the confusion is between closely related categories. The DK
method on the other hand, shows poor performance for all
categories except sea, smoke and waterfall. In fact, most of
the categories are wrongly recognized as waterfall.

1656

5. Conclusions
In this paper, we have presented a method for the catego-

rization of dynamic textures which is invariant to view point
changes. Traditional methods cannot handle this variabil-
ity and this fact is clearly reflected in the results we have
presented. For the easy two class problem, our approach
performs as well as the traditional methods. While for the
hard two class problem, we show a gain of approximately
42%. In the case of the multiclass scenarios, the increase
in performance is approximately 6% and 28% for four and
eight classes, respectively. We achieve this by modeling a
video sequence with a bag of of LDSs as opposed to using a
single model for the video. To the best of our knowledge, no
other existing work addresses this problem.

We have also evaluated the various weighting schemes.
Based on our experiments, we observed that for a two class
problem, using the naive Bayes classifier is the best approach.
However, for higher number of classes using the SW with
SVM is the best approach.

Acknowledgements
This work was partially supported by startup funds from
JHU, by grants ONR N00014-05-10836, ONR N00014-09-
1-0084, NSF CAREER 0447739 and ARL Robotics-CTA
80014MC.

References
[1] A. Chan and N. Vasconcelos. Probabilistic kernels for the

classification of auto-regressive visual processes. In CVPR,
volume 1, pages 846–851, 2005.

[2] A. Chan and N. Vasconcelos. Classifying video with kernel
dynamic textures. In CVPR, pages 1–6, 2007.

[3] T. F. Cox and M. A. A. Cox. Multidimensional Scaling.
Chapman and Hall, 1994.

[4] C. Dance, J. Willamowski, L. Fan, C. Bray, and G. Csurka.
Visual categorization with bags of keypoints. In ECCV, 2004.

[5] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior
recognition via sparse spatio-temporal features. In VS-PETS,
October 2005.

[6] G. Doretto, A. Chiuso, Y. Wu, and S. Soatto. Dynamic tex-
tures. IJCV, 51(2):91–109, 2003.

[7] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley-
Interscience, October 2004.

[8] K. Fujita and S. Nayar. Recognition of Dynamic Textures
using Impulse Responses of State Variables. In Texture 2003,
Oct 2003.

[9] I. Laptev. On space-time interest points. IJCV, 64(2-3):107–
123, 2005.

[10] D. Nister and H. Stewenius. Scalable recognition with a
vocabulary tree. In CVPR, pages 2161–2168, 2006.

[11] S. Roweis and L. Saul. Nonlinear dimensionality reduction
by locally linear embedding. Science, 290(5500):2323–2326,
2000.

[12] P. Saisan, G. Doretto, Y. N. Wu, and S. Soatto. Dynamic
texture recognition. In CVPR, volume II, pages 58–63, 2001.

[13] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global
geometric framework for nonlinear dimensionality reduction.
Science, 290(5500):2319–2323, 2000.

[14] R. Vidal and P. Favaro. Dynamicboost: Boosting time series
generated by dynamical systems. In ICCV, 2007.

[15] S. Vishwanathan, A. Smola, and R. Vidal. Binet-Cauchy ker-
nels on dynamical systems and its application to the analysis
of dynamic scenes. IJCV, 73(1):95–119, 2007.

[16] G. Willems, T. Tuytelaars, and L. J. V. Gool. An efficient
dense and scale-invariant spatio-temporal interest point detec-
tor. In ECCV, volume 5303, pages 650–663, 2008.

[17] S.-F. Wong and R. Cipolla. Extracting spatiotemporal interest
points using global information. In ICCV, pages 1–8, 2007.

[18] F. Woolfe and A. Fitzgibbon. Shift-invariant dynamic texture
recognition. In ECCV, pages II: 549–562, 2006.

1657

