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Abstract

Local image descriptors that are highly discriminative,
computational efficient, and with low storage footprint have
long been a dream goal of computer vision research. In this
paper, we focus on learning such descriptors, which make
use of the DAISY configuration and are simple to compute
both sparsely and densely. We develop a new training set of
match/non-match image patches which improves on previ-
ous work. We test a wide variety of gradient and steerable
filter based configurations and optimize over all parame-
ters to obtain low matching errors for the descriptors. We
further explore robust normalization, dimension reduction
and dynamic range reduction to increase the discriminative
power and yet reduce the storage requirement of the learned
descriptors. All these enable us to obtain highly efficient lo-
cal descriptors: e.g, 13.2% error at 13 bytes storage per de-
scriptor, compared with 26.1% error at 128 bytes for SIFT.

1. Introduction

Local feature matching has become ubiquitous in vi-
sion for recognition and registration. In recognition it is
often combined with vector quantization to create “visual
words” for searching large image databases and for object
class recognition [14, 15, 24, 7, 4]. When combined with
interest points [11, 12], it facilitates point matching with-
out initialization for image stitching and structure from mo-
tion [3, 16, 19]. The extensive research on designing lo-
cal image descriptors has always been toward image de-
scriptors which are highly discriminative, computational ef-
ficient and can be stored in only a few bytes.
Building on our prior descriptor learning work [23], we

pursue such image descriptors by learning the optimal de-
scriptors with a DAISY configuration [20] using a new
training data set of match/non-match image patches. This
new data set is improved from our previous data-set [23, 8]
in the sense that each image patch is now centered on a real
interest point, and therefore it is not necessary to introduce
synthetic jittering noise during training and testing.
We focus particularly on the DAISY configuration for

two reasons: First, we have demonstrated that the DAISY
configuration (a.k.a, the polar Gaussian pooling approach
which has origins in geometric blur [2]) is one of the best
for designing discriminative local image descriptors [23];
second, Tola et al. [20] demonstrated that such DAISY de-
scriptors can be computed very efficiently both sparsely and
densely. In addition to learning the optimal parameters for
different DAISY configurations, we further leverage robust
normalization, dimension reduction and dynamic range re-
duction to increase the discriminative power and simultane-
ously reduce the memory footprint of the learned descrip-
tors. Hence our contributions are the following:

• We use a new ground-truth training set which is based
on patches centered on real interest points which have
been matched using dense stereo data.

• We test multiple configurations of low-level filters and
DAISY pooling and optimize over their parameters.

• We investigate the effects of robust normalization.

• We apply PCA dimension reduction and dynamic
range reduction to compress the representation of per-
formant descriptors.

• We discuss computational efficiency and provide a list
of recommendations for descriptors that are useful in
different scenarios.

2. Related work

A number of good descriptors have been described in the
literature [13] although researchers still tend to rely on hand
crafted algorithms. Recently there has been a move to learn
descriptor parameters for matching tasks and to explore a
range of algorithms. Lepetit and Fua [10] showed that ran-
domized trees based on simple pixel differences could be
an effective operation. Shotton et al. [18] demonstrated a
related scheme for object class recognition. Babenko et al.
[1] applied boosting to learn point-based feature matching
representations. Winder and Brown [23] introduced an im-
age descriptor pipeline where combinations of algorithms

178978-1-4244-3991-1/09/$25.00 ©2009 IEEE



Figure 1. Processing stages in the descriptor algorithm.

were interchanged and each combination was optimized on
a matching task by maximizing ROC area.
Since descriptors often have large dimensionality, var-

ious authors have studied dimension reduction. In PCA-
SIFT, Ke and Sukthankar applied PCA dimension reduction
on gradient patches to form local descriptors [9]. Miko-
lajczyk and Schmid [13] introduced the GLOH descriptor
and found good results for PCA dimension reduction. Re-
cently Hua et al. [8] used discriminative embedding tech-
niques to find linear projections that actively discriminate
between match and non-match classes.
Dimensionality reduction is not the end of the story how-

ever, as our eventual aim is to generate descriptors that use
as few bits as possible. This is imperative for internet scale
recognition, as has been demonstrated by Torralba et al [21]
in the context of internet image search. Tuytelaars [22] has
also shown successful object recognition performance by
quantizing SIFT descriptors to just 4 bits per dimension.
Our work is similar to [23] in that we build a descrip-

tor pipeline and attempt to optimize its parameters using a
training set consisting of matching and non-matching image
patches that relate to interest points. However we extend
this approach by introducing a more realistic and more chal-
lenging ground truth data set which avoids the need for syn-
thetic interest points and perturbations. We also add stages
for dimension reduction and dynamic range reduction. We
focus exclusively on the DAISY footprint, extensively test-
ing its combination with a number of the most promising
feature algorithms and, unlike [20], we machine optimize
its parameters to obtain the best matching performance.

3. Descriptor Pipeline

Our descriptor pipeline is shown in Figure 1 and is sim-
ilar to [23] except that we have added extra blocks for di-
mension reduction and quantization. In addition we focus
on a specific range of algorithms that we have found to be
promising for each stage.
Descriptors can be sampled densely in an image for ap-

plications such as stereo reconstruction or face recognition,
or else can be computed from scale and rotation normalized
patches sampled from the vicinity of interest points for lo-
cation matching and 3D reconstruction. In both cases the
input to our algorithm is a square image patch and the goal
is to produce a reduced dimension vector which uniquely
characterizes the region while being robust to common

1 Ring 6 Segments 1 Ring 8 Segments

2 Rings 6 Segments 2 Rings 8 Segments

Figure 2. Typical DAISY descriptor Gaussian summation regions
learned by our algorithm for steerable filter T-blocks. Circles indi-
cate 1 standard deviation. Best results were obtained by offsetting
concentric rings by 180/n degrees, where n is the number of seg-
ments.

imaging distortions.

T-block This block takes the pixels from the image patch
and transforms them to produce a vector of k non-linear fil-
ter responses at each pixel. The elements of the vectors are
designed to have positive values. Block T1 involves com-
puting gradients at each pixel and bilinearly quantizing the
gradient angle into k orientation bins as in SIFT [11]. Block
T2 rectifies the x and y components of the gradient to pro-
duce a vector of length 4: {|∇x| − ∇x; |∇x|+∇x; |∇y| −
∇y; |∇y|+∇y}, or alternatively length 8 by concatenating
this with the 4-vector resulting from rotating the gradient by
45◦ and using the same approach. Both T1 and T2 include
a Gaussian pre-smoothing stage to set the gradient scale.
Block T3 uses steerable filters [5] evaluated at a number
of different orientations. The filters can have odd, even or
dual phase and their responses are rectified into positive and
negative parts which are then carried by different vector el-
ements in the same way as for T2. For dual phase (quadra-
ture) filters, the vector dimensionality is k = 4n where n
is the number of orientation channels. The filter scale was
varied by changing the kernel sampling rate [5]. All scale
parameters were machine optimized jointly with other de-
scriptor parameters. Further details of all these T-blocks can
be found in [23].

S-block This stage spatially accumulates weighted filter
vectors to give N linearly summed vectors of length k and
these are concatenated to form a descriptor of kN dimen-
sions. For this block we use normalized Gaussian summa-
tion regions arranged in a series of concentric rings (called
S4 by [23] and the DAISY descriptor by [20]). Typical con-
figurations are shown in Figure 2. The sizes of the Gaus-
sians and the radii of the rings are parameters that we op-
timize (see below). The total number of dimensions at this
stageD = k (1 + rings × segments).
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N-block The N-block normalizes the complete descrip-
tor to provide invariance to lighting changes. One possi-
bility is to use simple unit-length normalization. We use a
form of threshold normalization with the following stages:
(1) Normalize the descriptor to a unit vector, (2) clip all the
elements of the vector that are above a threshold κ by com-
puting v′i = min(vi, κ), (3) Scale the vector to a byte range.
[11] This procedure has the effect of reducing the dynamic
range of the descriptor and creating a robust function for
matching. We learn the best threshold value κ.
Dimension Reduction Previously we used discrimina-

tive learning such as locality preserving projections for
dimension reduction [8]. However, other authors [17],
and our own experiments have found that applying princi-
pal components analysis (PCA) to image filter responses
without class labels can be just as effective if the high-
dimensional representation is already discriminative. Here
we use PCA in this manner. To learn PCA projections, we
first optimize the parameters of the descriptor and then com-
pute the matrix of principal components based on all de-
scriptors computed on the training set. Next we find the best
dimensionality for reduction by computing the error rate on
random subsets of the training data while progressively in-
creasing the dimensionality by adding PCA bases until a
minimum error is found. This gives us the final reduced
transformation matrix for the descriptor pipeline. Addition-
ally, we always normalize the length of descriptor vectors
following the dimension reduction stage.
Quantization In image compression, such as in JPEG, it

is common to transform image data into another space, e.g.,
using DCTs, and then to quantize these transformed coef-
ficients before Huffman coding. Here we employ a similar
dynamic range quantization with an aim to reduce mem-
ory requirements when large databases of descriptors are
stored. Descriptor elements (either signed when PCA re-
duction is used or unsigned when it is not) are quantized
into L levels. For example with signed descriptor elements
vi and L odd, quantized elements qi = �βLvi +0.5�, where
qi ∈ {−(L − 1)/2, . . . , (L − 1)/2} and β is a single com-
mon scalar which is optimized to give the best error rate
on the training data. For even numbers of levels we use
qi = �βLvi� with qi ∈ {−L/2, . . . , L/2− 1}. For this pa-
per, we quantized all PCA-reduced dimensions to the same
number of levels despite their differences in variance. This
was motivated by common practice in encoding transform
coefficients for image and video compression but could be
an area of experimentation.

4. Training and Testing

Recent advances in wide base-line matching and struc-
ture from motion allow reconstructing 3D points and cam-
eras for data sets containing thousands of images [19]. Fur-
thermore advances in multi-view stereo allow dense surface

Figure 3. Example image patches from our Liberty data set.

models to be obtained despite greatly varying imaging con-
ditions [6]. We use these 3D reconstructions as a source of
training data. Previous work [23] used re-projections of 3D
point clouds to act as synthetic interest points around which
known corresponding patches could be sampled. This has
the disadvantage that it does not capture the real statistics
of interest point noise and results in data sets which are
not sufficiently demanding. We therefore use dense surface
models obtained via stereo matching to establish correspon-
dences between real interest points. Multi-view constraints
allow us to generate accurate correspondences that would
be very challenging for unconstrained 2D matching.
We make use of camera calibration and dense multi-view

stereo data for three datasets—Yosemite, Liberty, and Notre
Dame—containing over 1000 images provided by [19]. We
detect Difference of Gaussian interest points with associ-
ated position, scale and orientation [11] in each image and
we extract scale and orientation normalized patches around
these points and store them in a database. To determine
ground truth matches we make use of the provided depth
maps to transfer a local dense sampling of points around
each interest point into a second image and then use least
squares to estimate the expected position, scale and orien-
tation of the projected interest point. We check to see if the
interest point would be visible in the second image by us-
ing visibility maps from [6]. We then declare the nearest
true interest point in the second image to be a match if it is
detected within 5 pixels of position, 0.25 octaves of scale
and π/8 radians of angle. All interest points falling outside
twice these ranges are defined to be non-matches. Interest
point detections lying between these ranges are deemed to
be ambiguous and are not used in training or testing. Chang-
ing these design points would allow us to trade off invari-
ance and discrimination in any descriptors that we learn.
Figure 3 shows example patches from the data set. 1

In order to optimize descriptor parameters we use ex-
actly the approach described in [23]. In general we find that
machine optimization of parameters is crucial and produces
far better error rates than trying to guess them by hand. We
retained one data set of 100,000 random patch pairs with
50% matches (Yosemite) for training and used two 100,000
pair datasets for testing (Liberty and Notre Dame). To learn
parameters we maximize the area under the ROC curve

1http://www.cs.ubc.ca/∼mbrown/patchdata/patchdata.html
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1 Ring 2 Rings
Segments: 6 8 6 8
T1-4 34.43 34.24 29.05 28.64
T1-8 27.89 26.52 23.28 22.94
T1-12 26.55 26.19 22.85 22.57
T1-16 26.93 26.28 22.59 22.75
T2-4 35.77 35.62 30.21 29.38
T2-8 35.01 34.85 28.35 28.29
T2-8a 26.96 26.16 23.03 22.57
SIFT 35.09

Table 1. Error rates for gradients: Liberty

1 Ring 2 Rings
Segments: 6 8 6 8
T1-4 26.10 25.66 20.91 20.82
T1-8 21.09 20.33 16.92 15.62
T1-12 21.26 20.73 16.96 16.23
T1-16 21.33 20.45 16.95 16.77
T2-4 27.51 27.08 21.59 21.35
T2-8 25.97 25.99 19.56 19.82
T2-8a 21.20 20.79 16.58 16.60
SIFT 26.10

Table 2. Error rates for gradients: Notre Dame

by using Powell’s conjugate gradient method that operates
without the need for derivatives. At each step of gradient
descent we loop over the data set of match or non-match
patch pairs computing descriptor-space distances. These
distances are then accumulated into match and non-match
histograms from which an ROC curve and its area can be
computed. Once parameters have stabilized, the final error
rates are evaluated on the test sets. Typical descriptors had
from 5 to 15 parameters, and in general training was reliable
and repeatable from different initial conditions.

5. Results

For each trained descriptor we computed ROC curves
and obtained % error rates when 95% of all correct matches
were obtained. We show results for training on the Yosemite
data set and testing on the 100,000 patch-pair Liberty and
Notre Dame sets.

5.1. Gradient-based Descriptors

Tables 1 and 2 show results for descriptors that make
use of image gradients in their T-blocks. T1 involves soft
histogramming of the gradient angle into k bins while T2
involves direct use of the rectified 1D derivatives. We var-
ied the number of T-block orientation bins and tested four
configurations of DAISY pooling. Error rates fall from 4
(T1-4) to 8 (T1-8) orientations for T1 but beyond that show
little change, so larger numbers of orientation bins are un-
necessary.
T2 performs slightly less well than T1 for the same di-

1 Ring 2 Rings
Segments: 6 8 6 8
T3-2nd-2 30.40 30.50 26.88 26.71
T3-2nd-4 28.05 27.72 23.22 23.39
T3-2nd-6 27.50 28.02 23.12 22.94
T3-2nd-8 27.61 27.96 23.53 22.90
T3-4th-2 42.81 42.25 37.25 36.27
T3-4th-4 33.23 32.97 28.60 28.82
T3-4th-6 31.61 32.08 28.15 27.73
T3-4th-8 31.71 31.88 27.67 27.76
SIFT 35.09

Table 3. Error rates for steerable filters: Liberty

1 Ring 2 Rings
Segments: 6 8 6 8
T3-2nd-2 21.54 21.34 17.22 17.24
T3-2nd-4 18.38 18.45 14.79 14.16
T3-2nd-6 18.09 18.37 14.44 14.09
T3-2nd-8 18.26 18.21 14.63 14.33
T3-4th-2 33.78 32.81 28.15 27.44
T3-4th-4 33.23 24.33 20.20 20.04
T3-4th-6 23.54 23.15 19.88 19.03
T3-4th-8 23.33 22.67 19.44 18.64
SIFT 26.10

Table 4. Error rates for steerable filters: Notre Dame

mensionality. Adding extra dimensions when going from
T2-4 to T2-8 show less reduction in error than going from
T1-4 to T1-8. This is probably because the orientation
selectivity of T2 is much wider and the T2-8 vector el-
ements are therefore more correlated than the T1-8 ele-
ments. To test this, we modified T2-8 to include a stage
which narrows selectivity by subtracting the mean in a man-
ner similar to biological cross-orientation inhibition: v′i =
max(vi − α

k

∑
vj , 0). This resulted in the significantly im-

proved error rates shown as T2-8a and α ≈ 2.5 was found
to be optimal. T2 is less computationally expensive than T1
because it avoids polar conversion and bilinear weighting
operations. In fact if one is satisfied with the error rate of
SIFT, then this can be approximatelymatched byT2-4-1r6s
with very low complexity and only 28 dimensions.
Our gradient results also show that for spatial summation

of filter vectors, two DAISY rings give significantly better
error rates than a single ring. We found this result to be
consistent across all our descriptors. Additionally we found
minor but consistent improvementwhenmoving from 6 to 8
segments per ring. Overall descriptor dimensionality varies
from 28 (T1-4-1r6s) to 272 (T1-16-2r8s) in these tables.

5.2. Steerable Filters

We extensively tested combinations of steerable filters
with different arrangements of DAISY spatial pooling. In
Tables 3 and 4, 2nd and 4th order filters are used with dif-
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Segments: 6 8 12
Orientations: 6 4 6 Rings
T3-2nd-odd 31.51 31.36 32.32 1
T3-2nd-even 33.36 34.29 34.31 1
T3-2nd-dual 27.50 27.72 28.81 1
T3-4th-odd 34.36 35.33 34.73 1
T3-4th-even 34.15 35.69 34.40 1
T3-4th-dual 31.61 32.97 32.19 1
T3-2nd-odd 25.33 25.33 25.28 2
T3-2nd-even 28.20 28.43 27.01 2
T3-2nd-dual 23.12 23.39 23.22 2
T3-4th-odd 29.43 30.24 28.77 2
T3-4th-even 28.95 30.16 28.53 2
T3-4th-dual 28.15 28.82 28.00 2
T3-2nd-odd 24.30 24.10 23.58 3
T3-2nd-even 28.06 27.83 27.48 3
T3-2nd-dual 23.06 22.73 22.49 3

Table 5. Error rates for steerable filters: Liberty

Segments: 6 8 12
Orientations: 6 4 6 Rings
T3-2nd-odd 22.17 22.21 23.23 1
T3-2nd-even 24.64 24.78 24.19 1
T3-2nd-dual 18.09 18.45 18.47 1
T3-4th-odd 26.78 27.07 25.89 1
T3-4th-even 25.82 27.98 26.06 1
T3-4th-dual 23.54 24.33 23.67 1
T3-2nd-odd 17.38 17.40 16.87 2
T3-2nd-even 19.21 18.72 18.15 2
T3-2nd-dual 14.44 14.16 14.58 2
T3-4th-odd 21.08 21.48 20.23 2
T3-4th-even 20.67 21.84 19.78 2
T3-4th-dual 19.88 20.04 19.22 2
T3-2nd-odd 15.78 15.71 14.98 3
T3-2nd-even 18.89 18.37 17.46 3
T3-2nd-dual 14.43 14.53 14.19 3

Table 6. Error rates for steerable filters: Notre Dame

ferent numbers of orientation channels. Each filter orienta-
tion involves a quadrature pair which is rectified into four
T-block vector elements (Section 3). Similar to the gradient
results, we found that the error rate reduced as the number
of orientations increased up to a point. For 2nd order fil-
ters, 4 orientations are probably sufficient, but 6 or more
are required for 4th order filters before there is a plateau in
error rate. This is most likely due to the narrower orienta-
tion bandwidth of 4th order filters. Contrarily to the results
of [23] we found that 4th order filters performed signifi-
cantly less well than 2nd order filters. This is probably due
to the more challenging and realistic data sets that we used
which provide a clear cut separation of descriptor perfor-
mance data.
As with gradients, moving from one to two rings pro-

duced a large reduction in error rate while moving from 6

to 8 segments produced marginal improvements. These de-
scriptors had from 56 (T3-2nd-2-1r6s) to 544 dimensions
(T3-2nd-8-2r8s). The error rates for T3 steerable filters
were better than for T1 gradients but this difference was
only apparent for testing on the Notre Dame data set.
In [23] it was shown that it is important to maintain fea-

ture phase. But is it necessary to use a quadrature pair of
steerable filters? To test this we compared the performance
of quadrature pairs with the performance when only odd or
even symmetric filters were used. These results are pre-
sented in Tables 5 and 6 and clearly show that using both
phases produces a significantly better error rate than odd or
even filters alone. It seems that the information carried by
even and odd filter responses is sufficiently independent to
boost performance when used together. For 2nd order, odd
filters were found to give better results than even filters. It
could be that odd filters allow better discrimination among
the edges that are prevalent in natural images. Fourth or-
der filters are less selective for wide-band features and this
could be why error rates for odd versus even 4th order filters
are similar.
These results also show that doubling the dimensionality

of the descriptor by using two filter phases instead of one is
a better plan than doubling the number of DAISY segments
from 6 to 12. Large numbers of segments seem not to im-
prove the result since the Gaussian regions start to overlap
and over-sample the descriptor footprint. However, com-
puting 12 segments with 6 filter orientations or computing
8 segments with 4 filter orientations has the advantage that
the resulting descriptors can be trivially rotated in steps of
30◦ or 45◦ respectively, simply by permuting the order of
descriptor dimensions at the S-block output.
These tables also show that more rings are better: The

improvement from 2 to 3 rings would probably increase if
we were not limited by the 64×64 patch size. During train-
ing, we observed that the size constants of the steerable fil-
ters and the footprint of the DAISY spatial pattern tended to
increase jointly until the DAISY was limited by the bounds
of the patch.

5.3. Dual-Band Descriptors

Since many applications make use of multi-scale pyra-
mids, we decided to test the idea of combining descriptors
at two spatial scales. Steerable filters have a band-pass re-
sponse so it is reasonable to expect that more information is
available if two filter banks are used which are tuned to dif-
ferent spatial scales. We concatenated the descriptors result-
ing from two parallel T and S-block channels and learned
the relative size constants for the filters and the two DAISY
footprints. Tables 7 and 8 show the results for quadrature
2nd and 4th order filters having 4 or 6 orientations paired
with a 2 ring, 6 segment S-block. Fixed filter scale ratios
were tried that correspond to typical pyramid scale inter-
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Without PCA With PCA
T-Block Scale Error Dims Error Dims
T3-2nd-4 ×1.26 22.04 416 - -
T3-2nd-4 ×1.41 21.61 416 - -
T3-2nd-4 ×2.00 19.36 416 18.36 182
T3-2nd-4 Learn 18.75 416 17.24 37
T3-4th-4 Learn 21.39 416 18.55 144
T3-2nd-6 ×1.26 22.09 624 - -
T3-2nd-6 ×1.41 21.15 624 - -
T3-2nd-6 ×2.00 20.02 624 19.08 27
T3-2nd-6 Learn 19.12 624 17.14 42
T3-4th-6 Learn 21.32 624 18.85 166
SIFT - 35.09 128 - -

Table 7. Error rates for 2 ring 6 segment two-scale steerable filter
descriptors: Liberty

Without PCA With PCA
T-Block Scale Error Dims Error Dims
T3-2nd-4 ×1.26 13.01 416 - -
T3-2nd-4 ×1.41 12.30 416 - -
T3-2nd-4 ×2.00 10.50 416 9.77 182
T3-2nd-4 Learn 10.03 416 9.71 37
T3-4th-4 Learn 12.00 416 10.00 144
T3-2nd-6 ×1.26 13.02 624 - -
T3-2nd-6 ×1.41 12.25 624 - -
T3-2nd-6 ×2.00 10.73 624 11.60 27
T3-2nd-6 Learn 10.05 624 9.49 42
T3-4th-6 Learn 11.70 624 9.75 166
SIFT - 26.10 128 - -

Table 8. Error rates for 2 ring 6 segment two-scale steerable filter
descriptors: Notre Dame

vals, as well as simply learning the best ratio. Error rates ob-
tained using this method were excellent, dropping to around
10% for the Notre Dame data set. We found that a factor of
two was close to optimal between the scale of the two fil-
ter banks and between their associated DAISY footprints
(learned values were ≈ 2.2). In addition we noticed that
there was more improvement for 4th order filters than for
2nd, presumably because two parallel filter banks were able
to make up for the narrower spatial frequency bandwidth
in the case of 4th order. This suggests that it would be in-
teresting learn a parametric T-block filter and optimize the
frequency bandwidth directly.

5.4. Normalization

In [23] it was noted that SIFT-style clipping normaliza-
tion performed better than simple unit vector normalization.
We decided to investigate this more thoroughly. Since the
descriptors so far maintain a direct relation between image-
space and descriptor coefficients at the S-block output, clip-
ping, by introducing a robustness function, can mitigate dif-
ferences due to spatial occlusions and shadowing which af-

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1  1.5  2  2.5  3 Infinity

E
rr

or
 R

at
e 

(%
)

Normalization Threshold Ratio

T3-2nd-4-2r8s (272)
T1-8-2r8s (136)
T2-4-2r8s (68)
T1-4-1r6s (28)

Figure 4. Variation of error rate with normalization threshold
(Notre Dame). The threshold was set to r/

√
D where r is the

ratio and D is the descriptor dimensionality (given in brackets).

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50  60  70  80

E
rr

or
 R

at
e 

(%
)

Number of Dimensions

T1-4-2r6s
T2-4-2r8s

T2-8a-2r8s
T3-2nd-4-2r8s
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fect one part of the descriptor and not another.
Figure 4 shows the typical effect of changing the clipping

threshold for our normalization. Error rates are significantly
improved when the clipping thresholds are equal to around
1.6/

√
D when tested on a wide range of descriptors with

different dimensionality D. This graph shows the drastic
reduction in error rate compared with simple unit normal-
ization (“Infinity” on the graph).

5.5. Dimension Reduction

Various authors have sought to apply PCA and other di-
mensionality reduction methods to descriptors [13, 9, 8].
We therefore applied PCA techniques to reduce the dimen-
sionality of our learned descriptors. The matrix of princi-
pal components was computed using descriptors from the
Yosemite training set. Figure 5 shows how the error rate on
the training set changes as the number of dimensions is in-
creased by progressively adding PCA bases. We use these
curves to determine the best dimensionality for lowest er-
ror, although there is typically a wide choice to trade off be-
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Without PCA With PCA
T-Blk R/S Error Dim Error Dim
T1-4 1r6s 34.4 26.1 28 28.0 20.5 27
T1-4 1r8s 34.2 25.7 36 31.1 22.4 17
T1-4 2r6s 29.1 20.9 52 23.5 15.4 44
T1-4 2r8s 28.6 20.8 68 23.9 16.1 25
T1-8 1r6s 27.9 21.1 56 24.0 17.2 41
T1-8 1r8s 26.5 20.3 72 22.9 17.0 23
T1-8 2r6s 23.3 16.9 104 19.5 13.1 62
T1-8 2r8s 22.9 15.6 136 18.9 12.3 53
T2-4 1r6s 35.8 27.5 28 28.7 20.3 26
T2-4 1r8s 35.6 27.1 36 32.8 24.2 15
T2-4 2r6s 30.2 21.6 52 23.8 15.3 31
T2-4 2r8s 29.4 21.4 68 23.8 15.9 29
T2-8a 1r6s 27.0 21.2 56 24.6 18.4 19
T2-8a 1r8s 26.2 20.8 72 22.0 16.5 49
T2-8a 2r6s 23.0 16.6 104 18.6 12.9 67
T2-8a 2r8s 22.6 16.6 136 19.9 13.5 35
T3-6 1r6s 27.5 18.1 168 21.5 12.8 45
T3-4 1r8s 27.7 18.5 144 21.5 13.2 46
T3-6 1r12s 28.8 18.5 312 24.7 16.0 21
T3-6 2r6s 23.1 14.4 208 18.0 10.9 33
T3-4 2r8s 23.4 14.2 272 19.3 12.2 26
T3-6 2r12s 23.2 14.6 600 19.8 12.8 25
SIFT - 35.1 26.1 128 - -

Table 9. Error rates for descriptors with PCA. Error rate figures
show Liberty then Notre Dame test set results. R/S - Rings / Seg-
ments. Dim - Dimensions. T3 uses 2nd order steerable filters.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

C
or

re
ct

 M
at

ch
 F

ra
ct

io
n

Incorrect Match Fraction

SIFT (128, 26.1%)
T2-4-2r6s (52, 21.6%)

T2-4-2r6s PCA (31, 15.3%)
T3-2nd-6-2r6s 2-scale (624, 10.7%)

T3-2nd-6-2r6s 2-scale PCA (42, 9.5%)

Figure 6. ROC curves for selected descriptors: Notre Dame. Fig-
ures in brackets show dimensionality and error rates.

tween the two. It can be seen that PCA is not just useful in
reducing the dimensionality—it is also beneficial in reduc-
ing the error rate still further by removing noise dimensions
which often contribute considerably to the error. Tables 7, 8,
and 9 show error rates for selected descriptors. In all cases it
can be seen that PCA is able to both reduce the error rate and
reduce the number of dimensions required. For the Notre
Dame set, 9.7% error is possible with only 37 dimensions
compared to 26.1% and 128 dimensions for SIFT. Partic-
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Figure 7. Quantization of descriptor dynamic range: Notre Dame.
Error rate reduces rapidly as the number of levels used to repre-
sent the descriptor elements is increased from 2

1 to 2
6. Figures in

brackets show dimensionality and error rates.

ularly large reductions in dimensionality and error rate are
obtained for the T2 based descriptors, e.g., 24.2% at 15 di-
mensions for T2-4-1r8s, which is satisfying because they
are simple to compute.

5.6. Descriptor Quantization

We sought to reduce the storage requirements for the de-
scriptors still further by quantizing each dimension inde-
pendently as described in Section 3. We found that typi-
cally only a few bits of dynamic range are required (Fig-
ure 7). This is especially true for descriptors without PCA
where extremely aggressive quantization is possible. In par-
ticular, we found that for many of the higher dimensional
descriptors it is only necessary to keep 1 bit per dimension
while still maintaining good error rates. This is due in part
to the thresholding normalization which already results in
near binarization of these descriptors. When PCA is used,
the error rate comes downmore slowly as more quantization
levels are added and typically reaches a plateau at around 4
bits per dimension. Since PCA often reduces dimension-
ality and error rates substantially, this still translates into a
bit reduction over non-PCA descriptors for the same error,
albeit with higher computational cost.
Examples from Figure 7 show that T2-4-1r8s combined

with PCA reduction to 15 dimensions can be quantized at
4 bits per dimension to give 7.5 bytes in total at 24.4% er-
ror, and T3-2nd-4-2r8swith PCA can be compressed to 13
bytes at 13.2% error. These numbers compare favorably
with 128 bytes and 26.1% error for SIFT. It may be possi-
ble that additional compression could be achieved by using
variable length Huffman codes, but we did not try this ex-
periment. In addition, for PCA, it would be interesting to
test the effects of quantizing different dimensions at differ-
ent numbers of levels or with different β gains.
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6. Discussion

In this paper we have demonstrated a number of de-
scriptors with low error rate, low computation burden and
low storage footprint. Parameters for all our descriptors
are available from the authors. They were optimized for
matching around interest points but we have observed them
to perform well in various related applications. Three sce-
narios are of interest when selecting from the range of
descriptors available: Real-time, e.g., for mobile devices;
highly discriminative, e.g., object class recognition; and
large databases, e.g., image search or geolocation from im-
ages.
In a real time mobile device application we first favor

low computational burden and perhaps also small descrip-
tors. The T2-4 blocks with one or two rings are particularly
cheap to compute and have low dimensionality. They can
also be quantized to 2–3 bits per dimension without PCA.
To compute them at fixed rotation, one needs four gradient
maps over the whole image and must compute either two or
three Gaussian blurs on each [20]. After this the descrip-
tors can be point sampled where needed and then threshold
normalized.
For applications that require good discrimination, the de-

scriptors with lowest error make use of second order steer-
able filters at two spatial scales and apply PCA to remove
nuisance dimensions. Examples are given in Table 8.
Large data-base applications require a descriptor with

very low storage requirements and relatively low compu-
tational burden. T3-2nd-4-2r8s and T2-4-1r8s with PCA
are good candidates which take up only a few bytes.
Although all our descriptors can be computed on rotated

and scaled patches, computational benefit results from us-
ing approximate discrete rotations and scales by employing
a scale pyramid, permuting the T-block output and rotating
the DAISY point sampling pattern, or else simply permut-
ing the descriptor after normalization in the case where the
number of T-block orientations is suitably matched with the
number of DAISY segments. Descriptors with this conve-
nient rotation property include T3-6 with 12 segments and
T1-8, T2-8a or T3-4 with 8 segments. Further work should
focus on the reliability of matching and data-base lookup
using this scenario since this rotation/scale discretization is
a characteristic of the fast method of Tola et al. [20].

7. Acknowledgements

The authors thank Michael Goesele for kindly providing
stereo data, and also Matthew Uyttendaele, Drew Steedly,
and David Nister for helpful conversations.

References

[1] B. Babenko, P. Dollar, and S. Belongie. Task specific local
region matching. In ICCV, 2007.

[2] A. C. Berg and J. Malik. Geometric blur for template match-
ing. In CVPR, pages 607–614, 2001.

[3] M. Brown and D. Lowe. Automatic panoramic image stitch-
ing using invariant features. IJCV, 74(1):59–73, 2007.

[4] R. Fergus, P. Perona, and A. Zisserman. Object class recog-
nition by unsupervised scale-invariant learning. In CVPR,
2003.

[5] W. T. Freeman and E. H. Adelson. The design and use of
steerable filters. IEEE PAMI, 13:891–906, 1991.

[6] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. Seitz.
Multi-view stereo for community photo collections. In
ICCV, 2007.

[7] K. Grauman and T. Darrell. The pyramid match kernel:
Discriminative classification with sets of image features. In
ICCV, Bejing, October 2005.

[8] G. Hua, M. Brown, and S. Winder. Discriminant embedding
for local image descriptors. In ICCV, 2007.

[9] Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive
representation for local image descriptors. In CVPR, pages
506–513, 2004.

[10] V. Lepetit and P. Fua. Keypoint recognition using random-
ized trees. IEEE PAMI, 28(9):1465–1479, 2006.

[11] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60:91–110, 2004.

[12] K. Mikolajczyk and C. Schmid. Indexing based on scale
invariant interest points. In ICCV, 2001.

[13] K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. IEEE PAMI, 27:1615–1630, 2005.

[14] D. Nistér and H. Stewénius. Scalable recognition with a vo-
cabulary tree. In CVPR, pages 2161–2168, 2006.

[15] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spatial
matching. In CVPR, 2007.

[16] M. Pollefeys, L. van Gool, M. Vergauwen, F. Verbiest,
K. Cornelis, J. Tops, and R. Koch. Visual modeling with
a hand-held camera. IJCV, 59(3):207–232, 2004.

[17] H. Shan and G. W. Cottrell. Looking around the backyard
helps to recognize faces and digits. In CVPR, 2008.

[18] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton
forests for image categorization and segmentation. In CVPR,
2008.

[19] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Ex-
ploring photo collections in 3d. In ACM Transactions on
Graphics, volume 25, pages 835–846, 2006.

[20] E. Tola, V. Lepetit, and P. Fua. A fast local descriptor for
dense matching. In CVPR, 2008.

[21] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large
databases for object recognition. In CVPR, 2008.

[22] T. Tuytelaars and C. Schmid. Vector quantizing feature space
with a regular lattice. In ICCV, 2007.

[23] S. A. J. Winder and M. Brown. Learning local image de-
scriptors. In CVPR, 2007.

[24] J. G. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid.
Local features and kernels for classification of texture and
object categories: A comprehensive study. IJCV, 73(2):213–
238, 2007.

185


