
SURFTrac: Efficient Tracking and Continuous Object Recognition using Local
Feature Descriptors

Duy-Nguyen Ta
Georgia Institute of Technology

duynguyen@gatech.edu

Wei-Chao Chen Natasha Gelfand Kari Pulli
Nokia Research Center, Palo Alto

{wei-chao.chen,natasha.gelfand,kari.pulli}@nokia.com

Abstract

We present an efficient algorithm for continuous image
recognition and feature descriptor tracking in video which
operates by reducing the search space of possible interest
points inside of the scale space image pyramid. Instead of
performing tracking in 2D images, we search and match
candidate features in local neighborhoods inside the 3D im-
age pyramid without computing their feature descriptors.
The candidates are further validated by fitting to a motion
model. The resulting tracked interest points are more re-
peatable and resilient to noise, and descriptor computa-
tion becomes much more efficient because only those areas
of the image pyramid that contain features are searched.
We demonstrate our method on real-time object recognition
and label augmentation running on a mobile device.

1. Introduction

Robust feature descriptors such as SIFT [12], SURF [2],
and GLOH [16] have become a core component in applica-
tions such as image recognition [8], multi-view stereo [25],
and image registration [4, 26]. These descriptors are sta-
ble under viewpoint and lighting changes, so they are able
to cope with significant amounts of image variability. At
the same time, discriminative power is achieved by rep-
resenting feature points as high-dimensional vectors. The
combination of robustness and discriminative power makes
these methods ideally suited for searching large heteroge-
neous image databases.

We are interested in using robust feature descriptors
in real-time object recognition and tracking applications.
Given a database of images of labeled objects, such as build-
ings in an outdoor environment, and an input video stream,
we would like to recognize the objects present in the video,
augment the video stream with labels indicating the ob-
jects, and maintain and update those labels as the video pans
across the scene. Figure 1 shows an example of such an ap-
plication. This task can be thought of as having two com-

ponents. Image matching against a database is performed
to identify new objects that appear in the video and object
tracking is performed to update the positions of the labels
of recognized objects in the consecutive video frames. Ro-
bust feature points with high dimensional descriptors per-
form best for image recognition, therefore we would like to
compute and track them at interactive frame rates.

To track robust features across video frames, we can per-
form pairwise image matching given any two consecutive
video frames, as done by Battiato et al. [1] and Skrypnyk
and Lowe [24]. Figure 2 describes the algorithm flow of this
approach. The main drawback of frame-to-frame matching
is the wasted computation as this approach does not exploit
coherence in the video. Most of the time the features are
used for tracking purposes only, as there is no need to per-
form an image recognition step, unless a significant change
is detected in the current frame. The expensive robustness
properties of the descriptors are not needed for frame-to-
frame matching, since consecutive video frames are likely
to be very similar. Furthermore, image noise means that
many of the descriptors are transient and will be thrown
away when consecutive frames are matched. Therefore,
performing detection and computation of robust descriptors
for each frame of the video is unnecessary and can also be
difficult to perform at interactive frame rates.

Alternatively, one can imagine a hybrid algorithm where
motion estimation is done through lightweight features such
as FAST corners [19, 20] or Harris corners [9] and object
recognition is done through robust features. When enough
motion is accumulated to warrant a recognition step, one
can run a standard image matching algorithm against the
image database to detect what is present in the scene. How-
ever, locations of the robust features such as SIFT and
SURF are unlikely to coincide with the features used for
tracking. This is a problem since the position of any aug-
mentation that results from the matching step, such as build-
ing labels, can not be transferred to successive frames with-
out knowing the scene structure. A solution to this is to
compute the robust descriptors at corner locations that are
used for tracking [5, 29]. These approaches, even though

1
2937978-1-4244-3991-1/09/$25.00 ©2009 IEEE

(a) (b)
Figure 1. Our algorithm running in an outdoor environment. (a) Detected interest points and traced trajectories from a video sequence
(Section 3). (b) Above: Video frames overlaid with their object labels zoomed in. Below: Matching images and their partial subgraph from
the database. The solid and dashed edges indicate geometric and object ID relationships, respectively (Section 4)

fairly efficient in terms of tracking, require extracting multi-
ple descriptors per corner, because the corners are not scale-
invariant. The SIFT Flow approach by Liu et al. [11] pro-
duces a flow field of SIFT descriptors with a fairly high
density, but this requires computing feature descriptors at
a much higher density than produced by the difference-
of-Gaussians algorithm of standard SIFT. Furthermore, the
performance of SIFT and SURF is related to the distinctive-
ness of the computed interest points, so using descriptors
computed at alternative locations can negatively impact the
recognition performance of the algorithm.

Contributions. To enable tracking of robust descriptors
at interactive frame rates, we propose to exploit coherency
in video frames to detect interest points at locations in each
frame where they are most likely to appear. Instead of track-
ing features in 2D images, we instead perform our track-
ing in the scale-space image pyramid, and we achieve the
robustness of the direct frame-to-frame matching method
while reducing computation significantly. The detected in-
terest points are scale-invariant, and are inherently matched
and tracked across video frames. We decouple the descrip-
tor computation from the interest point detection so that fea-
ture descriptors are computed only for the purpose of object
recognition. We demonstrate that our algorithm runs in real-
time on mobile phones, and we discuss applications such
as real-time augmentation and object recognition. Figure 3
shows a functional overview of our algorithm.

2. Related Work
Robust Feature Detectors and Descriptors. There are
several approaches to scale-invariant interest point de-
tection, including Difference-of-Gaussians in SIFT by
Lowe [12], maximally stable extended regions (MSER) by
Matas et al. [14], Harris-Affine and Hessian-Affine corners
by Mikolajczyk and Schmid [15], and Hessians approxi-

mated using Haar-basis by Bay et al. [2]. Mikolajczyk et
al. [17] performed a comprehensive comparison study on
the detectors.

Robust descriptor algorithms take the output of region
detectors, construct a canonical frame, and then extract a
high-dimensional feature vector for each region. The de-
scriptors are designed to be invariant to lighting, scale,
and rotational changes. Examples include the very popular
SIFT [12] and SURF [2]. Refer to Mikolajczyk et al. [16]
for a comparative study on the descriptors.

There are also many successful attempts to speed up the
descriptor computation algorithm. Sinha et al. [22] describe
an efficient SIFT implementation on graphics processing
unit (GPU). Grabner et al. [7] propose to speed up SIFT
computation using integral images. Our SURFTrac algo-
rithm improves on baseline SURF algorithm which is our
primary benchmark; additional speedups similar to these
approaches can be applied to gain even more efficiency.

Applications of Feature Descriptors. Many researchers
have applied feature descriptors in object recognition and
image retrieval. For example, Sivic and Zisserman [23] ap-
plied SIFT for efficient keyframe retrieval in video. Grau-
man and Darrell [8] proposed a fast kernel-based object
identification method using SIFT features. Nistér and
Stewénius [18] used hierarchical k-means to construct a
search tree of local features for fast and efficient image re-
trieval.

Motion Estimation and Tracking. There is an abundant
body of prior art on video tracking and motion estimation.
Refer to Torr and Zisserman [28] for a summary of feature-
based motion estimation methods. Optical flow algorithms
such as the classic examples by Lucas and Kanade [13] and
Berthold et al. [10] can also be used as input for a motion
estimation algorithm. Zhang et al. [30] recover epipolar ge-

2938

Interest Point

Detection

Descriptor

Computation
Feature

Descriptors

Interest Point

Detection

Descriptor

Computation
Feature

Descriptors

Feature

Matching

 &

Motion

Estimation

Image k-1

Image k

Estimated

Motion

Figure 2. An algorithm using feature descriptor algorithms as-is
for feature tracking.

ometry between two images through correlation, relaxation,
and robust model fitting using Harris corners. The feature-
tracking aspect of our algorithm can be used as input to
motion estimation algorithms, and therefore complements
instead of competing with motion estimation research.

There have been many successful attempts to track ro-
bust descriptor features. Skrypnyk and Lowe [24] and Bat-
tiato et al. [1] propose to track SIFT features similar to
Figure 2. Other algorithms change the location of descrip-
tor computation by using different interest point detectors.
For example, Liu et al. [11] compute dense SIFT corre-
spondences by detecting and matching the descriptors on
a dense grid. Chehlov et al. [5] describe a Kalman filter
based SLAM algorithm that uses a corner detector followed
by SIFT computation on these corners. Similarly, Wagner
et al. [29] compute FAST corners on the object database
image and extract descriptors at different scale levels, and
they also demonstrate an application that performs tracking
and object recognition in real time.

Our algorithm is related to these studies, but our ap-
proach is quite different because we wish to retain all of the
proven great attributes of robust feature descriptors. We aim
to perform image recognition similar to Takacs et al. [27]
where a large image and object database need to be matched
against the input image. This means that we do not wish to
replace scale-invariant interest points with generic corner
detectors when the resulting descriptors would reduce the
effectiveness of object recognition. From this perspective,
the quality of object recognition is equally important to the
real-time tracking requirement, and the tracking algorithm
should not interfere with the recognition performance.

3. The SURFTrac Algorithm
Many feature descriptor algorithms consist of two con-

secutive steps, namely interest point detection followed by
descriptor computation. An interest point detection algo-
rithm extracts regions of interest that tend to be repeatable
and invariant under transformations such as brightness or
perspective changes. In the descriptor computation step,
each extracted interest point defines a circular or affine re-
gion from which one descriptor is computed. It is often pos-
sible to mix and match these two steps of the algorithm, for
example, one can compute a SIFT descriptor using Hessian-
Affine interest points.

Tracked

Feature

Descriptors

Tracked

Interest Points

Interest Point

Detection

Descriptor

Computation

Incremental

Interest Point

Detection

Image 0

Image k>0
Motion

Estimation

Estimated

Motion

Tracking

Interest

Points

To Object

Recognition

Figure 3. The SURFTrac algorithm overview. For the first image,
the algorithm initializes a list of interest points by performing a
full detection. The interest points are then updated and tracked
upon receiving new images. The descriptors are for recognition
purposes and the algorithm computes them as needed.

To achieve scale-invariance, many interest point detec-
tion algorithms use image pyramids during the detection
phase. These algorithms include Hessian-Affine, Harris-
Affine, and approximate Hessian. In this process, an image
pyramid is formed by downsampling the input image to a
progressively lower resolution. For the purpose of our dis-
cussion, we will treat the image pyramid as a stack of same-
sized images Sk(·), each filtered from the original image Ik
with a different scale of zero-mean Gaussian as follows

Sk(x, y, σ) = Ik(x, y) ∗G(0, σ2). (1)

The interest point responseR has the same image stack data
layout, and is computed by applying the response computa-
tion function f(·) over the stack of images S,

Rk(x, y, σ) = f · Sk(x, y, σ). (2)

Local maxima in the function R represent relatively sta-
ble regions and are extracted as interest points. Because the
bandwidth of function R is lower at higher values of σ, the
sampling rate for maxima computation is naturally reduced
at higher σ to increase efficiency. The extracted interest
points are then refined with smooth local interpolation [3].

As described before, we plan to extend interest point de-
tection algorithms such that the interest points are tracked
across video frames efficiently. Although our proposal is
adaptable to many algorithms using image pyramids, we
will focus the remainder of our discussion on the approxi-
mate Hessian detector in SURF [2] because of its efficiency
and good interest point repeatability. More importantly, by
using SURF we can compute part of Rk(·) directly without
having to produce the intermediate Gaussian stack Sk(·).
The algorithm computes the scale-normalized Hessian ma-
trix

Hk(x, y, σ) =
1
σ2

[
∂2

∂x2Sk(x, y, σ) ∂2

∂x∂ySk(x, y, σ)
∂2

∂x∂ySk(x, y, σ) ∂2

∂y2Sk(x, y, σ)

]
,

(3)
and the response function is the determinant of H(·),
Rk(x, y, σ) = det(Hk(x, y, σ)). In the following sections,
the use of the Haar-wavelet approximation in SURF is im-
plied when we refer to the Hessian matrix. In the remainder
of the section we describe the algorithm shown in Figure 3.

2939

3.1. Incremental Interest Point Detection

In order to compute interest points in each video frame
incrementally, we can predict regions in the Gaussian im-
age stack where useful features are most likely to appear,
and compute the response R only in these regions. Let us
denote the input video sequence as I = {I0, I1, · · · IN−1}.
Given image Ik−1 and one of its interest points pk−1 =
(xk−1, yk−1, σk−1), assuming we know the relative motion
Mk−1
k (.) between Ik−1 and Ik as a homography, we can

simply transform pk−1 to its location in frame Ik with

pk = (xk, yk, σk) = Mk−1
k (pk−1). (4)

Obviously, homography is insufficient to model the mo-
tion of all tracked features. However, if the relative motion
between Ik−1 and Ik is small, we can still use the homog-
raphy and expand the point pk into a 3D volume search
neighborhood Pk

Pk = {(x′k, y′k, σ′k) : |σ′k − σk| ≤ ∆σ,
|x′k − xk| ≤ γσ′k,
|y′k − yk| ≤ γσ′k},

(5)

where ∆σ is the search range in the scale space, and γ is
related to the motion prediction error, as well as disparity of
the tracked point with respect to the primary planar structure
of the scene. The search neighborhood Pk corresponds to a
pyramidal frustum because the interest point sampling rate
is reduced at higher scale levels. In practice, because of the
high correlation between images, using a fixed-size search
neighborhood works fairly well regardless of the actual mo-
tion. Using Equation 4 and 5, the collection of tracked inter-
est points {p0

k−1,p
1
k−1, · · ·p

m−1
k−1 } from image Ik−1 forms

a joint neighborhood Pk = {P0
k ∪P1

k ∪· · ·∪Pm−1
k } where

useful interest points are most likely to appear. Figure 4
illustrates the process.

In addition to Pk, we also need to take into considera-
tion parts of the image Ik that have not been seen before.
To this end, we maintain a keyframe ID j, accumulate the
motion between image Ij and Ik and transform the four cor-
ners of the image Ij to Ik. When the overlap between the
keyframe and the current image drops to a certain percent-
age, we extract interest points from the part of image Ik that
lies outside of the shrunken quadrilateral. The keyframe ID
is then updated to the current frame k.

3.2. Tracking Interest Points

Next we need to match interest points between images
Ik−1 and Ik. We first assume that if a feature pjk−1 in Ik−1

is still present in Ik, it can only be in region Pj
k. When

more than one interest point are detected in this region, we
need to choose the one that best matches pjk−1 without com-
puting their SURF descriptors. Instead, we investigate two

La
rg

e
r

sc
a

le

Image I
k-1

Image I
k

p
k-1

p
k

P
k

Mk-1
k

Figure 4. Incremental detection of an interest point. The predicted
motion Mk−1

k is used to transform any interest point pk−1 from
image Ik−1 to image Ik. This predicted interest point pk forms
a volume neighborhood Pk in which the new interest point is ex-
tracted. The image corners are similarly transformed to the new
image (blue dashed lines).

methods for computing lightweight signatures from the in-
formation that is already present in the scale space.

Local Curvature Method. In SURF, because the re-
sponse function is an approximation to the determinant of
the Hessian matrix, we can use the relationship between
the two principal curvatures of each interest point as a sig-
nature of the interest point. Given the scale-normalized
Hessian matrix in Equation 3, we compute its eigenvec-
tors λ1 and λ2, λ1 > λ2, and measure the curvature ratio
r1 = λ1/λ2. This is directly related to the edge response
detection method used in SIFT [12],

r2 =
trace(H)2

det(H)
=

(r1 + 1)2

r1
. (6)

Because the components of H are already calculated, com-
puting ratio r2 is more efficient than r1. We treat the fea-
ture with the smallest difference in r2 as the matching inter-
est point, if this difference does not exceed a user-defined
threshold ∆r2 .

Normalized-Cross-Correlation (NCC). NCC is a clas-
sic technique for matching image regions and normally op-
erates in the pixel intensity domain. With blob-type features
like the ones used by SURF, this technique is not accurate
because the image intensities surrounding the neighborhood
of an interest point may not vary much. In addition, because
the features are detected in the scale level, the neighbor-
hood for NCC needs to be adjusted according to the scale
of the interest points. Therefore NCC in the pixel intensity
domain is not a suitable algorithm in terms of both perfor-
mance and match quality. On the other hand, the values of
the Hessian determinant around each interest point can be
used as a more stable signature, since the values in the Hes-
sian domain are independent of scale and relative bright-
ness changes. This is best illustrated in Figure 5, where

2940

Figure 5. Approximate Hessian determinants. Each row represents the Hessian determinant values surrounding an interest point across five
consecutive video frames. The patterns remain consistent and distinct, allowing easy and reliable matching.

we show values of Hessian determinants over consecutive
video frames. The consistency and distinctiveness of the
two patterns are evident.

To perform the NCC in the Hessian domain, for each
possible pair of interest points, we construct a frustum
around each interest point in domain R(·) corresponding to
5 × 5 × 3 grid values, and compute the L2-norm between
the two grids. This is much more efficient than a regular
NCC because we only need to compute the dot-products at
detected interest point locations. Similar to the local curva-
ture method, we take the best matching interest point that
passes a NCC threshold ∆NCC as the matching interest
point. Comparisons between these two tracking measures
can be found in Section 5.

3.3. Motion Estimation

The interest point detection algorithm described in Equa-
tion 4 requires the estimation of relative motion. The esti-
mation of motion Mk−1

k consists of the prediction and cor-
rection steps. The correction step is fairly straightforward—
given the matching pairs, we use RANSAC to fit a funda-
mental matrix model and reject incorrect matches accord-
ingly. The tracking process produces fairly accurate results
and only a small number of iterations suffices to reject most
of the false tracking results.

To compute the joint neighborhood Pk we need to pre-
dict the homography Mk−1

k . Note that the model computed
in the correction step does not necessarily have to be the ho-
mography Mk−1

k ; a more general model used in the correc-
tion stage allows more valid matches to go into the tracked
interest point pool. In the simplest form, one can assume
constant velocity motion and reuse the corrected motion, or
assume no motion at all. If a valid model can not be found
in the correction step, we do not have sufficient matches be-
tween images and in this case Pk falls back to the entire
scale space.

3.4. Descriptor Computation

Each tracked feature descriptor is computed from the
current list of tracked interest points like in the SURF al-
gorithm. Because of the decoupling, we can choose not to
compute any descriptors at all and use the SURFTrac al-
gorithm only as a tracker. When descriptors are required,
we ensure a smooth frame rate by putting the new inter-
est points in a priority queue and computing their descrip-
tors when the time budget allows. In addition, because the
tracked points may out-live the robustness of the descrip-
tors, especially because the interest points are not affine-
invariant, we invalidate old descriptors and place them in
the priority queue to be refreshed.

4. Real-Time Object Recognition and Tracking

In order to recognize and label objects in real-time, we
need to compute and maintain the descriptors from the set
of tracked features and query the image database. Querying
the whole database can be slow especially as the size of the
database grows. In order to speed up the process, we pro-
pose to organize the images in the database based on their
spatial relationships, and query only subsets of the database
that are more likely to contain matching objects. Figure 6
shows the overview of this process, and Figure 1 shows an
example output from our system.

4.1. Image Graph Organization

We propose to organize the database images as follows.
Given a collection of database images V, we create an undi-
rected graph G = (V,E) where images form the nodes in
the graph, and the edges E = {EG ∪ EID} describe the re-
lationships between the images. An edge eg ∈ EG between
two images indicates a geometric relationship when these
two images can be related through standard pairwise im-
age matching. In this case, a geometric relationship is sim-
ply the homography transform between these two images.
Each image is also further identified with one or more ob-
ject IDs, and two images sharing the same ID are also con-

2941

Object ID

Database

No

Yes

Yes

No

Capture

Image

Update Label

Locations & Render

Capture

Image

Detect Features

& Query Image

Render

Labels

Image

Database

Initialization

Object

Tracking

Track Known Features

with SURFTrac

Project Subgraph

Features to

Current Image

New Object

ID in View?

Update Feature

Locations

Update Tracked

Interest Points
SURFTrac and

Query Image
Switch to New

Keynode

Found

Matches?
Determine

Keynode

Figure 6. Real-time tracking and recognition pipeline.

nected by an additional edge eid ∈ EID. This organization
is similar to Simon et al. [21] where a graph of images is
constructed for hierarchical browsing purposes. It is partic-
ularly suitable for our purposes where the images are taken
from real-world environments such as streets and buildings.
An example of the image graph is shown in Figure 1(b).

4.2. Initialization

During initialization, we compute the full SURF fea-
ture descriptors from the first video image and match them
against images in G using a method similar to Takacs et
al. [27]. This method constructs an approximate nearest
neighbor tree for all the image features in the database
followed by geometric verification (RANSAC). Upon suc-
cessfully identifying the matching images, the best image
vk ∈ V is marked as the current keynode, and the set of
images in-play is reduced to only those images that are con-
nected to vk by a path in G, as shown in Figure 1(b). Once
a keynode image and its object ID are identified, we can
continuously match and update the keynode at a relatively
low cost since we are fairly confident all potentially relevant
objects are included in the current database subgraph.

The next task involves computing the placement of the
labels. In this step, we group all the matching features ac-
cording to their respective object IDs, and render one object
ID label at the geometric centroid of each feature group.
The locations of the labels remain static with respect to the
feature group until a new keynode image is chosen.

4.3. Object Tracking

At every new video frame, we run SURFTrac to update
the interest points, compute the homography against the
previous video frame, and update the label location accord-
ingly. Because SURFTrac continues to run in every input
video frame, we only need to run the object recognition al-
gorithm occasionally for newly revealed objects. In order
to avoid running the matching algorithm frequently, we re-
project all features in Vk to the current video frame, and

if features corresponding to new object IDs fall onto the
video frame, we add these new features to the list of tracked
interest points, and run SURFTrac algorithm again before
querying into Gk.

5. Results and Discussions
We now move on to discuss the performance and at-

tributes of our implementation of SURFTrac algorithm. In
the following experiments, unless otherwise noted, we pre-
dicted the motion Mk−1

k between consecutive frames using
constant velocity assumption, and rely on the SURFTrac lo-
cal neighborhood to locate the updated interest points. We
also chose to set ∆NCC and ∆r2 to infinity, which means
we always select one best matching feature for each local
neighborhood. We implement our methods on top of the
SURF algorithm in [6] to obtain fair performance compar-
isons between these two algorithms.

5.1. Interest Point Tracking

To evaluate the incremental interest point detection al-
gorithm, we first produce a synthetic image sequence by
rendering a rectangular texture in 3D and varying the vir-
tual camera parameters to simulate the pure translation and
rotation of the real camera. Using a synthetic sequence al-
lows us to measure the impact of each individual extrinsic
parameter independently. We use either the NCC or the Lo-
cal Curvature method to track the interest points. Then, we
apply homography RANSAC to filter out the false-positive
matches. We measure the accuracy of the tracking method
as a percentage of the matches that passed RANSAC. The
accuracy under different camera movements are shown in
Figure 7 where the camera moves in x direction with a con-
stant velocity. For the local SURFTrac neighborhood, we
always use ∆σ = 1 and γ = 6, which for the base level
corresponds to 16×16 pixels. With an accuracy up to 90%,
the NCC method proved to be much better than the Local
Curvature method.

Figure 8 shows how the accuracy changes according
to the amount of camera movement around different axes.
SURFTrac appears to cope with most of the camera move-
ments quite well within reasonable range of motion. How-
ever, we can see that the amount of change in roll severely
affects the SURFTrac accuracy in both NCC and Local Cur-
vature methods.

5.2. Mobile Phone Performance

We implemented SURFTrac on a Nokia N95 mobile
phone to analyze and compare the speed of SURFTrac
against regular SURF in both interest point detection and
tracking using a frame-by-frame matching method similar
to Skrypnyk and Lowe [24] and Battiato et al. [1], as de-
scribed in Figure 2. The N95 contains an ARM-11 based

2942

0

10

20

30

40

50

60

70

80

90

100

1 11 21 31 41 51 61 71 81 frame

ac
cu

ra
cy

 (
%

)

r2

NCC

Figure 7. Accuracy comparison between NCC and Local Curva-
ture (r2) matching methods.

Texas Instrument OMAP2 processor running at 330MHz.
Our test results use 256×192 live video from the N95 cam-
era. The local neighborhood Pk is chosen experimentally
to balance the tradeoff between the computational cost and
the tracking consistency, and varied from 12× 12× 3 in the
lowest scale to 32× 32× 3 in the highest scale.

Table 1 summarizes the average processing time per
frame in different methods. Tracking features with the
SURF algorithm takes 0.678 seconds even with fairly op-
timized code. Detecting interest points alone with SURF
takes 0.357 seconds, which is over 3× slower than SURF-
Trac even though the latter provides additional tracking re-
sults. Overall for tracking purposes, we achieve over 5×
speedup compared to SURF.

Without geometric verification, the Local Curvature
method is slightly faster than the NCC method. However,
when geometric verification is enabled, both methods are
equally efficient because in the case of Local Curvature
method, RANSAC requires more iterations to converge due
to its much larger false-positive ratio.

5.3. Outdoor tracking

Figure 1 shows the outdoor tracking and label augmen-
tation results on the N95 phone. We use a small set of
keynodes in the database with about three thousand fea-
tures matched across all keynodes. We use NCC for this
purpose because it generally outperforms the Local Curva-
ture method. We observe that, in this application context,
the user tends to hold and move the mobile device paral-
lel to the ground plane, and therefore the amount of camera
roll is fairly insignificant. Our implementation reached 1.4
FPS during initialization or recovery when the full-frame
feature detection and querying with database is needed. Af-
ter the first keynode is matched, the tracking and subgraph
matching runs at about 6-7 FPS, including capturing and
rendering of the image and label overlay.

Impact of z-translation

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

ac
cu

ra
cy

 (
%

)

r2

NCC

∆distance

(mm)

Impact of panning

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

ac
cu

ra
cy

 (
%

)

r2

NCC

∆angle

(degree)

Impact of tilting

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

∆angle

(degree)

ac
cu

ra
cy

 (
%

)
r2

NCC

Impact of rolling

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13

ac
cu

ra
cy

 (
%

)

r2

NCC

∆angle

(degree)

Figure 8. Impact of change in each camera parameter on neighbor-
hood matching results of NCC and LC (r2).

5.4. Limitations

Our tracking method inherits similar limitations as the
traditional active search strategy which depends very much
on the search region’s size, the camera motion and the distri-
bution of features in the scene. In the outdoor environment,
the tracker fails when, for example, the camera pans to an
empty space between two buildings. In addition, because
the interest points are localized and interpolated quadrati-
cally in the scale space, their positional accuracies do not
rival traditional corner detectors where sub-pixel accuracies
are commonly achieved.

In terms of label placement, because we have multiple
keynodes per building, a label may jitter when a new keyn-
ode is selected. A label can also drift after a while, but its

2943

Methods Time (sec)

SURF Matching and Tracking 0.678
Interest Point only 0.357

SURFTrac

NCC only 0.115
NCC + RANSAC 0.133
Local Curvature only 0.111
Local Curvature + RANSAC 0.134

Table 1. Speed comparison of SURFTrac algorithm versus SURF
algorithm. For tracking purposes we achieve over 5× speedup
compared to SURF.

position will be recovered appropriately when the tracker
switches to a new keynode from the database.

6. Conclusion
We presented the SURFTrac algorithm, an efficient

method for tracking scale-invariant interest points without
computing their descriptors. We also demonstrate a frame-
work for outdoor tracking using SURFTrac and achieve
near real-time performance on mobile phones while track-
ing and recognizing the scene objects at the same time.

Our framework has large potential for improvement for
outdoor mobile augmented reality applications. We would
like to investigate better methods for tracker initialization
and recovery, minimize speed disruption when the subgraph
querying strategy fails, and experiment with more sophisti-
cated motion estimation methods.

Acknowledgments: The authors would like to thank
Ming-Hsuan Yang, Jana Kosecka, and Radek Grzeszczuk
for their useful comments and suggestions.

References
[1] S. Battiato, G. Gallo, G. Puglisi, and S. Scellato. Sift features track-

ing for video stabilization. In Proc. of International Conference on
Image Analysis and Processing (ICIAP), 2007.

[2] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded Up Robust
Features. In ECCV (1), pages 404–417, 2006.

[3] M. Brown and D. Lowe. Invariant features from interest point groups.
In British Machine Vision Conference, pages 656–665, 2002.

[4] M. Brown and D. Lowe. Automatic Panoramic Image Stitching Us-
ing Invariant Features. In International Journal of Computer Vision,
volume 74, pages 59–77, 2007.

[5] D. Chekhlov, M. Pupilli, W. Mayol-Cuevas, and A. Calway. Real-
time and robust monocular SLAM using predictive multi-resolution
descriptors. In 2nd International Symposium on Visual Computing,
November 2006.

[6] W.-C. Chen, Y. Xiong, J. Gao, N. Gelfand, and R. Grzeszczuk. Ef-
ficient Extraction of Robust Image Features on Mobile Devices. In
ISMAR ’07: Proc. of the Sixth IEEE and ACM International Sympo-
sium on Mixed and Augmented Reality (ISMAR’07), 2007.

[7] M. Grabner, H. Grabner, and H. Bischof. Fast approximated SIFT.
In Asian Conference on Computer Vision, pages 918–927. Springer,
2006.

[8] K. Grauman and T. Darrell. The Pyramid Match Kernel: Discrimi-
native Classification with Sets of Image Features. In Proc. of ICCV,
pages 1458–1465, 2005.

[9] C. Harris and M. Stephens. A combined corner and edge detection. In
Proc. of The Fourth Alvey Vision Conference, pages 147–151, 1988.

[10] B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial
Intelligence, 17:185–203, 1981.

[11] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. SIFT Flow:
Dense correspondence across different scenes. In Proc. of the 10th
European Conference on Computer Vision, Oct. 2008.

[12] D. Lowe. Distinctive Image Features from Scale-Invariant Key-
points. International Journal of Computer Vision, 60(2):91–110,
2004.

[13] B. D. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. In IJCAI81, pages 674–679,
1981.

[14] J. Matas, O. Chum, U. Martin, and T. Pajdla. Robust Wide Baseline
Stereo from Maximally Stable Extremal Regions. In British Machine
Vision Conference, pages 384–393, 2002.

[15] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point
detectors. Int. J. Comput. Vision, 60(1):63–86, 2004.

[16] K. Mikolajczyk and C. Schmid. Performance Evaluation of Local
Descriptors. IEEE Trans. Pattern Anal. Mach. Intell., 27(10):1615–
1630, 2005.

[17] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. Van Gool. A Comparison of Affine
Region Detectors. Int. J. Comput. Vision, 65(1-2):43–72, 2005.

[18] D. Nistér and H. Stewénius. Scalable Recognition with a Vocabulary
Tree. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), volume 2, 2006.

[19] E. Rosten and T. Drummond. Fusing points and lines for high per-
formance tracking. In IEEE International Conference on Computer
Vision, volume 2, October 2005.

[20] E. Rosten and T. Drummond. Machine learning for high-speed cor-
ner detection. In European Conference on Computer Vision, vol-
ume 1, pages 430–443, May 2006.

[21] I. Simon, N. Snavely, and S. M. Seitz. Scene Summarization for
Online Image Collections. In Proc. of ICCV, 2007.

[22] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc. Gpu-based
video feature tracking and matching. In EDGE 2006, workshop on
Edge Computing Using New Commodity Architecture, May 2006.

[23] J. Sivic and A. Zisserman. Video Google: A text retrieval approach
to object matching in videos. In Proc. of ICCV, volume 2, pages
1470–1477, Oct. 2003.

[24] I. Skrypnyk and D. G. Lowe. Scene Modelling, Recognition and
Tracking with Invariant Image Features. In Proc. of International
Symposium on Mixed and Augmented Reality (ISMAR), 2004.

[25] N. Snavely, S. M. Seitz, and R. Szeliski. Photo Tourism: Exploring
Photo Collections in 3D. In SIGGRAPH Conference Proceedings,
pages 835–846, 2006.

[26] R. Szeliski. Image alignment and stitching: a tutorial. Foundations
and Trends in Computer Graphics and Vision, 2(1):1–104, 2006.

[27] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W.-C. Chen,
T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and B. Girod. Outdoors
augmented reality on mobile phone using loxel-based visual feature
organization. In Proceeding of ACM international conference on
Multimedia Information Retrieval, pages 427–434, 2008.

[28] P. H. S. Torr and A. Zisserman. Feature based methods for structure
and motion estimation. In Vision Algorithms: Theory and Practice,
number 1883 in LNCS, pages 278–295. Springer-Verlag, 1999.

[29] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg. Pose tracking from natural features on mobile phones. In Proc.
ISMAR, Cambridge, UK, 2008.

[30] Z. Zhang, R. Deriche, O. Faugeras, and Q. Luong. A robust technique
for matching two uncalibrated images through the recovery of the
unknown epipolar geometry. Artificial Intelligence, 78(1-2):87–119,
1995.

2944

