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Abstract 

This paper deals with a new problem in face recognition 
research, in which the enrollment and query face samples 
are captured under different lighting conditions. In our 
case, the enrollment samples are visual light (VIS) images, 
whereas the query samples are taken under near infrared 
(NIR) condition. It is very difficult to directly match the 
face samples captured under these two lighting conditions 
due to their different visual appearances. In this paper, we 
propose a novel method for synthesizing VIS images from 
NIR images based on learning the mappings between   
images of different spectra (i.e., NIR and VIS). In our 
approach, we reduce the inter-spectral differences 
significantly, thus allowing effective matching between 
faces taken under different imaging conditions. Face 
recognition experiments clearly show the efficacy of the 
proposed approach. 

1. Introduction 
Face recognition has received increasing interest in 

recent years [19]. However, most current face recognition 
systems are designed for indoor, cooperative-user 
applications and the performance suffers from different 
environmental illumination. To this task, Li et al. present 
an active NIR imaging system (over a wavelength range of 
0.7μm-1.1μm) for illumination invariant face recognition 
[10]. However, their system needs that both the enrollment 
and query samples are captured under NIR conditions. It is 
difficult for many applications since most face images are 
taken under visible light spectrum (over a wavelength 
range of 0.4μm-0.7μm), such as passport and driver 
license photos. Furthermore, some international 
organizations and standards recommend for taking VIS 
photos, e.g., the International Civil Aviation Organization, 
the International Organization for Standardization, and the 
International Electrotechnical Commission. In addition, 
most of the widely-used face datasets are provided under 
VIS conditions, e.g., FERET [15]. A straightforward 
matching between images of different spectra (i.e., NIR 
and VIS) is not effective mainly because of their different 

spectral properties (cf. Section 5.1). The proposed method 
is for those applications where it is administratively 
required to use VIS images on enrollment, such as 
E-passport and driver’s license. To this end, we develop a 
transformation between the face images captured under 
NIR and VIS conditions. In this paper, we consider the 
synthesis of face images from NIR to VIS condition. Face 
synthesis from VIS to NIR can be accomplished similarly. 

?
 

Fig. 1. Synthesize a virtual face sample x′ in S4 for an input face 
image x in S3 given the training set S1 and S2. 

Formally, as shown in Fig. 1, the problem to be 
discussed in this paper is that the enrollment face samples 
and query face samples are taken under different lighting 
conditions. In general, we have two training sets, S1

 (i.e., 
samples imaging under NIR condition) and S2 (i.e., 
samples imaging under VIS condition). The elements in 
these two sets are the registered NIR-VIS pairs. Our goal 
is that for an input sample x under the NIR condition (i.e., 
x S3 but x S1), we synthesize its corresponding virtual 
sample x′ under the VIS condition (i.e., x′ S4). Here, the 
set S3 is the test set whose samples are taken under the 
NIR condition and S4 is the resulting set whose elements 
are virtual VIS images. 

To perform the transformation from x to x′, the 
proposed method includes two phases: training and testing 
procedures. In the training phase, we divide the samples in 
the training sets (S1 and S2) into patches. For each patch, 
we compute its feature. We then build up two patch 
dictionaries (Dt, t=1 and 2), and each element in Dt is a 
patch-feature pair. In the testing phase, for a testing sample 
x in the set S3, we also perform the same procedure to 
obtain its patch-feature pairs. For each patch, we look up 
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the built dictionary D1 and compute its K nearest neighbors 
(KNN) in the same location. We then use the 
corresponding KNN patches in D2 to synthesize the face 
patch under the VIS condition. Combining each patch, a 
virtual sample x′ in set S4 is obtained. Finally we perform 
the recognition on the probing VIS images from the 
synthesized VIS ones. Face recognition experiments 
clearly show the efficacy of the proposed method. 

The rest of this paper is organized as follows. Section 2 
surveys some related works. Section 3, 4 and 5 describe 
the proposed framework and the facial feature used in this 
study, respectively. In Section 6, some experimental results 
are shown, followed by a conclusion in Section 7. 

2. Related Work 
To overcome the illumination variations in face domain, 

much effort has been made by modeling illumination on 
faces and correct illumination directions [19], such as [2]. 
The use of NIR imaging brings a new dimension [9, 10, 
18]. A related work to ours is that of Yi et al. [18], who 
perform the matching from NIR faces to VIS ones directly 
using multi-variant regression by combining the linear 
discriminant analysis (LDA) and canonical correlation 
analysis (CCA). In [11], Lin and Tang proposed the 
common discriminant feature extraction, which can be 
seen as an extended version of linear discriminant analysis 
for two heterogeneous spaces. However, due to the fact 
that the illumination variations for the faces under NIR and 
VIS conditions are significantly different, the large 
intrapersonal differences decrease the matching 
performance seriously (cf. Section 5.1 and Section 6 for 
details). Therefore, we propose a type of mapping method 
for this problem, which significantly improves the 
matching performance between NIR and VIS images. 

The mapping of one subject’s sample from one lighting 
condition to another can be seen as a problem of image 
analogy (IA) [6]. Specifically, IA means that: Given a pair 
of images y and y′ (the unfiltered and filtered source 
images, respectively), and another unfiltered target image 
x, we need to find the mapping function that y′=ψ(y). Thus, 
for a new input image x, we have x′=ψ(x). An interesting 
work is the face sketch synthesis [12, 17]. Meanwhile, 
Tang and Wang [17] apply principal component analysis 
(PCA) for this task. Liu et al. [12] use a locally linear 
mapping and use Euclidean distance as a measure between 
face patches. However, because the Euclidean distance 
used in [12] is not an illumination-invariant feature, the 
assumption of a local geometry preserving in [12] is not 
suitable for our problem (lighting changes significantly 
from NIR to VIS condition). Neither is PCA. Different 
from their methods [12, 17], we use local binary pattern 
(LBP) which is an illumination-invariant feature [1, 10, 14] 
and validates the assumption of a local geometry 
preserving (cf. Section 5.2 for more details). 
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Fig. 2. Local linear mapping between patches: (a) a face sample 
(size wf×hf) is divided into patches (size wp×hp) in an overlapped 
way (size wo×ho); (b) distances between two patch pairs in 
different image spaces (i.e., NIR and VIS, respectively) and (c) a 
patch and its K-nearest neighbors in different manifold spaces. 

3. Face Synthesis by Learning 

3.1. Modeling of NIR and VIS images 

First we formulate the relationship between a NIR face 
image and its counterpart under VIS condition based on 
manifold [16]. We show that there exists a local linear 
mapping function ψ(·) between the NIR and VIS samples 
by assuming that both the NIR and VIS images are 
respectively captured under similar lighting conditions and 
nearly homogenous illumination on face. Thus, a 
regression-based solution is applicable to a novel image. 

More specifically, as shown in Fig. 2 (a), we divide the 
samples in the sets of S1 and S2 into patches in an 
overlapped way as [1]. For two subjects (i.e., O1 and O2,), 
as shown in Fig. 2 (b), we use the superscript to denote the 
image set and the subscript as the index of images. For 
example, the superscript “t” of 1

tI  and 2
tI  (t=1,2) denotes 

that both are from the set St. However, the two pairs ( 1
1I , 2

1I ) 

and ( 1
2I , 2

2I ) are the photos of the same subject (i.e., O1 and 

O2,), respectively. t
i (t=1, 2 and i=1, 2) are the patches 

from t
iI  in the same location as shown in Fig. 2 (b).  

We have the following statement: 

KNN( 1
1 , 1

2 ) KNN( 2
1 , 2

2 ) and d1/d2  ξ. (1)

Here, KNN(x,y) denotes that x and y are of K nearest 
neighbors; dt=|| 1 2

t t  || (t=1, 2), i.e., the distance between 

1
t  and 2

t . The statement in Eq. (1) says there exits a 

local geometry preserving. In other words, if 1
1  and 1

2  

are of K nearest neighbors, so are 2
1 and 2

2 ; and the 

distance ratio d1/d2 approaches a constant ξ. 
Roweis and Saul develop the locally linear embedding 

(LLE) method, recovering global nonlinear structure from 
locally linear fits [16]. Following their idea, if we learn the 
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manifold of the patches 1
i (i=0,1,…, N-1, N=|S1|, i.e., the 

cardinality of S1), which are from the same location of 
different subjects but under NIR lighting, we obtain a NIR 
manifold M1. Likewise, for the patches 2

i (i=0, 1, …, N-1, 

N=|S2|) we learn a VIS manifold M2. From the statement in 
Eq. (1), we have that M1 and M2 are approximately 
isometric. 

Thus, as shown in Fig. 2 (c), for one patch φ1 in M1, 
there is a locally linear fit between φ1 and its K nearest 
neighbors 1

k  (k=0, 1, …, K-1) [16] and 
1

1 1 1 1

0

( , )
K

k k k k
k

  




     , (2)

where ωk is a group of weights computed based on the 
distances between them. According to the local geometry 
preserving between M1 and M2, we map the patches φ1 
and 1

k  from M1 to M2 and get their counterparts in M2 

(i.e., φ2 and its K nearest neighbors 2
k ). In addition, we 

also borrow the weights from M1
 since M1 and M2 are 

approximately isometric. Correspondingly, the locally 
linear fit between φ2 and 2

k  is approximately as follows:  
1

2 2 2 2

0

( , )
K

k k k k
k

  




     , (3)

Note that φ1 and φ2 are two patches from the same location 
of the same subject but under different lighting conditions 
(i.e., NIR and VIS). Likewise, 1

k  and 2
k  are patches 

from the same locations of the same subjects and under 
different lightings, respectively. 

As mentioned above, we call the mapping from NIR 
images to VIS ones as a local linear mapping since it 
combines the two factors: firstly, the locally linear fit 
between a patch t  and its K nearest neighbors t

k  (t=1, 

2) as shown in Eqs. (2) and (3); secondly, the mapping of 
the patches 1  and 1

k  from M1 to their counterparts 
2  and 2

k  in M2. Thus, for each patch 1
i  of an input 

image x under NIR condition, we can use the locally linear 
mapping to synthesize its counterpart 2

i  under VIS 

condition given the patch pairs ( 1
,i k , 2

,i k ) (k=0,1,…,K-1). 

Combining each virtual patch of the image x under NIR 
condition, we synthesize its counterpart x′ under VIS 
condition. 

As demonstrated in [16], the two locally linear fits 
ψ1(•,•) and ψ2(•,•) for VIS and NIR manifolds in Eq. (2) 
and (3) both take the assumption that the data points used 
for the manifold learning should be well-sampled. In our 
case, dividing face samples into patches reduces the 
dimensionality of data points, which in turn reduces the 
demand on the number of samples. Furthermore, 
neurophysiological evidence hints us that we can find the 
similar patches for an input patch. Specifically, one can 
imagine the patches (e.g., eyes, nose, and mouth) being 

analyzed in parallel. This might be an explanation that we 
say one person having another one’s eyes [7]. The 
procedure discussed in this section shows such a parallel 
approach naturally. 

Note that in our implementation we just borrow the idea 
of manifold learning of [16] to make the statement in Eq. 
(1) to learn an implicit local linear mapping between the 
patches of NIR and VIS conditions but we in fact do not 
learn an explicit global manifold. 
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Fig. 4. Testing procedure. 

3.2. Training phase 

As shown in Fig. 3, during the training procedure, we 
automatically detect the present face by a face detector and 
locate its landmarks for each image in the training sets, S1 
and S2. Here, the landmarks consist of 5 points, i.e., two 
eyes, nose and two mouth corners. Using the landmarks, 
each detected face is cropped and normalized to the size 
wf×hf and then divided into patches (size wp×hp) in an 
overlapped way (size wo×ho) as shown in Fig. 2 (a). Let φi,j 
denote a patch, and i=0, 1, …, m-1; j=0, 1, …, n-1, where 
m and n are the number of patches of a sample in the row 
and column direction, respectively. Specifically,  

m=(hf -hp)/(hp-ho)+1 and n=(wf -wp)/(wp - wo)+1. (4)

For each patch φi,j, we compute its feature fi,j (cf. Section 
4). Combining face patches φi,j and their features fi,j of all 
faces in the two training sets, we obtain two dictionaries 
Dt={(φi,j, fi,j)}

t (t=1, 2), one for S1 (i.e., NIR) and the other 
for S2

 (i.e., VIS). Here, the dimensionality of Dt is of M×N, 
where M= m×n, and N=|S1|=|S2|. More specifically, each 
row of Dt is composed of M patch-feature pairs, each one 
coming from the same location in the face samples. 
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3.3. Testing phase 

During the testing procedure, as shown in Fig. 4, for an 
input image x in S3, we also perform the same procedure 
as in the training phase and obtain the patch-feature pairs 
( 3

,i j , 3
,i jf ). For each patch 3

,i j , as discussed in Section 3.1, 

we look up the dictionary D1 for its K nearest neighbors 
1
, ,i j k  (k=0,1,…,K-1 and the superscript “1” denotes from 

D1) by its feature 3
,i jf . Note that for each input patch 3

,i j , 

we only look up those patches with the same location as 
3
,i j  i.e., only the row (r = i×n+j) in D1. 

Here, we need to compute the distance between two 
given feature vectors f1 and f2. Because we employ the 
LBP histogram to represent each patch (cf. Section 4), we 
use the histogram intersection  (H1,H2) as a similarity 
measure of two histograms H1 and H2: 

1 2 1, 2,
1

( , ) min( , )
L

i i
i

H H H H


   , (5)

where L is the number of bins of a histogram and γ 
represents the computed similarity measure for simplicity. 
Note that both H1 and H2 are normalized beforehand. 

For each of the K nearest neighbors 1
, ,i j k , we find its 

corresponding patch 2
, ,i j k  in dictionary D2. We then 

synthesize the virtual patch 4
,i j  (under VIS condition) of 

current one 3
,i j  (a NIR one) using the locally linear 

mapping (cf. Section 3.1) with its neighbors 2
, ,i j k : 

1
4 2
, , ,

0

K

i j k i j k
k






   , (6)

where k  are the normalized weights: 
1

0

/
K

k k i
i

  




  , (7)

and k (k=0, 1, …, K-1) are the similarities between the 

input patch 3
,i j and its K nearest neighbors 1

, ,i j k . 

Combining each generated patch 4
,i j , a virtual face 

sample x′ in S4 is obtained. Note that for a pixel in the 
overlapped region between patches, its value is the average 
of those patches that cover that pixel. 

4. Facial Features 

4.1. Local binary pattern 

In our case, we use LBP to represent a face patch due to 
its discriminative power and computational efficiency [14]. 
The basic form of LBP is illustrated in Fig. 5 (a) and (b). 
The operator takes as input a local neighborhood around 
each pixel and thresholds the neighborhood pixels at the 
value of the central pixel. The resulting binary-valued 
string is then weighted as follows: 

1

0

( ) 2 ( )
p

p
c j c

j

LBP I s I I




  , (8)

  
(a)                     (b) 

 
(P=4, R=1)   (P=8, R=1)   (P=12, R=1.5)   (P=16, R=2)   (P=24, R=3) 

(c) 

Fig. 5. LBP: (a) a pixel and its eight neighbors; (b) the basic LBP; 
and (c) circularly symmetric neighbor sets for different (P, R). 

where p runs over the neighbors. Ic and Ij are the gray-level 
values at c and j, and s(A) is 1 if A ≥ 0 and 0 otherwise.  

Two extensions of the original LBP are made in [14]. 
One is the multi-resolution operator as depicted in Fig. 5 
(c). Here, we use LBPP,R to denote its parameters (e.g., 
LBP4, 1). The other is the uniform patterns: an LBP is 
‘uniform’ if it contains at most one 0-1 or 1-0 transition 
when viewed it as a circular bit string. Another extension 
is the center-symmetric LBP (CSLBP) [5].  

For each patch φi,j of a sample from S1 or S2, we 
compute its LBP histogram feature fi,j, which might be 
computed in different resolution as shown in Fig. 5 (c). 
We will discuss it in the following subsection. 

4.2. Multi-resolution LBP 

We employ the multi-resolution LBP for our task since 
it improves the performance of a single resolution of LBP 
significantly [1, 14]. Inspired by the idea in [8], we 
combine the outputs of multi-resolution LBP. We call this 
MLBP, where “M” is an abbreviation of multi-resolution. 
However, in our implementation we do not combine the 
classifier for a classification task but for the combination 
of a set of distance measures between patches. Specifically, 
for a patch ,i j , its feature fi,j ={{Hi,j(CSLBP8,1)}, 

{Hi,j(LBPP,R)}}, where (P, R)=(4, 1), (8, 1), (12, 1.5), (8, 2), 
(16, 2), (16, 3) and (24, 3). In other words, fi,j is composed of 
C=8 histogram components. These C components are not 
concatenated to one histogram as in [1, 14] but each 
component is stored in an array, respectively. Here, we use 
“{}” to contain each component to denote their 
independence. In this case, there are C distance 
components between the input patch φi,j and one of its 
neighbors φi,j,k since fi,j is composed of C histogram 
components. We denote these C distance measures as 

{ , 0,1, ..., 1}i i C   . 

The algorithm of using MLBP to synthesize a virtual 
VIS sample is as follows: 
 Compute each histogram component of MLBP over 

each patch of each sample in the sets S1 and S2, i.e., 
{ , ,

Tr
s q cH ; s=0,1,…, N-1; q=0,1,…, M-1, c=0,1,…,C-1}. 

Here, “Tr” denotes training set; N=|S1|=|S2|; M is the 
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number of the patches of a sample; C is the number 
of the components of MLBP. 

 Compute each histogram component of MLBP over 
each patch of an input face sample, i.e., { ,

In
q cH , q=0, 

1, …, M-1, c=0, 1, …, C-1}. Here, “In” denotes the 
input sample. 

 Compute the similarities between each patch of the 
input sample and the patches in the same location of 
samples in the training set S1 using Eq.(5): 

1 2 1, 2,
1

( , ) min( , )
L

i i
i

H H H H


  , here H1= ,
In
q cH  and 

H2= , ,
Tr
s q cH . We denote these similarities as { , ,q s c , 

q=0, 1, …, N-1; s=0, 1, …, M-1, c=0, 1, …, C-1}. In 
other words, for sth patch of the input sample, we 
have C similarities with the sth patch of each sample 
in the training set S1. 

 Combine the similarities: , , ,( )q s q s cf  . Here, f is a 

function of combining these C similarities. In our 
case, we experientially use the product rule [8]: 

1

, , , , ,
0

( )
C

q s q s c q s c
c

f  




  . (9)

 Find those K nearest neighbors for each patch of the 
input sample using the combined similarities ,q s , 

compute the corresponding weights and synthesize 
the virtual sample as shown in Section 3.3. 

5. Validation of the Proposed Method 
In the section, we validate the two facts: one is that it is 

difficult to perform the direct match between images of 
different spectra (i.e., NIR and VIS); the other is the 
statement in Eq. (1) in Section 3.1. 

5.1. Match between NIR and VIS images 

Motivated by [4], we adopt a Lambertian model of 
image formation. An image I(x,y) under a point light 
source is expressed as:  

( , ) ( , ) ( , , ) ( , , ) ( )I x y x y E x y S x y Q d    n s , (10)

where E(λ,x,y) is a spectral power distribution (SPD) of an 
incident light; S(λ,x,y) is the surface reflectance function; 
Q(λ) denotes the spectral sensitivity of the camera sensor; 
n(x,y) is the surface normal in the 3D space; s is the 
lighting direction (a column vector, with magnitude). We 
assume that the camera behaves as an exact Dirac delta 
function [4]. Thus, we have Q(λ)=qδ(λ) and Eq. (10) is 
written as: 

( , ) ( ) ( )I x y E S q  ns . (11)

As we use LBP histogram to represent the images, and 
each LBP string is composed of several bits [14]. Each bit 
is obtained by thresholding its neighbors Ij using the 
central pixel Ic as shown in Eq. (8). Equivalently, Eq. (8) 
can be rewritten as: 

1

0

( ) 2 ( / )
p

p
c j c

j

LBP I I I




  1 , (12)

where 1(A) is 1 if A ≥ 1 and 0 otherwise. 
According to Eq. (11), for each bit of a LBP string we 

have: 
 
 

( ) ( )

( ) ( )
j j

c c

E S qI

I E S q

 

 


ns

ns
. (13)

Both the NIR and VIS images are respectively captured 
under the similar lighting conditions and nearly 
homogenous illumination on face. Thus, we can assume 
that the lighting direction s between the neighboring pixels 
is similar. According to Eq. (13), for each bit we have: 

 
 

( )

( )
j j

j
c c

SI
b

I S





  
        

1 1
n

n
. (14)

Here, we denote the surface reflectance ratio as 

Rsr=    ( ) / ( )
j c

S S n n . (15)

Thus, we have  
 j srb R 1 .  (16)

For those pixels from a patch t
i (t=1, 2 and i=1, 2) as 

shown in Fig. 2 (b), we denote a bit of a LBP string of a 
pixel as ( )t

j ib  . We have the statement that the difference 

between 1
1( )jb   and 2

1( )jb   is nonlinear. Specifically, the 

wavelength from NIR (i.e., NIR  for 1
1 ) to VIS ( i.e., VIS  

for 2
1 ) changes significantly. In addition, the surface 

reflectance ( )S   of human skin is a nonlinear function of 
wavelength   [3] and surface normal n could also vary 
between pixels. Thus, according to Eq. (15), the surface 
reflectance ratio Rsr of neighbors also varies nonlinearly 
from NIR  to VIS . According to Eq. (16), it leads to the 

nonlinear difference between 1
1( )jb   and 2

1( )jb  , which 

nonlinearly changes the LBP string of the current pixel and 
so the LBP histogram of a patch. Therefore, it is difficult 
to perform a direct match between VIS and NIR samples. 

5.2. Validation of local geometry preserving 

It is difficult to mathematically prove the statement in 
Eq.(1) in Section 3.1 because it is difficult to model 
surface reflectance ( )S   of human skin due to its 
complicated histological tissue [3, 13]. However, we 
attempt to state Eq.(1) by the aid of statistical evidences. 
More specifically, for each patch 1

i  in dictionary D1, we 

compute its K nearest neighbors 1
,i k in D1 and the 

corresponding K distances 1
,i kd (k=0,1,…,K-1) between 1

i  

and its neighbors (cf. Fig.2 (c)). Likewise, for each patch 
2
j  in D2, we also compute its K nearest neighbors 2

,j k in 

D2 and the corresponding K distances 2
,j kd . 

To validate the statement in Eq. (1), we should validate 
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the following two propositions: Proposition-1 is that if 
( 1

i , 2
j ) is a registered NIR-VIS pair, the K pairs 

( 1
,i k , 2

,j k ) are also registered NIR-VIS pairs, respectively. 

Proposition-2 is that 1
,i kd varies directly as 2

,j kd . 

Table 1. Comparison of correctly matching KNN and distance 

 Euclidean PCA Our method

Ratio(KNN) 80.4 87.7 92.5 

average of  
distance ratio and 
standard variance 

1.000(0.001) 0.998(0.001) 1.003(0.008)

 

As shown in Table 1, we give the statistical evidences 
on 1,500 images and each image is divided into patches as 
shown in Fig. 2 (a). The first row in this table is the 
percentage of the correctly matching KNN between 
( 1

,i k , 2
,j k ), which is computed as: 

Ratio(KNN)= 
#

#

correctly matching

total patches
. (17)

Here, a correctly matching is that both ( 1
i , 2

j ) and its K 

pairs ( 1
,i k , 2

,j k ) are registered, respectively. The second 

row is the average of the distance ratios between 1
,i kd  and 

2
,j kd  which are correctly matched and the standard 

variances in parentheses. 
Likewise, we also show the values using the Euclidean 

distance as in [12] and PCA as a measure to compute the 
distances between patches and verify whether the 
Euclidean distance and PCA can satisfy the two 
propositions. From the table, one can find that 
Proposition-1 is approached quite well by our method. It 
performs much better than PCA and Euclidean distance. In 
addition, all of the three methods can match Proposition-2 
quite well. 

6. Experimental Results 
In this section, we present two groups of experiments 

with the proposed methods and compare them to some 
existing algorithms. For the first group of experiments, all 
the images in S1 and S2 are taken under similar and 
homogenous lighting conditions, respectively. Specifically, 
the samples in S1 are captured using the active NIR 
conditions as in [10] and the samples in S2 are captured 
under visual lighting indoors. Some examples are shown 
in Fig. 6. All of them are transformed into eight bit 
intensity images. 

For the second group of experiments, all the images in 
S1 and S2 are taken under heterogeneous lighting 
conditions, respectively. Specifically, the samples in S2 are 
captured indoors under three different visual lighting: 
normal, weak and dark. Normal illumination means that 
good environmental lighting is used. Weak illumination 

  
(a) 

  

(b) 

  
(c) 

Fig. 6. Synthesized images; (a) input images under NIR 
condition; (b) synthesized images using MLBP; (c) Ground truth 
under VIS condition. 

 
(a) (b) 

Fig. 7. Faces captured under different illuminations; (a) images 
under NIR condition with the three environmental illuminations: 
normal, weak and dark (from left to right); (b) images under 
three different VIS conditions: normal, weak and dark (from left 
to right). 

means that only computer display is on and each subject 
sits on the chair in front of the computer. Dark 
illumination means near darkness with computer display 
being shut down. The intensity of light (lux) values for 
these three cases are 800, 50 and near 0 lx, respectively. 
Likewise, the samples in S1 are captured using the active 
NIR imaging system as in [10] with the same three 
environmental illuminations. Some examples are shown in 
Fig. 7. From this figure, one can find that the illuminations 
in S2 vary significantly. However, using the active NIR 
imaging system, the unfavorable lighting is almost unseen 
in the NIR face images in S1. 

6.1. Experiments on homogenous illumination 

In this section, we will present the first group of 
experiments. 

6.1.1. Setup 

In our implementation, both S1 and S2 are composed of 
N=1,500 samples, which include 250 subjects and each 
subject containing 6 images (But they are in different 
expressions, such as happiness and disgust.).  

For each normalized sample, as shown in Fig. 2 (a), we 
experientially set the value of each parameter as follows: 
wf =64, hf =80; wp=16, hp=16; and wo =12, ho =12. Thus, 
m=17 and n=13. During testing, we use the leave-one-out 
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strategy and set K=15 based on experiments. In addition, 
we use uniform patterns for different resolution LBPs. For 
how to set the parameter values (i.e., (wf, hf), (wp, hp), (wo, 
ho)), please refer to [1]. 

6.1.2. Synthesized samples 

Some virtual samples are shown in Fig. 6 (b). From 
this figure, one can find that the synthesized images 
look fine subjectively except the third one. We believe 
that her extreme expression makes it difficult to find the 
similar patches in the training set. Collecting more 
samples in the training set is helpful (as discussed in 
Section 3.1). 

6.1.3. Face recognition performance 

In this section, we report the face recognition 
accuracies using some existing methods on our task, i.e., 
the methods of [6], [17], [12] and [18]. As shown in Table 
2, “No” denotes that we directly match the face samples; 
“IA” is the method of Hertzmann et al. [6]; “PCA” is that 
of Tang and Wang [17]; “E_LLM” (an abbreviation for 
Euclidean plus local linear mapping) is that of Liu et al. 
[12]; and “LDA+CCA” is the method of [18]. Note that all 
of these methods were implemented by us following their 
ideas. 

The data sets used in this part include: 1) the set S1 as 
shown in Fig. 1, in which all images are captured under 
NIR condition; 2) the set S2, in which all images are 
captured under VIS condition; 3) the sets S4,i (i=1, 2, 3, 4), 
in which all images are synthesized by IA, PCA, E_LLM 
and our method, respectively. All of these four sets are 
composed of 250 subjects, each showing 6 samples. 

As shown in Table 2, all of cases use the same training 
set S1 but different testing sets. Specifically, “No” denotes 
that we use the set S2 as the testing set directly, which is a 
baseline. “IA” means that we use the virtual set S4,1 as the 
testing set. Likewise, “PCA” and “E_LLM” means that we 
use the sets S4,2 and S4,3 as the testing sets. For our method, 
we use the set S4,4. In addition, for “LDA+CCA”, we use 
the set S2 directly. 

As the feature we use the concatenated multi-resolution 
LBP histogram as in [1]. We divide samples into patches 
as shown in Fig. 2 (a). For any two images, we compute 
the histogram intersection of the concatenated LBP 
features of each patch. We then sum the similarities of all 
the patches as the measure between two images. The 
nearest neighbor method is used as a classifier. We 
compare each sample in the testing sets with all samples in 
the training set. 

The cumulative match scores for the six methods are 
shown in Table 2. The results clearly demonstrate the good 
performance of our algorithm. Using S2 as a testing set, the 
first match for “No” is only 2% and the tenth rank is no 
more than 21%. It shows that it is difficult to directly 

match the images under VIS and NIR conditions since 
they are captured under completely different lightings (cf. 
Section 5.1). However, all synthesized sets S4,i (i=1, 2, 3, 4) 
improve the recognition performance significantly (e.g., 
76.8%, 85.0%, 87.0% and 94.2% at rank 1, respectively).  

Table 2. Cumulative match scores for the six methods on 
homogeneous illumination (%) 

Rank 1 3 5 7 10 15 20

No 2.0 13.0 15.3 18.3 20.7 27.0 31.0

IA 76.8 81.3 85.3 88.7 90.0 94.3 95.2

PCA 85.0 87.2 89.5 92.3 94.7 95.0 97.3

E_LLM 87.0 89.3 90.4 93.0 93.0 93.5 93.5

LDA+CCA 96.5 97.1 98.3 98.6 98.7 98.8 99.1

Ours 94.2 95.1 96.6 96.9 98.4 99.2 100

Table 3. Cumulative match scores for the six methods on 
heterogeneous illumination (%) 

Rank 1 3 5 7 10 15 20 

No 3.0 9.0 13.0 18.3 24.0 24.0 24.0

IA 86.3 87.7 90.0 91.7 92.7 95.3 96.0

PCA 92.0 93.3 94.7 95.0 95.7 96.0 96.3

E_LLM 93.3 94.3 95.0 95.0 95.7 96.0 96.0

LDA+CCA 82.0 83.0 85.0 88.0 90.0 93.0 96.0

Ours 97.3 97.7 98.3 98.3 98.7 98.7 99.3

 
In comparison to the method of “LDA+CCA” [18], our 

method is more suitable for a large scale dataset and is 
very efficient for incremental learning. Specifically, Yi et 
al. use LDA and CCA for the NIR-VIS face image 
matching problem. Their method needs to compute the 
project matrix for LDA and this matrix needs to be 
re-computed once a new sample is added. Thus, adding 
new samples to a large scale dataset decreases 
significantly the efficiency of their method. On the other 
hand, our method computes more efficiently by using the 
LBP descriptor. It computes the features for each sample 
separately without any project matrix, which is quite 
suitable for a large scale dataset. Furthermore, our method 
can save the feature of each sample for future use. When 
new samples are added, we just need to compute the 
features for the new one. This makes our approach very 
efficient for incremental learning. 

6.2. Experiments on heterogeneous illumination 

In this section, we will present the second group of 
experiments. In our implementation, both S1 and S2 include 
50 subjects. Specifically, S1 is composed of N=300 
samples, 6 images for each subject (2 samples for each of 
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the three different illuminations). Now S2 is composed of 
N=100 samples and 2 images for each subject but only in 
normal illumination. In the set S2, we do not include the 
samples taken in weak and dark illuminations since we 
hope to synthesize those virtual face samples in normal 
illumination for face recognition with a good performance. 
During testing, we use the same setup as in Section 6.1. 

We also compare the performance of our methods with 
those of [6], [17], [12] and [18]. The cumulative match 
scores for the six methods are shown in Table 3. The 
results clearly demonstrate the superiority of our algorithm 
even the set S1 is taken under heterogeneous lighting 
conditions. It shows that the assumption in Section 3.1 (i.e., 
both the NIR and VIS images should be captured under 
similar lighting conditions and nearly homogenous 
illumination, respectively) is not strictly required for an 
active NIR imaging system. In addition, the higher 
performance of these methods in Table 3 compared to that 
of in Table 2 (expect the method “LDA+CCA” of [18]) is 
twofold: one is that the unfavorable illumination variations 
are almost unseen in the NIR face images in S1; and the 
other is that both the number of subjects and the size of the 
test sets are smaller than those in Table 2. 

The performance of the method “LDA+CCA” 
decreases significantly. It is because that this method 
needs a pairwise training set, and so we use 100 samples 
of S1

 (only under normal illumination) and all S2 for 
training, and we test the method by the other samples in S1 
versus S2. Due to the small training set (100 images and 2 
images per subject), the performance of this method 
decreases significantly (cf. Table 2 and Table 3). In this 
case, learning a mapping for face synthesis demonstrates 
its superiority as shown in Table 3. 

7. Conclusion 
In this paper we focus on a new problem in which the 

enrollment and query face samples are captured under 
different lighting conditions. To this end, we proposed a 
patch based transformation method with which a virtual 
sample is synthesized from an input sample. By this way, 
we reduce the intrapersonal difference caused by the 
completely different lightings (VIS vs. NIR). Experimental 
results show that the synthesized samples by the proposed 
method improves face recognition performance 
significantly (e.g., from 2.0% to 94.2% at rank 1 under 
homogenous illumination and from 3.0% to 97.3% at rank 
1 under heterogeneous illuminations). Future work will 
focus on the problem that how to use those existing face 
datasets under VIS conditions but without the NIR pairs to 
facilitate training and testing procedure. 
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